人教版最全七年级下册全册同步练习及单元测验卷及答案.doc
人教版七年级下册同步练习与全册单元测验卷(有答案)

七下数学同步练习、单元检测 第五章 相交线与平行线5.1.1 相交线复习检测(5分钟):1、如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2、如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ .3、如图是一把剪刀,其中︒=∠401,则=∠2 ,其理由是 。
4、如图三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____.OF E D CBA5、如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,求∠EOB 的度数.OE D CBA6、如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数cba341212121221E(3)O D CBA (2)O D CBA (1)ODC BA5.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补角都相等.( )2、一条直线不可能与两条相交直线都垂直.( )3、两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )4、两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ).5、如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________.6、如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.7、如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________. 8、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.9、如图,AC ⊥BC,C 为垂足,CD ⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点间的距离是_________.10、如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.小明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对小明的说法,你认为对吗?11、用三角尺画一个是30°的∠AOB,在边OA 上任取一点P,过P 作PQ ⊥OB,垂足为Q,量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?EODCBAFE D C B ADC BA5.1.3同位角、内错角、同旁内角复习检测(5分钟):1、如图(4),下列说法不正确的是()A.∠1与∠2是同位角B.∠2与∠3是同位角C.∠1与∠3是同位角D.∠1与∠4不是同位角2、如图(5),直线AB、CD被直线EF所截,∠A和是同位角,∠A和是内错角,∠A和是同旁内角.3、如图(6), 直线DE截AB, AC, 构成八个角:①、指出图中所有的同位角、内错角、同旁内角.②、∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?4、如图(7),在直角 ABC中,∠C=90°,DE⊥AC于E,交AB于D .①、指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.②、若∠3+∠4=180°试说明∠1=∠2=∠3的理由.5.2.1平行线复习检测(5分钟):1、在同一平面内,两条直线的位置关系有_________2、两条直线L1与L2相交点A,如果L1//L,那么L2与L()3、在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.8765c b a 34124、两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个. 判断题5、6、7、85、不相交的两条直线叫做平行线.( )6、如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )7、过一点有且只有一条直线平行于已知直线.( )8、读下列语句,并画出图形后判断.(1)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b. (2)判断直线a 、c 的位置关系,并借助于三角尺、直尺验证.9、试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.5.2.2平行线的判定复习检测(10分钟):1、如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD(1) (2) (3) (4)2、如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF3、下列说法错误的是( ) A.同位角不一定相等 B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行 4、如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明 a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④5、如图5,如果∠3=∠7,那么______ ,理由是 ;如果∠5=∠3,那么________, 理由是______________; 如果∠2+ ∠5= ______ 那么a ∥b,理由是________ .6、如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______, 如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD.7、在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.8、如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.34D C BA 21F E D C B A 876543219654321D C B A DC D CBA 21(2)由∠CBE=∠C 可以判断______∥______,根据是_________. 9、已知直线a 、b 被直线c 所截,且∠1+∠2=180°试判断直线a 、b 的位置关系,并说明理由.10、如图,已知DG AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由.11、如图所示,已知∠1=∠2,AC 平分∠DAB,试说明DC ∥AB.12、如图所示,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=30°,试说明AB ∥CD.GHKEDC B A13、提高训练:如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?D C B A O FE DC B AD C B A 187654321DC B AC A d ecb a 34125.3.1平行线的性质复习检测(10分钟):1、如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )A.5个B.4个C.3个D.2个(1) (2) (3)2、如图2所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) A.35° B.30° C.25° D.20°3、如图3所示,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______, ∠ACD=•_______.4、如图4,若AD ∥BC,则∠______=∠_______,∠______∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠∠________=∠__________,∠ABC+∠_________=180°(4) (5) (6)5、如图5,在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.6、河南)如图6所示,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG •平分∠B-EF,若∠1=72°,则∠2=_______.7、如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?8、如图,EF 过△ABC 的一个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,并说明依据?E21DCBNM G F E D CB A9、如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.10、如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.11、如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD .求证:∠1+∠2=90°. 证明:∵ AB ∥CD ,(已知)∴∠BAC +∠ACD =180°,( ) 又∵ AE 平分∠BAC ,CE 平分∠ACD ,( )∴112B AC ∠=∠,122A C D ∠=∠,( )∴001112()1809022B AC A CD ∠+∠=∠+∠=⨯=.即 ∠1+∠2=90°.结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相 . 推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相 .5.3.2命题、定理、证明复习检测(5分钟):1、判断下列语句是不是命题(1)延长线段AB ( ) (2)两条直线相交,只有一交点( ) (3)画线段AB 的中点( ) (4)若|x|=2,则x=2( ) (5)角平分线是一条射线( ) 2、下列语句不是命题的是( )A.两点之间,线段最短B.不平行的两条直线有一个交点C.x 与y 的和等于0吗?D.对顶角不相等. 3、下列命题中真命题是( )A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角D.锐角小于它的余角4、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个 5、分别指出下列各命题的题设和结论(1)如果a ∥b ,b ∥c ,那么a ∥c (2)同旁内角互补,两直线平行 6、分别把下列命题写成“如果……,那么……”的形式(1)两点确定一条直线; (2)等角的补角相等; (3)内错角相等.7、如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据:(1)∵a ∥b,∴∠1=∠3( ); (2)∵∠1=∠3,∴a ∥b( ); (3)∵a ∥b,∴∠1=∠2( ); (4) ∵a ∥b,∴∠1+∠4=180º ( ) (5)∵∠1=∠2,∴a ∥b( ); (6)∵∠1+∠4=180º,∴a ∥b( ). 8、已知:如图AB ⊥BC ,BC ⊥CD 且∠1=∠2,求证:BE ∥CF证明:∵AB ⊥BC ,BC ⊥CD (已知)∴ = =90°( ) ∵∠1=∠2(已知)∴ = (等式性质)∴BE ∥CF ( )9、已知:如图,AC ⊥BC ,垂足为C ,∠BCD 是∠B 的余角.求证:∠ACD=∠B证明:∵AC ⊥BC (已知)∴∠ACB=90°( ) ∴∠BCD 是∠ACD 的余角∵∠BCD 是∠B 的余角(已知)∴∠ACD=∠B ( )5.4 平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的( )D2、如图所示,△FDE 经过怎样的平移可得到△ABC.( ) A.沿射线EC 的方向移动DB 长; B.沿射线EC 的方向移动CD 长 C.沿射线BD 的方向移动BD 长; D.沿射线BD 的方向移动DC 长ab 1 23c4C A BD EF1 2 BD CFED C BA3、下列四组图形中,•有一组中的两个图形经过平移其中一个能得到-另一个,这组图形是( )4、如图所示,△DEF 经过平移可以得到△ABC,那么∠C的对应角和ED 的对应边分-别是( ) A.∠F,AC B.∠BOD,BA; C.∠F,BA D.∠BOD,AC 5、在平移过程中,对应线段( ) A.互相平行且相等; B.互相垂直且相等 C.互相平行(或在同一条直线上)且相等6、在平移过程中,平移后的图形与原来的图形________和_________都相同,•因-此对应线段和对应角都________.7、如图所示,平移△ABC 可得到△DEF,如果∠A=50°,∠C=60°,那么∠E=•____-度,∠EDF=_______度,∠F=______度,∠DOB=_______度.8、将正方形ABCD 沿对角线AC 方向平移,且平移后的图形的一个顶点恰好在AC 的中点O 处,则移动前后两个图形的重叠部分的面积是原正方形面积的_______9、直角△ABC 中,AC =3cm ,BC =4cm ,AB =5cm ,将△ABC 沿CB 方向平移3cm ,则边AB 所经过的平面面积为____cm 2。
人教版最全七年级地理下册全册同步练习及单元测验卷及答案

人教版最全七年级地理下册全册同步练习
及单元测验卷及答案
本文档包含了人教版七年级地理下册全册的同步练题和单元测
验卷及答案。
以下是本文档的主要内容:
同步练题
本部分包含了全册各单元的同步练题,可以帮助学生复和巩固
所学的地理知识。
练题涵盖了以下单元:
1. 第一单元:地球和地图
2. 第二单元:水资源与利用
3. 第三单元:地理与环境
4. 第四单元:农业与农村生活
5. 第五单元:城市与交通
每个单元的练题都涵盖了相关知识点的各个方面,包括选择题、填空题和简答题等。
单元测验卷及答案
本部分提供了全册各个单元的测验卷及答案。
每个单元的测验卷包含了考察学生对该单元知识的理解和应用的题目。
测验卷的题目形式包括选择题、填空题和解答题等。
每个单元的测验卷答案部分列出了每道题的正确答案和详细解析,可以帮助学生检查自己的答案并加深对知识点的理解。
以上是《人教版最全七年级地理下册全册同步练习及单元测验卷及答案》文档的主要内容概述。
希望本文档能对需要学习地理的七年级学生有所帮助。
【人教版】七下数学同步练习及单元测验(71页,含答案)

七下数学同步练习、单元检测 第五章 相交线与平行线5.1.1 相交线复习检测(5分钟):1、如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2、如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ .3、如图是一把剪刀,其中︒=∠401,则=∠2 ,其理由是 。
4、如图三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____.OF E D CBA12121221E(3)O D CBA (2)O D CBA (1)ODC B5、如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•求∠EOB 的度数.OE D CBA6、如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数cba34125.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补角都相等.( )2、一条直线不可能与两条相交直线都垂直.( )3、两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )4、两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ).5、如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________.6、如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.7、如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.8、已知如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系. 9、如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点间的距离是_________.10、如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.小明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对小明的说法,你认为对吗?11、用三角尺画一个是30°的∠AOB,在边OA 上任取一点P,过P 作PQ ⊥OB, 垂足为Q,量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?5.1.3同位角、内错角、同旁内角E ODCBAFE DC B ADCBA复习检测(5分钟):1、如图(4),下列说法不正确的是()A.∠1与∠2是同位角B.∠2与∠3是同位角C.∠1与∠3是同位角D.∠1与∠4不是同位角2、如图(5),直线AB、CD被直线EF所截,∠A和是同位角,∠A和是内错角,∠A和是同旁内角.3、如图(6), 直线DE截AB, AC, 构成八个角①、指出图中所有的同位角、内错角、同旁内角.②、∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?4、如图(7),在直角 ABC中,∠C=90°,DE⊥AC于E,交AB于D .①、指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.②、若∠3+∠4=180°试说明∠1=∠2=∠3的理由.5.2.1平行线复习检测(5分钟):1、在同一平面内,两条直线的位置关系有_________2、两条直线L1与L2相交点A,如果L1//L,那么L2与L()3、在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.4、两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个. 判断题5、6、7、85、不相交的两条直线叫做平行线.( )6、如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )7、过一点有且只有一条直线平行于已知直线.( )8、读下列语句,并画出图形后判断.(1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b.(2)判断直线a、c的位置关系,并借助于三角尺、直尺验证.8765c ba34129、试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.5.2.2平行线的判定复习检测(10分钟):1、如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD(1) (2) (3) (4)2、如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3、下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行 4、如图5,直线a,b 被直线c 所截,现给出下列四个条件•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④34DCBA21FE D CBA 876543219654321DCB ADCBA 215、如图5,如果∠3=∠7,那么______ ,理由是 ;如果∠5=∠3,那么________, 理由是______________; 如果∠2+ ∠5= ______ 那么a ∥b,理由是________ .6、如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD.7、在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______. 8、如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________. 9、已知直线a 、b 被直线c 所截,且∠1+∠2=180°, 试判断直线a 、b 的位置关系,并说明理由.10、如图,已知DG AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由.ED CBA11、如图所示,已知∠1=∠2,AC 平分∠DAB,试说明DC ∥AB.12、如图所示,已知直线EF 和AB,CD 分别相交于,H,且EG ⊥AB,∠CHF=600,∠E=30°,试说明AB ∥CD.GHKEDC B A13、提高训练如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?DCBAOFED C BADCB A 187654321DCBAGFEDCBA12d ecb a 34125.3.1平行线的性质复习检测(10分钟):1、如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )A.5个B.4个C.3个D.2个(1) (2) (3)2、如图2所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) A.35° B.30° C.25° D.20°3、如图3所示,AB ∥CD,∠D=80°,∠CAD ∠BAC=32,则∠CAD=_______, ∠ACD=•_______.4、如图4,若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______,∠________=∠__________,∠ABC+∠_________=180°.E21DCB(4) (5) (6) 5、如图5,在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.6、河南)如图6所示,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG•平分∠B-EF,若∠1=72°,则∠2=_______.7、如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?8、如图,EF 过△ABC 的一个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,并说明依据?9、如图,已知DE ∥CB,∠1=∠2,求证CD 平分∠ECB.NMG F EDCB A10、如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.11、如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD .求证:∠1+∠2=90°.证明:∵ AB ∥CD ,(已知)∴∠BAC +∠ACD =180°,( ) 又∵ AE 平分∠BAC ,CE 平分∠ACD ,( )∴112B AC ∠=∠,122A C D ∠=∠,( )∴001112()1809022B AC A CD ∠+∠=∠+∠=⨯=.即 ∠1+∠2=90°.结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相 .推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相.5.3.2命题、定理、证明复习检测(5分钟):1、判断下列语句是不是命题(1)延长线段AB()(2)两条直线相交,只有一交点()(3)画线段AB的中点()(4)若||=2,则=2()(5)角平分线是一条射线()2、下列语句不是命题的是()A.两点之间,线段最短B.不平行的两条直线有一个交点C.与y的和等于0吗?D.对顶角不相等.3、下列命题中真命题是()A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角D.锐角小于它的余角4、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1个B.2个C.3个D.4个5、分别指出下列各命题的题设和结论(1)如果a∥b,b∥c,那么a∥c (2)同旁内角互补,两直线平行6、分别把下列命题写成“如果……,那么……”的形式(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等.7、如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据(1)∵a ∥b,∴∠1=∠3( ); (2)∵∠1=∠3,∴a ∥b( ); (3)∵a ∥b,∴∠1=∠2( ); (4) ∵a ∥b,∴∠1+∠4=180º ( ) (5)∵∠1=∠2,∴a ∥b( ); (6)∵∠1+∠4=180º,∴a ∥b( ).8、已知:如图AB ⊥BC ,BC ⊥CD 且∠1=∠2,求证:BE ∥CF证明:∵AB ⊥BC ,BC ⊥CD (已知)∴ = =90°( ) ∵∠1=∠2(已知)∴ = (等式性质) ∴BE ∥CF ( ) 9、已知:如图,AC ⊥BC ,垂足为C ,∠BCD 是∠B 的余角.求证:∠ACD=∠B 证明:∵AC ⊥BC (已知)∴∠ACB=90°( ) ∴∠BCD 是∠ACD 的余角∵∠BCD 是∠B 的余角(已知)∴∠ACD=∠B ( )5.4 平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的( )ab 1 23c4C A BDEF12BD CD2、如图所示,△FDE 经过怎样的平移可得到△ABC.( ) A.沿射线EC 的方向移动DB 长; B.沿射线EC 的方向移动CD 长 C.沿射线BD 的方向移动BD 长; D.沿射线BD 的方向移动DC 长3、下列四组图形中,•有一组中的两个图形经过平移其中一个能得到-另一个,这组图形是( )4、如图所示,△DEF 经过平移可以得到△ABC,那么∠C 的对应角和ED 的对应边分-别是( )A.∠F,ACB.∠BOD,BA;C.∠F,BAD.∠BOD,AC5、在平移过程中,对应线段( ) A.互相平行且相等; B.互相垂直且相等 C.互相平行(或在同一条直线上)且相等6、在平移过程中,平移后的图形与原的图形________和_________都相同,•因-此对应线段和对应角都________.7、如图所示,平移△ABC 可得到△DEF,如果∠A=50°, ∠C=60°,那么∠E=•____-度,∠EDF=_______度, ∠F=______度,∠DOB=_______度.FED C BA OF ECB ADABCDOFECB AD8、将正方形ABCD沿对角线AC方向平移,且平移后的图形的一个顶点恰好在AC的中点O处,则移动前后两个图形的重叠部分的面积是原正方形面积的_______9、直角△ABC中,AC=3cm,BC=4cm,AB=5cm,将△ABC沿CB方向平移3cm,则边AB所经过的平面面积为____cm2。
新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
人教版七年级下册全册同步练习及单元测验卷及答案【2020年】

第五章 相交线与平行线5.1.1 相交线复习检测(5分钟):1、如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2、如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ .3、如图是一把剪刀,其中︒=∠401,则=∠2 ,其理由是 。
图(3)214、如图三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____.OF E D CBA5、如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•求∠EOB 的度数.OE D CBA6、如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数cba34125.1.2 垂线复习检测(5分钟):12121221E(3)O D CBA (2)O D CBA (1)ODC BA1、两条直线互相垂直,则所有的邻补角都相等.( )2、一条直线不可能与两条相交直线都垂直.( )3、两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )4、两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ).5、如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________.6、如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.7、如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.8、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.9、如图,AC ⊥BC,C 为垂足,CD ⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点间的距离是_________.10、如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.小明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对小明的说法,你认为对吗?11、用三角尺画一个是30°的∠AOB,在边OA 上任取一点P,过P 作PQ ⊥OB, 垂足为Q,量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?E DC BAFE DC B ADC BA5.1.3同位角、内错角、同旁内角复习检测(5分钟):1、如图(4),下列说法不正确的是()A.∠1与∠2是同位角B.∠2与∠3是同位角C.∠1与∠3是同位角D.∠1与∠4不是同位角2、如图(5),直线AB、CD被直线EF所截,∠A和是同位角,∠A和是内错角,∠A和是同旁内角.3、如图(6), 直线DE截AB, AC, 构成八个角:①、指出图中所有的同位角、内错角、同旁内角.②、∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?4、如图(7),在直角 ABC中,∠C=90°,DE⊥AC于E,交AB于D .①、指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.②、若∠3+∠4=180°试说明∠1=∠2=∠3的理由.5.2.1平行线复习检测(5分钟):65cba34121、在同一平面内,两条直线的位置关系有_________2、两条直线L 1与L 2相交点A ,如果L 1//L ,那么L 2与L ( )3、在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.4、两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个. 判断题5、6、7、85、不相交的两条直线叫做平行线.( )6、如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )7、过一点有且只有一条直线平行于已知直线.( )8、读下列语句,并画出图形后判断.(1)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b. (2)判断直线a 、c 的位置关系,并借助于三角尺、直尺验证.9、试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.5.2.2平行线的判定复习检测(10分钟):1、如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD(1) (2) (3) (4)2、如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3、下列说法错误的是( )34D C BA 21F E D CB A 876543219654321D C B AA.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行 4、如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④5、如图5,如果∠3=∠7,那么______ ,理由是 ;如果∠5=∠3,那么________, 理由是______________; 如果∠2+ ∠5= ______ 那么a ∥b,理由是________ . 6、如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD.7、在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.8、如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________.9、已知直线a 、b 被直线c 所截,且∠1+∠2=180°, 试判断直线a 、b 的位置关系,并说明理由.10、如图,已知DG AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由.11、如图所示,已知∠1=∠2,AC 平分∠DAB,试说明DC ∥AB.EDC B A c ba 321D CB A 21D C B A OF E DC B A DC B A 1CA12、如图所示,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=30°,试说明AB ∥CD.GHKEDC B A13、提高训练:如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?d ecb a 34125.3.1平行线的性质复习检测(10分钟):1、如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )A.5个B.4个C.3个D.2个(1) (2) (3)2、如图2所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) A.35° B.30° C.25° D.20°3、如图3所示,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠ACD=•_______. 4、如图4,若AD ∥BC,则∠______=∠_______,∠∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠∠________=∠__________,∠ABC+∠_________=180°.87654321DC B A E 21D C B NMG F E D CB A(4) (5) (6) 5、如图5,在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.6、河南)如图6所示,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG•平分∠B-EF,若∠1=72°,则∠2=_______.7、如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?8、如图,EF 过△ABC 的一个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,并说明依据?9、如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.10、如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.11、如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD .求证:∠1+∠2=90°. 证明:∵ AB ∥CD ,(已知)∴∠BAC +∠ACD =180°,( ) 又∵ AE 平分∠BAC ,CE 平分∠ACD ,( )∴112B AC ∠=∠,122A C D ∠=∠,( )∴001112()1809022B AC A CD ∠+∠=∠+∠=⨯=. 即 ∠1+∠2=90°.结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相 . 推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相 .5.3.2命题、定理、证明复习检测(5分钟):1、判断下列语句是不是命题(1)延长线段AB ( ) (2)两条直线相交,只有一交点( ) (3)画线段AB 的中点( ) (4)若|x|=2,则x=2( ) (5)角平分线是一条射线( ) 2、下列语句不是命题的是( )A.两点之间,线段最短B.不平行的两条直线有一个交点C.x 与y 的和等于0吗?D.对顶角不相等. 3、下列命题中真命题是( )A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角D.锐角小于它的余角4、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个 5、分别指出下列各命题的题设和结论(1)如果a ∥b ,b ∥c ,那么a ∥c (2)同旁内角互补,两直线平行 6、分别把下列命题写成“如果……,那么……”的形式(1)两点确定一条直线; (2)等角的补角相等; (3)内错角相等.7、如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据:(1)∵a ∥b,∴∠1=∠3( ); (2)∵∠1=∠3,∴a ∥b( );a b 123c4(3)∵a ∥b,∴∠1=∠2( ); (4) ∵a ∥b,∴∠1+∠4=180º ( ) (5)∵∠1=∠2,∴a ∥b( ); (6)∵∠1+∠4=180º,∴a ∥b( ). 8、已知:如图AB ⊥BC ,BC ⊥CD 且∠1=∠2,求证:BE ∥CF证明:∵AB ⊥BC ,BC ⊥CD (已知)∴ = =90°( ) ∵∠1=∠2(已知)∴ = (等式性质)∴BE ∥CF ( )9、已知:如图,AC ⊥BC ,垂足为C ,∠BCD 是∠B 的余角.求证:∠ACD=∠B证明:∵AC ⊥BC (已知)∴∠ACB=90°( ) ∴∠BCD 是∠ACD 的余角∵∠BCD 是∠B 的余角(已知)∴∠ACD=∠B ( )5.4 平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的( )D2、如图所示,△FDE 经过怎样的平移可得到△ABC.( ) A.沿射线EC 的方向移动DB 长; B.沿射线EC 的方向移动CD 长C.沿射线BD 的方向移动BD 长;D.沿射线BD 的方向移动DC 长3、下列四组图形中,•有一组中的两个图形经过平移其中一个能得到-另一个,这组图形是( )4、如图所示,△DEF 经过平移可以得到△ABC,那么∠CC A BD EF1 2 BD ACFED C B A O FEC BADAB C D的对应角和ED 的对应边分-别是( )A.∠F,ACB.∠BOD,BA;C.∠F,BAD.∠BOD,AC 5、在平移过程中,对应线段( )A.互相平行且相等;B.互相垂直且相等C.互相平行(或在同一条直线上)且相等6、在平移过程中,平移后的图形与原来的图形________和_________都相同,•因-此对应线段和对应角都________.7、如图所示,平移△ABC 可得到△DEF,如果∠A=50°,∠C=60°,那么∠E=•____-度,∠EDF=_______度, ∠F=______度,∠DOB=_______度.8、将正方形ABCD 沿对角线AC 方向平移,且平移后的图形的一个顶点恰好在AC 的中点O 处,则移动前后两个图形的重叠部分的面积是原正方形面积的_______9、直角△ABC 中,AC =3cm ,BC =4cm ,AB =5cm ,将△ABC 沿CB 方向平移3cm ,则边AB 所经过的平面面积为____cm 2。
人教版最全七年级下册全册同步练习及单元测验卷及答案

人教版最全七年级下册全册同步练习及单元测验卷及答案13、用三角尺画一个是30°的∠AOB,在边OA上任取一点P,过P作PQ⊥OB, 垂足为Q,量一量OP的长,你发现点P到OB的距离与OP长的关系吗?5.1.3同位角、内错角、同旁内角复习检测(5分钟):1、如图(4),下列说法不正确的是()A.∠1与∠2是同位角B.∠2与∠3是同位角C.∠1与∠3是同位角D.∠1与∠4不是同位角2、如图(5),直线AB、CD被直线EF所截,∠A和是同位角,∠A和是内错角,∠A和是同旁内角.3、如图(6), 直线DE截AB, AC, 构成八个角:①、指出图中所有的同位角、内错角、同旁内角.②、∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?4、如图(7),在直角 ABC中,∠C=90°,DE⊥AC于E,交AB于D .①、指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.②、若∠3+∠4=180°试说明∠1=∠2=∠3的理由.5.2.1平行线复习检测(5分钟):1、在同一平面内,两条直线的位置关系有_________2、两条直线L1与L2相交点A,如果L1//L,那么L2与L()3、在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.4、两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个.判断题5、6、7、85、不相交的两条直线叫做平行线.( )6、如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )7、过一点有且只有一条直线平行于已知直线.( )8、读下列语句,并画出图形后判断.(1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b.(2)判断直线a、c的位置关系,并借助于三角尺、直尺验证.9、试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.5.2.2平行线的判定复习检测(10分钟):1、如图1所示,下列条件中,能判断AB∥CD的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34D CB A21FEDCBA876543219654321DCBA8765c ba 3412(1) (2)(3) (4)2、如图2所示,如果∠D=∠EFC,那么( )A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF3、下列说法错误的是( ) A.同位角不一定相等 B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行 4、如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明 a∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④5、如图5,如果∠3=∠7,那么______ ,理由是 ;如果∠5=∠3,那么________, 理由是______________; 如果∠2+ ∠5= ______ 那么a ∥b,理由是________ .6、如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 7、在同一平面内,若直线a,b,c 满足a⊥b,a⊥c,则b 与c 的位置关系是______.8、如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________.9、已知直线a 、b 被直线c 所截,且∠1+∠2=180°,试判断直线a 、b 的位置关系,并说明理由.10、如图,已知DG AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由.E DC B A c b a321DCB A 21B AFEDC B A 111、如图所示,已知∠1=∠2,AC 平分∠DAB,试说明DC∥AB.12、如图所示,已知直线EF 和AB,CD 分别相交于K,H,且EG⊥AB,∠CHF=600,∠E=30°,试说明AB∥CD.GHKEDC B A13、提高训练:如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?d ecb a 34125.3.1平行线的性质复习检测(10分钟):1、如图1所示,AB∥CD,则与∠1相等的角(∠1除外)共有( )A.5个B.4个C.3个D.2个87654321DC B ACA E 21D C B(1) (2) (3)2、如图2所示,CD∥AB,OE 平分∠AOD,OF⊥OE,∠D=50°,则∠BOF 为( ) A.35° B.30° C.25° D.20°3、如图3所示,AB∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______, ∠ACD=•_______.4、如图4,若AD ∥BC,则∠______=∠_______,∠______∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠∠________=∠__________,∠ABC+∠_________=180°(4) (5) (6) 5、如图5,在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________. 6、河南)如图6所示,已知AB∥CD,直线EF 分别交AB,CD 于E,F,EG •平分∠B -EF,若∠1=72°,则∠2=_______.7、如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?8、如图,EF 过△ABC 的一个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,并说明依据?9、如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.NM G F E D CB A10、如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.11、如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD .求证:∠1+∠2=90°.证明:∵ AB ∥CD ,(已知)∴∠BAC +∠ACD =180°,( ) 又∵ AE 平分∠BAC ,CE 平分∠ACD ,( )∴112B AC ∠=∠,122A C D ∠=∠,( )∴001112()1809022B AC A CD ∠+∠=∠+∠=⨯=. 即 ∠1+∠2=90°.结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相 .推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相 .5.3.2命题、定理、证明复习检测(5分钟):1、判断下列语句是不是命题(1)延长线段AB ( ) (2)两条直线相交,只有一交点( ) (3)画线段AB 的中点( ) (4)若|x|=2,则x=2( ) (5)角平分线是一条射线( ) 2、下列语句不是命题的是( )A.两点之间,线段最短B.不平行的两条直线有一个交点C.x 与y 的和等于0吗?D.对顶角不相等. 3、下列命题中真命题是( )A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角D.锐角小于它的余角4、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个 5、分别指出下列各命题的题设和结论(1)如果a ∥b ,b ∥c ,那么a ∥c (2)同旁内角互补,两直线平行 6、分别把下列命题写成“如果……,那么……”的形式(1)两点确定一条直线; (2)等角的补角相等; (3)内错角相等. 7、如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据:(1)∵a ∥b,∴∠1=∠3( ); (2)∵∠1=∠3,∴a ∥b( ); (3)∵a ∥b,∴∠1=∠2( ); (4) ∵a ∥b,∴∠1+∠4=180º ( ) (5)∵∠1=∠2,∴a ∥b( ); (6)∵∠1+∠4=180º,∴a ∥b( ). 8、已知:如图AB ⊥BC ,BC ⊥CD 且∠1=∠2,求证:BE ∥CF证明:∵AB ⊥BC ,BC ⊥CD (已知)∴ = =90°( ) ∵∠1=∠2(已知)∴ = (等式性质)∴BE ∥CF ( )9、已知:如图,AC ⊥BC ,垂足为C ,∠BCD 是∠B 的余角.求证:∠ACD=∠B证明:∵AC ⊥BC (已知)∴∠ACB=90°( ) ∴∠BCD 是∠ACD 的余角∵∠BCD 是∠B 的余角(已知)∴∠ACD=∠B ( )5.4 平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的( )BD2、如图所示,△FDE 经过怎样的平移可得到△ABC.( )a b 123c4C A B DE F1 2 B DAC FAA.沿射线EC 的方向移动DB 长;B.沿射线EC 的方向移动CD 长C.沿射线BD 的方向移动BD 长;D.沿射线BD 的方向移动DC 长3、下列四组图形中,•有一组中的两个图形经过平移其中一个能得到-另一个,这组图形是( )4、如图所示,△DEF 经过平移可以得到△ABC,那么∠C的对应角和ED 的对应边分-别是( ) A.∠F,AC B.∠BOD,BA; C.∠F,BA D.∠BOD,AC 5、在平移过程中,对应线段( ) A.互相平行且相等; B.互相垂直且相等 C.互相平行(或在同一条直线上)且相等6、在平移过程中,平移后的图形与原来的图形________和_________都相同,•因-此对应线段和对应角都________.7、如图所示,平移△ABC 可得到△DEF,如果∠A=50°,∠C=60°,那么∠E=•____-度,∠EDF=_______度,∠F=______度,∠DOB=_______度.8、将正方形ABCD 沿对角线AC 方向平移,且平移后的图形的一个顶点恰好在AC 的中点O 处,则移动前后两个图形的重叠部分的面积是原正方形面积的_______9、直角△ABC 中,AC =3cm ,BC =4cm ,AB =5cm ,将△ABC 沿CB 方向平移3cm ,则边AB 所经过的平面面积为____cm 2。
(25套)新人教版七年级生物下(全册)同步练习 单元检测卷附答案

(25套)新人教版七年级生物下(全册)同步练习单元检测卷附答案(word)人的由来一、单选题(共20题;共40分)1.因病摘除子宫的妇女,表现出的生理现象是()A. 正常排卵,没有月经 B.正常排卵,月经失调C. 不能排卵,月经失调 D.不能排卵,月经正常2.你和你的同龄人正步入一生中最重要的生长发育时期一青春期.图中的①②③分别表示人体脑、全身、生殖器官发育的比较曲线.下列有关叙述错误的是()A. 青春期脑的发育基本完成 B. 青春期身高和体重迅速增长C. 生殖器官从青春期开始迅速发育D. 生殖器官的发育与身体总发育基本一致3.下列有关青春期特征的叙述,不正确的是()A. 男女出现各自的外形特征 B. 大脑兴奋性比较强C. 性激素开始分泌D. 身体已经完全发育成熟4.下列哪项不是青春期发育的特点()A. 身高和体重的突然且迅速的增加B. 性心理有所觉醒C. 第二性征发育D. 出现生殖器官5.引起青春期的男生喉结突出,声音变粗这种现象的原因是()A. 甲状腺激素B. 雌性激素 C. 雄性激素 D. 促性腺激素6.如图为女性生殖系统示意图.据图分析,产生卵细胞的场所、精子和卵细胞结合的场所.胚胎发育的场所依次是()A. ②①③B. ②③①C. ③①②D. ①②③7.人类学家把下列哪一项作为人与猿分界的最重要标准之一是()A. 下肢增长B. 骨盆变短增粗 C. 直立行走 D. 脊柱由“弓”状变为“S”形8.学习了“人的生殖与发育”后,某同学做了如下总结,其中错误的是()A. 人的发育起始于婴儿的出生 B. 产生卵细胞并分泌雌性激素的是卵巢C. 受精卵发育初期营养物质来自卵细胞的卵黄D. 在正常情况下,胚胎发育的场所是子宫9.在人类的正常生殖过程中,受精作用和胚胎发育的场所分别是()A. 卵巢和子宫B. 子宫和卵巢 C. 输卵管和子宫 D. 阴道和子宫10.现代人猿和人类共同起源于()A. 森林古猿B. 猕猴 C. 猩猩 D. 长臂猿11.关于人类起源下列说法正确的是()A. 人类起源于现代类人猿 B. 人类起源于森林古猿C. 人类是由神创造出来的 D. 人类起源于“露西少女”12.下列关于青春期发育特点的叙述,错误的是()A. 身高突增B. 女孩出现月经 C. 神经系统开始发育 D. 男孩出现遗精13.在怀孕时,母亲要为胎儿提供营养物质和氧气,排出胎儿产生的二氧化碳和其他废物.母亲与胎儿之间进行物质交换发生在()A. 胚盘B. 脐带C. 胎盘 D. 羊水14.)人进入青春期的第一个信号是()A. 肺活量增加B. 体重增加 C. 身高生长迅速 D. 出现第二性征15.下列属于现代类人猿的是()A. 长臂猿B. 金丝猴 C. 黑猫长尾猴 D. 猕猴16.女性两侧输卵管结扎,生理上表现为()A. 不产生卵细胞,不怀孕 B. 产生卵细胞,不怀孕C. 不产生卵细胞,怀孕 D.产生卵细胞,怀孕17.胚胎呈现出人形的时期大约是在怀孕后()A. 5周左右B. 6周左右 C. 7周左右 D. 8周左右18.下列哪对夫妇,可以通过试管婴儿技术得到亲生孩子()A. 丈夫睾丸发育不良,妻子正常 B. 丈夫正常,妻子输卵管堵塞C. 丈夫精子败育,妻子输卵管堵塞 D. 丈夫正常,妻子卵巢发育不良19.男女生殖系统中,产生和输送生殖细胞的器官分别是()A. 睾丸和卵巢、输精管和输卵管 B. 附睾和子宫、输精管和输卵管C. 睾丸和卵巢、附睾和子宫 D. 阴茎和阴道、阴囊和子宫20.下列关于人的生殖和发育的叙述,不正确的是()A. 卵细胞产生和雌性激素的分泌场所分别是卵巢和子宫B. 受精卵的形成和胚胎发育的场所分别是输卵管和子宫C. 身高和体重迅速增长是青春期形态发育的一个显著特点D. 生殖器官的发育和成熟是青春期发育最突出的特点二、填空题(共5题;共13分)21.青春期,________ 以及心脏和肺等器官的功能明显增强,这一时期是人生的黄金时期.22.如图是胎儿、脐带和胎盘的示意图.据图分析并回答问题.(1)胎儿在母体的③________里发育,胎儿所获得的营养需经过②________ 由①________ 从母体获得.(2)胎儿发育到280天左右时,会通过④________ 从母体内产出,这一过程叫做________23.________产生的精子和________产生的卵细胞都是生殖细胞,它们分别含有男性和女性的遗传物质.24.现代类人猿和人类的共同祖先是________,曾广泛分布在________洲等地区,尤其是________洲的热带丛林.25.遗精是指男子进入________后,有时在睡梦中________自尿道排出的现象.三、综合题(共4题;共31分)26.如图是女性生殖系统及排卵、受精及开始怀孕的示意图,请回答下列问题:(1)产生卵细胞和分泌雌性激素的器官是[①] ________ .(2)卵细胞成熟以后,由①排出,进入[②] ________ .在这里,卵细胞如果遇到________就会结合,形成________ ,然后由②进入[③] ________ .(3)受精卵不断进行细胞分裂,逐渐发育成为________ ,并最终植入________ ,这是怀孕的开始.27.如图为女性生殖系统图,并表示排卵、受精等过程,请分析回答:(1)卵细胞成熟后,由[________]________ 排出,经[________]________ 输送出去,精子进来在此与卵细胞结合,形成受精卵。
人教版全面七年级下册全册同步练习及单元测验卷及问题详解

第五章 相交线与平行线5.1.1 相交线复习检测(5分钟):1、如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2、如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ .3、如图是一把剪刀,其中︒=∠401,则=∠2 ,其理由是 。
图(3)214、如图三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____.OF E D CBA5、如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•求∠EOB 的度数.OE D CBA6、如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数cba341212121221E(3)O D CBA (2)O D CBA (1)ODC B5.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补角都相等.( )2、一条直线不可能与两条相交直线都垂直.( )3、两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )4、两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ).5、如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________.6、如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.7、如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.8、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.9、如图,AC ⊥BC,C 为垂足,CD ⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点间的距离是_________.10、如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.小明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对小明的说法,你认为对吗?E DC B AAC BA11、用三角尺画一个是30°的∠AOB,在边OA上任取一点P,过P作PQ⊥OB, 垂足为Q,量一量OP的长,你发现点P到OB的距离与OP长的关系吗?5.1.3同位角、错角、同旁角复习检测(5分钟):1、如图(4),下列说法不正确的是()A.∠1与∠2是同位角B.∠2与∠3是同位角C.∠1与∠3是同位角D.∠1与∠4不是同位角2、如图(5),直线AB、CD被直线EF所截,∠A和是同位角,∠A和是错角,∠A和是同旁角.3、如图(6), 直线DE截AB, AC, 构成八个角:①、指出图中所有的同位角、错角、同旁角.②、∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?4、如图(7),在直角 ABC中,∠C=90°,DE⊥AC于E,交AB于D .①、指出当BC、DE被AB所截时,∠3的同位角、错角和同旁角.②、若∠3+∠4=180°试说明∠1=∠2=∠3的理由.5.2.1平行线复习检测(5分钟):1、在同一平面,两条直线的位置关系有_________2、两条直线L1与L2相交点A,如果L1//L,那么L2与L()3、在同一平面,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.4、两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个. 判断题5、6、7、85、不相交的两条直线叫做平行线.( )6、如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )7、过一点有且只有一条直线平行于已知直线.( )8、读下列语句,并画出图形后判断.(1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b.(2)判断直线a、c的位置关系,并借助于三角尺、直尺验证.9、试说明三条直线的交点情况,进而判定在同一平面三条直线的位置情况.5.2.2平行线的判定复习检测(10分钟):1、如图1所示,下列条件中,能判断AB∥CD的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD34D CB A21FEDCBA876543219654321DCBA8765c b a 3412(1) (2) (3) (4)2、如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF3、下列说法错误的是( ) A.同位角不一定相等 B.错角都相等C.同旁角可能相等D.同旁角互补,两直线平行 4、如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明 a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④5、如图5,如果∠3=∠7,那么______ ,理由是 ;如果∠5=∠3,那么________, 理由是______________;如果∠2+ ∠5= ______ 那么a ∥b,理由是________ .6、如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD.7、在同一平面,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.8、如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________.9、已知直线a 、b 被直线c 所截,且∠1+∠2=180°,试判断直线a 、b 的位置关系,并说明理由.10、如图,已知DG AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由.11、如图所示,已知∠1=∠2,AC 平分∠DAB,试说明DC ∥AB.E DC B A c b a321D CBA 21D C B A OF E D C B A D C B A 112、如图所示,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=30°,试说明AB ∥CD.GHKEDC B A13、提高训练:如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?d ecb a 34125.3.1平行线的性质复习检测(10分钟):1、如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )A.5个B.4个C.3个D.2个(1) (2) (3)2、如图2所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) A.35° B.30° C.25° D.20°3、如图3所示,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠87654321D C B A G F E D C B A 12E 21D C B GE D ACAD=_______, ∠ACD=•_______.4、如图4,若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.(4) (5) (6)5、如图5,在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.6、)如图6所示,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG•平分∠B-EF,若∠1=72°,则∠2=_______.7、如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?8、如图,EF 过△ABC 的一个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,并说明依据?9、如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.10、如图所示,把一长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.11、如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD .求证:∠1+∠2=90°.证明:∵ AB ∥CD ,(已知)∴∠BAC +∠ACD =180°,( ) 又∵ AE 平分∠BAC ,CE 平分∠ACD ,( )∴112B AC ∠=∠,122A C D ∠=∠,( )∴001112()1809022B AC A CD ∠+∠=∠+∠=⨯=. 即 ∠1+∠2=90°.结论:若两条平行线被第三条直线所截,则一组同旁角的平分线互相 . 推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相 .5.3.2命题、定理、证明复习检测(5分钟):1、判断下列语句是不是命题(1)延长线段AB ( ) (2)两条直线相交,只有一交点( ) (3)画线段AB 的中点( ) (4)若|x|=2,则x=2( ) (5)角平分线是一条射线( ) 2、下列语句不是命题的是( ) A.两点之间,线段最短 B.不平行的两条直线有一个交点 C.x 与y 的和等于0吗? D.对顶角不相等. 3、下列命题中真命题是( ) A.两个锐角之和为钝角 B.两个锐角之和为锐角 C.钝角大于它的补角 D.锐角小于它的余角4、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个 5、分别指出下列各命题的题设和结论(1)如果a ∥b ,b ∥c ,那么a ∥c (2)同旁角互补,两直线平行 6、分别把下列命题写成“如果……,那么……”的形式(1)两点确定一条直线; (2)等角的补角相等; (3)错角相等.7、如图,已知直线a 、b 被直线c 所截,在括号为下面各小题的推理填上适当的根据:(1)∵a ∥b,∴∠1=∠3( ); (2)∵∠1=∠3,∴a ∥b( ); (3)∵a ∥b,∴∠1=∠2( ); (4) ∵a ∥b,∴∠1+∠4=180º ( ) (5)∵∠1=∠2,∴a ∥b( ); (6)∵∠1+∠4=180º,∴a ∥b( ).8、已知:如图AB ⊥BC ,BC ⊥CD 且∠1=∠2,求证:BE ∥CF 证明:∵AB ⊥BC ,BC ⊥CD (已知) ∴ = =90°( )∵∠1=∠2(已知)∴ = (等式性质)∴BE ∥CF ( )9、已知:如图,AC ⊥BC ,垂足为C ,∠BCD 是∠B 的余角. 求证:∠ACD=∠B证明:∵AC ⊥BC (已知)∴∠ACB=90°( )∴∠BCD 是∠ACD 的余角∵∠BCD 是∠B 的余角(已知)∴∠ACD=∠B ( )5.4 平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的( )D2、如图所示,△FDE 经过怎样的平移可得到△ABC.( ) A.沿射线EC 的方向移动DB 长; B.沿射线EC 的方向移动CD 长C.沿射线BD 的方向移动BD 长;D.沿射线BD 的方向移动DC 长 3、下列四组图形中,•有一组中的两个图形经过平移其中一个能得到-另一个,这组图形是( )ab 1 23c4C AB DE F12 B D ACF E D C B A4、如图所示,△DEF 经过平移可以得到△ABC,那么∠C的对应角和ED 的对应边分-别是( ) A.∠F,AC B.∠BOD,BA; C.∠F,BA D.∠BOD,AC 5、在平移过程中,对应线段( ) A.互相平行且相等; B.互相垂直且相等 C.互相平行(或在同一条直线上)且相等6、在平移过程中,平移后的图形与原来的图形________和_________都相同,•因-此对应线段和对应角都________.7、如图所示,平移△ABC 可得到△DEF,如果∠A=50°,∠C=60°,那么∠E=•____-度,∠EDF=_______度,∠F=______度,∠DOB=_______度.8、将正方形ABCD 沿对角线AC 方向平移,且平移后的图形的一个顶点恰好在AC 的中点O 处,则移动前后两个图形的重叠部分的面积是原正方形面积的_______9、直角△ABC 中,AC =3cm ,BC =4cm ,AB =5cm ,将△ABC 沿CB 方向平移3cm ,则边AB 所经过的平面面积为____cm 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 相交线与平行线5.1.1 相交线复习检测(5分钟):1、如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2、如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ .3、如图是一把剪刀,其中︒=∠401,则=∠2 ,其理由是 。
图(3)214、如图三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____.OF E D CBA12121221E(3)O D CBA (2)O D CBA (1)ODC B5、如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•求∠EOB 的度数.OE D CBA6、如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数cba34125.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补角都相等.( )2、一条直线不可能与两条相交直线都垂直.( )3、两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )4、两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ).5、如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________.6、如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.7、如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.8、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE平分∠AOC.试判断OD 与OE 的位置关系.9、如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点间的距离是_________.10、如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.小明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对小明的说法,你认为对吗?11、用三角尺画一个是30°的∠AOB,在边OA 上任取一点P ,过P 作PQ ⊥OB, 垂足为Q,量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?5.1.3同位角、内错角、同旁内角复习检测(5分钟):1、如图(4),下列说法不正确的是( ) A.∠1与∠2是同位角 B.∠2与∠3是同位角 C.∠1与∠3是同位角 D.∠1与∠4不是同位角2、如图(5),直线AB 、CD 被直线EF 所截,∠A 和 是同位角,∠A 和 是内错角,∠A 和 是同旁内角.ADCBA3、如图(6), 直线DE截AB, AC, 构成八个角:①、指出图中所有的同位角、内错角、同旁内角.②、∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?4、如图(7),在直角 ABC中,∠C=90°,DE⊥AC于E,交AB于D .①、指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.②、若∠3+∠4=180°试说明∠1=∠2=∠3的理由.5.2.1平行线复习检测(5分钟):1、在同一平面内,两条直线的位置关系有_________2、两条直线L1与L2相交点A,如果L1//L,那么L2与L()3、在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.4、两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个. 判断题5、6、7、85、不相交的两条直线叫做平行线.( )6、如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )7、过一点有且只有一条直线平行于已知直线.( )8、读下列语句,并画出图形后判断.(1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b.(2)判断直线a、c的位置关系,并借助于三角尺、直尺验证.9、试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.8765cba34125.2.2平行线的判定复习检测(10分钟):1、如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD(1) (2) (3) (4)2、如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF 3、下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行 4、如图5,直线a,b 被直线c 所截,现给出下列四个条件: •①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④5、如图5,如果∠3=∠7,那么______ ,理由是 ;如果∠5=∠3,那么________, 理由是______________; 如果∠2+ ∠5= ______ 那么a ∥b,理由是________ .6、如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,34D C B A 21F E D C B A 876543219654321D C B A DCBA21如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.7、在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.8、如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A可以判断______∥______,根据是_________.(2)由∠CBE=∠C可以判断______∥______,根据是_________.9、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.10、如图,已知DGAEM∠=∠,21∠=∠,试问EF是否平行GH,并说明理由.ED CBAcba32111、如图所示,已知∠1=∠2,AC 平分∠DAB,试说明DC ∥AB.12、如图所示,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=30°,试说明AB ∥CD.GHKEDC B A13、提高训练:如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?DCBAOF EDC BADCB A 1EBAd ecb a 34125.3.1平行线的性质复习检测(10分钟):1、如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )A.5个B.4个C.3个D.2个(1) (2) (3)2、如图2所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) A.35° B.30° C.25° D.20°3、如图3所示,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠ACD=•_______.4、如图4,若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.87654321DCBA(4) (5) (6) 5、如图5,在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.6、河南)如图6所示,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG•平分∠B-EF,若∠1=72°,则∠2=_______.7、如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?8、如图,EF 过△ABC 的一个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,并说明依据?E21DCBNMG F EDCB A9、如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.10、如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.11、如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD .求证:∠1+∠2=90°.证明:∵ AB ∥CD ,(已知)∴∠BAC +∠ACD =180°,( ) 又∵ AE 平分∠BAC ,CE 平分∠ACD ,( )∴112B AC ∠=∠,122A C D ∠=∠,( )∴001112()1809022B AC A CD ∠+∠=∠+∠=⨯=. 即 ∠1+∠2=90°.结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相 .推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相 .5.3.2命题、定理、证明复习检测(5分钟): 1、判断下列语句是不是命题(1)延长线段AB ( ) (2)两条直线相交,只有一交点( ) (3)画线段AB 的中点( ) (4)若|x|=2,则x=2( ) (5)角平分线是一条射线( ) 2、下列语句不是命题的是( ) A.两点之间,线段最短 B.不平行的两条直线有一个交点 C.x 与y 的和等于0吗?D.对顶角不相等.3、下列命题中真命题是( )A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角D.锐角小于它的余角4、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1个B.2个C.3个D.4个5、分别指出下列各命题的题设和结论(1)如果a∥b,b∥c,那么a∥c (2)同旁内角互补,两直线平行6、分别把下列命题写成“如果……,那么……”的形式(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等.7、如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:(1)∵a∥b,∴∠1=∠3( );(2)∵∠1=∠3,∴a∥b( );(3)∵a∥b,∴∠1=∠2( );(4) ∵a∥b,∴∠1+∠4=180º( )(5)∵∠1=∠2,∴a∥b( );(6)∵∠1+∠4=180º,∴a∥b( ).8、已知:如图AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF证明:∵AB⊥BC,BC⊥CD(已知)∴= =90°()∵∠1=∠2(已知)∴= (等式性质)ab123c4C ABDEF12∴BE ∥CF () 9、已知:如图,AC ⊥BC ,垂足为C ,∠BCD 是∠B 的余角.求证:∠ACD=∠B证明:∵AC ⊥BC (已知)∴∠ACB=90°( ) ∴∠BCD 是∠ACD 的余角∵∠BCD 是∠B 的余角(已知)∴∠ACD=∠B ( )5.4 平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的( )D2、如图所示,△FDE 经过怎样的平移可得到△ABC.( ) A.沿射线EC 的方向移动DB 长; B.沿射线EC 的方向移动CD 长 C.沿射线BD 的方向移动BD 长; D.沿射线BD 的方向移动DC 长3、下列四组图形中,•有一组中的两个图形经过平移其中一个能得到-另一个,这组图形是( )BD ACFED C BA4、如图所示,△DEF 经过平移可以得到△ABC,那么∠C 的对应角和ED 的对应边分-别是( )A.∠F,ACB.∠BOD,BA;C.∠F,BAD.∠BOD,AC 5、在平移过程中,对应线段( ) A.互相平行且相等; B.互相垂直且相等 C.互相平行(或在同一条直线上)且相等6、在平移过程中,平移后的图形与原来的图形________和_________都相同,•因-此对应线段和对应角都________.7、如图所示,平移△ABC 可得到△DEF,如果∠A=50°, ∠C=60°,那么∠E=•____-度,∠EDF=_______度, ∠F=______度,∠DOB=_______度.8、将正方形ABCD 沿对角线AC 方向平移,且平移后的图形的一个顶点恰好在AC 的中点O 处,则移动前后两个图形的重叠部分的面积是原正方形面积的_______9、直角△ABC 中,AC =3cm ,BC =4cm ,AB =5cm ,将△ABC 沿CB 方向平移3cm ,则边AB 所经过的平面面积为____cm 2。