LINGO线性规划数学建模论文-工作人员的最优时间分配问题的研究

合集下载

Lingo软件在求解数学优化问题的使用技巧

Lingo软件在求解数学优化问题的使用技巧

Lingo 软件在求解数学优化问题1.某昼夜服务的公交路线每天各时间区段内需司机和乘务人员如下:设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员?从第一班开始排,试建立线性模型。

分析与求解:注意在每一时间段里上班的司机和乘务人员中,既包括在该时间段内开始时报到的人员,还包括在上一时间段工作的人员。

因为每一时间段只有四个小时,而每个司乘人员却要连续工作八个小时。

因此每班的人员应理解为该班次相应时间段开始时报到的人员。

设i x 为第i 班应报到的人员(6,,2,1 =i ),则应配备人员总数为:∑==61i i x Z按所需人数最少的要求,可得到线性模型如下:∑==61min i i x Z161223344556112660706050..203060,,,0x x x x x x x x s t x x x x x x x x +≥⎧⎪+≥⎪⎪+≥⎪+≥⎪⎨+≥⎪⎪+≥⎪≥⎪⎪≥⎩ LINGO 程序如下:MODEL:min=x1+x2+x3+x4+x5+x6;x1+x6>=60;x1+x2>=70;x2+x3>=60;x3+x4>=50;x4+x5>=20;x5+x6>=30;x1>=60;END得到的解为:x1=60,x2=10,x3=50,x4=0,x5=30,x6=0;配备的司机和乘务人员最少为150人。

2 某地区有三个农场共用一条灌渠,每个农场的可灌溉地及分配到的最大用水量如下表:各农场均可种植甜菜、棉花和高粱三种作物,各种作物的用水量、净收益及国家规定三个农场达成协议,他们的播种面积与其可灌溉面积相等,而各种农场种何种作物并无限制。

问如何制定各农场种植计划才能在上述限制条件下,使本地区的三个农场的总净收益最大。

设农场1种植的甜菜、棉花和高粱分别为111,,z y x 亩,农场2种植的甜菜、棉花和高粱分别为222,,z y x 亩,农场3种植的甜菜、棉花和高粱分别为333,,z y x 亩。

最新工作人员的优时间分配问题的研究LINGO线规划数学建模

最新工作人员的优时间分配问题的研究LINGO线规划数学建模

工作人员的优时间分配问题的研究L I N G O 线规划数学建模工作人员的最优时间分配问题的研究【摘要】对于一个事业单位,人力资源部门的合理分配对于一个事业单位的收益是至关重要的。

众所周知,由于每个人的工作效率不尽不同,不同的分配方式所带来的收益也不同。

本文建立了0-1规划模型对最少时间成本下的工作人员分配问题进行了研究。

本问题中首先确定第i人做或者不做第j工作将问题定量化,根据不同的需要建立不同的目标函数。

对于一个项目而言越早完成越好,对人力资源部门来说所花费的人力越少越好。

本文利用运筹管理学的思想建立的0-1规划模型,最后使用Lingo对目标函数求最优解得出最终结果。

关键词:最少时间运筹管理学最优解时间分配 0-1模型 Lingo 线性规划一、问题重述最优人力资源安排问题在企事业单位,人力资源部门经常要根据当前情况把人员分配给即将开始的项目。

一般地,对项目而言,越早完成越好;而对人力资源部门而言,在该项目上所花费的人力越少越好。

现有一个项目,需要把一份中文资料翻译成英语、法语、日语、德语和俄语。

已知A、B、C、D、E、F和G七个人翻译该资料所需要花费的时间如表1所示,且这七个人均表示可参加该项目。

【注意:为了译文的连贯性,不允许两人或两人以上做同一种译文的翻译工作。

一个人在同一时间只能做一种译文的翻译工作。

】表1. 七人五语种翻译用时表(单位:天)试通过建立数学模型(而非枚举法)回答下述问题。

问题1. 应该如何进行人力资源的安排使得该项目尽早完成?问题2. 在问题1中若规定每人最多承担一种译文的翻译工作,试求相应的最优人力资源安排方案。

问题3. 接上级通知,为了保证翻译的质量,需要对翻译之后的译文进行审校且规定同一个语种的审校人和翻译者不能为同一人。

显然,在这种新的要求下,该项目完成当且仅当所有的译文均审校完。

已知这七人均表示可以参加审校工作,他们审校这五种译文的用时如表2所示。

【注意:对于每个语种,只有当该语种的译文完全完成之后才能进行该语种译文的审校工作。

lingo解决线性规划问题(附程序)

lingo解决线性规划问题(附程序)

北方民族大学第六届数学建模竞赛竞赛论文竞赛分组:竞赛题目:组员:所在学院:信息与计算科学学院制版北方民族大学第六届数学建模竞赛承诺书为保证竞赛的公平、公正,维护竞赛的严肃性,在竞赛期间,我们承诺遵守以下竞赛规定:只在本参赛队的三人之间进行问题的讨论,绝不与本参赛队外的其他人讨论与竞赛题目相关的任何问题,不抄袭、剽窃他人的成果,引用的参考文献在答卷中进行标注。

承诺人签名:承诺人所在分组:承诺人所在学院:年月日摘要在工程技术、经济管理等诸多领域中,人们经常遇到的一类决策问题是:在一系列客观或主观限制条件下,寻求所要关注的某个或多个指标达到最大(或最小)的决策。

例如,酒店客房分配,我们常常不能使得客房刚好满足顾客的要求,此时,客房是有限的,但是顾客需要的客房数已经超出酒店可提供的客房数目,我们就会选择一种客房分配方案,来使得酒店的收益获得最大的。

7天连锁酒店利用网络系统为常客户开设标准间和商务间两类客房的预定服务,酒店以一周(从星期一到星期日)为一个时段处理这项业务。

现在收到一个会务组提出的一个一周的预定需求单,现要求我们依据题目所提供的信息,以酒店收入最大为目标,针对3种不同情况,制定相应的分配方案。

我们把这类决策问题通常归为最优化问题,解决问题的方案是,找到问题的决策变量,目标函数及约束条件。

如果需要作出决策的变量较多时,我们就会首选LINGO软件来解决线性规划的问题。

关键词:最优分配、数学建模、线性规划、LINGO目录1.问题的重述 (4)2.问题的分析 (4)3.模型的假设 (5)4.符号的约定 (6)5.模型的建立与求解 (7)5.1问题(1)的求解 (8)5.2问题(2)的求解 (9)5.3问题(3)的求解 (12)5.4问题(4)的求解 (15)6.模型的评价与改进 (15)7.参考文献 (15)8.附录 (16)酒店客房的最优分配方案1、问题的重述7天连锁酒店利用网络系统为常客户开设标准间和商务间两类客房的预定服务,酒店以一周(从星期一到星期日)为一个时段处理这项业务。

用Lingo求解最优化问题

用Lingo求解最优化问题

温州大学城市学院
基本作业题Leabharlann ( 2)min z = 13 x1 + 9 x2 + 10 x3 + 11x4 + 12 x5 + 81x6 ,
x1 + x4 = 400, x2 + x5 = 600, x3 + x6 = 500, 0.4 x1 + 1.1 x2 + x3 ≤ 800, 0.5 x + 1.2 x + 1.3 x ≤ 900, 4 5 6 xi ≥ 0, i = 1, 2, 3, 4, 5, 6.
当 x=0 时, 目标函数最小值为 6.
温州大学城市学院 点击 LINGO-Options 选择 Global Solver (全局求解器 全局求解器) 全局求解器 在Use Global Solver 前面打√ 点击“ 再求解. 点击“OK”, 再求解
温州大学城市学院 例2 用Lingo 求函数
f ( x ) = 8 x + 0.01x − x + 0.01x + 6cos x
4 7 5
的最小值点和最小值. 的最小值点和最小值
当 x=14480.28 时, 目标函数最小值为 -0.1334869E+30.
(即-0.1334869×1030) 即 ×
求解器状态窗口 (LINGO Solver Status)
Model: 当前模型的类型 如: LP, NLP) 当前模型的类型(如 State: 当前解的状态 如: Global Optimum(全局最优 当前解的状态(如 全局最优); 全局最优 Local Optimum(局部最优 等) 局部最优)等 局部最优

工作人员的最优时间分配问题的研究LINGO线性规划数学建模

工作人员的最优时间分配问题的研究LINGO线性规划数学建模

工作人员的最优时间分配问题的研究【摘要】对于一个事业单位,人力资源部门的合理分配对于一个事业单位的收益是至关重要的。

众所周知,由于每个人的工作效率不尽不同,不同的分配方式所带来的收益也不同。

本文建立了0-1规划模型对最少时间成本下的工作人员分配问题进行了研究。

本问题中首先确定第i人做或者不做第j工作将问题定量化,根据不同的需要建立不同的目标函数。

对于一个工程而言越早完成越好,对人力资源部门来说所花费的人力越少越好。

本文利用运筹管理学的思想建立的0-1规划模型,最后使用Lingo对目标函数求最优解得出最终结果。

关键词:最少时间运筹管理学最优解时间分配 0-1模型 Lingo 线性规划一、问题重述最优人力资源安排问题在企事业单位,人力资源部门经常要根据当前情况把人员分配给即将开始的工程。

一般地,对工程而言,越早完成越好;而对人力资源部门而言,在该工程上所花费的人力越少越好。

现有一个工程,需要把一份中文资料翻译成英语、法语、日语、德语和俄语。

已知A、B、C、D、E、F和G七个人翻译该资料所需要花费的时间如表1所示,且这七个人均表示可参加该工程。

【注意:为了译文的连贯性,不允许两人或两人以上做同一种译文的翻译工作。

一个人在同一时间只能做一种译文的翻译工作。

】试通过建立数学模型(而非枚举法)回答下述问题。

问题1. 应该如何进行人力资源的安排使得该工程尽早完成?问题2. 在问题1中若规定每人最多承担一种译文的翻译工作,试求相应的最优人力资源安排方案。

问题3. 接上级通知,为了保证翻译的质量,需要对翻译之后的译文进行审校且规定同一个语种的审校人和翻译者不能为同一人。

显然,在这种新的要求下,该工程完成当且仅当所有的译文均审校完。

已知这七人均表示可以参加审校工作,他们审校这五种译文的用时如表2所示。

【注意:对于每个语种,只有当该语种的译文完全完成之后才能进行该语种译文的审校工作。

为了译文的连贯性,不允许两人或两人以上做同一种译文的审校工作。

用LINGO求解线性规划问题

用LINGO求解线性规划问题

实验1 用LINGO求解线性规划问题LINGO使用简介LINGO软件是美国的LINDO系统公司(Lindo System Inc)开发的一套用于求解最优化问题的软件包.LINGO除了能用于求解线性规划和二次规划外,还可以用于非线性规划求解以及一些线性和非线性方程(组)的求解.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,而且执行速度快.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果,这里简单介绍LINGO的使用方法.LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络优化和排队论模型中的最优化问题等.一个LINGO程序一般会包含集合段、数据输入段、优化目标和约束段、初始段和数据预处理段等部分,每一部分有其独特的作用和语法规则,读者可以通过查阅相关的参考书或者LINGO的HELP文件详细了解,这里就不展开介绍了.LINGO的主要功能特色为:既能求解线性规划问题,也有较强的求解非线性规划问题的能力;输入模型简练直观;运算速度快、计算能力强;内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述大规模的优化模型;将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;并且能方便地与Excel、数据库等其他软件交换数据.LINGO的语法规定:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2)每个语句必须以分号“;”结束,每行可以有许多语句,语句可以跨行;(3)变量名称必须以字母(A~Z)开头,由字母、数字(0~9)和下划线所组成,长度不超过32个字符,不区分大小写;(4)可以给语句加上标号,例如[OBJ] MAX=200*X1+300*X2;(5)以惊叹号“!”开头,以分号“;”结束的语句是注释语句;(6)如果对变量的取值范围没有作特殊说明,则默认所有决策变量都非负;(7)LINGO模型以语句“MODEL:”开头,以“END”结束,对于比较简单的模型,这两个语句可以省略.实验目的1.对于给定的实际应用问题,正确的建立线性规划问题数学模型,并用LINGO求解;2.掌握灵敏度分析以及资源的影子价格的相关分析方法.实验数据与内容问题1.1某工厂在计划期内要安排生产A、B两种产品,已知生产单位产品所需设备台时及对甲、乙两种原材料的消耗,有关数据如表1.1.问:应如何安排生产计划,使工厂获利最大?.问题1.2 某公司饲养实验用的动物以供出售,已知这些动物的生长对饲料中3种营养成分(蛋白质、矿物质和维生素)特别敏感,每个动物每周至少需要蛋白质60g ,矿物质3g ,维生素8mg ,该公司能买到5种不同的饲料,每种饲料1kg 所含各种营养成分和成本如表1.2所示,如果每个小动物每周食用饲料不超过52kg ,求既能满足动物生长需要,又使总成本最低的饲料配方.实验指导问题1.1设计划生产两种产品分别为,则建立线性规划问题数学模型B A ,21,x x ⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,12416482.32max 21212121x x x x x x t s x x S 在LINGO 的MODEL 窗口内输入如下模型:model :max =2*x1+3*x2;x1+2*x2<=8;4*x1<=16;4*x2<=12;end选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解”按纽,如果模型有语法错误,则弹出一个标题为“LINGO Error Message ”(错误信息)的窗口,指出在哪一行有怎样的错误,每一种错误都有一个编号(具体含义可查阅相关文献或LINGO 的Help ).改正错误以后再求解,如果语法通过,LINGO 用内部所带的求解程序求出模型的解,然后弹出一个标题为“LINGO Solver Status ”(求解状态)的窗口,其内容为变量个数、约束条件个数、优化状态、耗费内存、所花时间等信息,点击Close 关闭窗口,屏幕上出现标题为“Solution Report ”(解的报告)的信息窗口,显示优化计算(线性规划中换基迭代)的步数、优化后的目标函数值、列出各变量的计算结果.求解结果:Global optimal solution found at iteration: 5Objective value: 14.00000Variable Value Reduced CostX1 4.000000 0.000000X2 2.000000 0.000000Row Slack or Surplus Dual Price1 14.00000 1.0000002 0.000000 1.5000003 0.000000 0.12500004 4.000000 0.000000该报告说明:运行5步找到全局最优解,目标函数值为14,变量值分别为.“Reduced Cost ”的含义是需缩减成本系数或需增加利润系数(最优解中取值非零的决策变量的Reduced Cost 值等于零).“Row ”是输入模型中的行号,目标函数是第一行;“Slack or Surplus ”的意思是松弛或剩余,即约束条件左边与右边的差值,对于“124,2==x x ≤”的不等式,右边减左边的差值为Slack (松弛),对于“”的不等式,左边减右边的差值为Surplus (剩余),当约束条件两边相等时,松弛或剩余的值等于零.“Dual Price ”的意思是对偶价格(或称为影子价格),上述报告中Row2的松弛值为0,表明生产甲产品4单位、乙产品2单位,所需设备8台时已经饱和,对偶价格1.5的含义是:如果设备增加1台时,能使目标函数值增加1.5.报告中Row4的松弛值为4,表明生产甲产品4单位、乙产品2单位,所需原材料乙8公斤还剩余4公斤,因此增加原材料乙不会使目标函数值增加,所以对偶价格为0.≥问题1.2设需要饲料分别为 kg ,则建立线性规划数学模型:54321,,,,A A A A A 54321,,,,x x x x x 123451234512345123451234512345min 0.20.70.40.30.50.320.6 1.8600.10.050.020.20.0530.050.10.020.20.088.52,,,,0S x x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++≥⎧⎪++++⎪⎪≥++++⎨⎪++++≤⎪≥⎪⎩≥ 在LINGO 的MODEL 窗口内输入如下模型:Min=0.2*x1+0.7*x2+0.4*x3+0.3*x4+0.5*x5;0.3*x1+2*x2+x3+0.6*x4+1.8*x5>60;0.1*x1+0.05*x2+0.02*x3+0.2*x4+0.05*x5>3;0.05*x1+0.1*x2+0.02*x3+0.2*x4+0.08*x5>8;x1+x2+x3+x4+x5<52;求解输出结果如下:Global optimal solution found at iteration: 4Objective value: 22.40000Variable Value Reduced CostX1 0.000000 0.7000000X2 12.00000 0.000000X3 0.000000 0.6166667X4 30.00000 0.000000X5 10.00000 0.000000Row Slack or Surplus Dual Price1 22.40000 -1.0000002 0.000000 -0.58333333 4.100000 0.0000004 0.000000 -4.1666675 0.000000 0.8833333因此,每周每个动物的配料为饲料、、分别为12、30和10kg ,合计为52,可使得饲养成本达到最小,最小成本为22.4元;不选用饲料和的原因是因为这两种饲料的价格太高了,没有竞争力.“Reduced Cost ”分别等于0.7和0.617,说明当这两种饲料的价格分别降低0.7元和0.62元以上时,不仅选用这两种饲料而且使得饲养成本降低.从“Slack or Surplus”可以看出,蛋白质和维生素刚达到最低标准,矿物质超过最低标准4.12A 4A 5A kg kg kg 1A 3A g ;从“Dual Price”可以得到降低标准蛋白质1单位可使饲养成本降低0.583元,降低标准维生素1单位可使饲养成本降低4.167元,但降低矿物质的标准不会降低饲养成本,如果动物的进食量减少,就必须选取精一些的饲料但要增加成本,大约进食量降低1可使得饲养成本增加0.88元.kg 对于目标函数系数和约束条件右端常数项的灵敏度分析,可以通过LINGO 软件求解的灵敏度分析给出.如果要看灵敏度分析结果,必须激活灵敏度计算功能才会在求解时给出灵敏度分析结果,默认情况下这项功能是关闭的.想要激活它,必须运行LINGO|Options …命令,选择Gengral Solver ,在Dual Computation 列表框中,选择Prices and Ranges 选项并确定.对于例1.1问题进行灵敏度分析,结果如下:以下是灵敏度分析的结果Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 2.000000 INFINITY 0.5000000X2 3.000000 1.000000 3.000000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 8.000000 2.000000 4.0000003 16.00000 16.00000 8.0000004 12.00000 INFINITY 4.000000对于例1.2问题进行灵敏度分析,结果如下:Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 0.2000000 INFINITY 0.7000000X2 0.7000000 INFINITY 0.1358974X3 0.4000000 INFINITY 0.6166667X4 0.3000000 1.400000 1.000000X5 0.5000000 0.1247059 INFINITYRighthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 60.00000 4.800000 4.8000003 3.000000 4.100000 INFINITY4 8.000000 0.3428571 0.48000005 52.00000 1.846154 1.411765思考题某投资公司拟制定今后5年的投资计划,初步考虑下面四个投资项目:项目A:从第1年到第4年每年年初可以投资,于次年年末收回成本,并可获利润15%;项目B:第3年年初可以投资,到第5年年末可以收回成本,并获得利润25%,但为了保证足够的资金流动,规定该项目的投资金额上限为不超过总金额的40%;项目C:第2年年初可以投资,到第5年年末可以收回成本,并获得利润40%,但公司规定该项目的最大投资金额不超过总金额的30%;项目D:5年内每年年初可以购买公债,于当年年末可以归还本金,并获利息6%.该公司现有投资金额100万元,请帮助该公司制定这些项目每年的投资计划,使公司到第5年年末核算这5年投资的收益率达到最大.建立线性规划问题的数学模型,并用LINGO求解.。

《数学建模》实验指导_02_Lingo求解线性规划问题

《数学建模》实验指导_02_Lingo求解线性规划问题

实验二:Lingo求解线性规划问题学时:4学时实验目的:掌握用Lingo求解线性规划问题的方法,能够阅读Lingo结果报告。

实验内容:(选做两题以上)1、求解书本上P130的习题1:某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表1所示,按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税,此外还有以下限制:1)政府及代办机构的证券总共至少要购进400万元;2)所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程序越高);3)所购证券的平均到期年限不超过5年。

表 1(1)若该经理有1000万元资金,应如何投资?(2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?列出线性规划模型,然后用Lindo求解,根据结果报告得出解决方案。

提示:可参考书上4.1节。

模型可以如下建立:设投资证券A,B,C,D,E的金额分别为x1,x2,x3,x4,x5 万元.max 0.043x1+0.027x2+0.025x3+0.022x4+0.045x5x2+x3+x4>=400x1+x2+x3+x4+x5<=1000(2x1+2x2+x3+x4+5x5)/(x1+x2+x3+x4+x5)<=1.4(9x1+15x2+4x3+3x4+2x5)/(x1+x2+x3+x4+x5)<=52、建立模型并求解P130页第3题。

(建立线性规划模型的技巧:问什么假设什么,如何雇用即雇用多少全时服务员以12:00-1:00为午餐, 雇用多少全时服务员以1:00-2:00为午餐,雇佣多少从9:00、10:00、11:00、12:00、1:00开始工作的半时服务员)。

建立线性规划模型:设全时工人为X1:工作时间:9—12 、13—17 工资为100元X2:工作时间:9—13 、14—17 工资为100元半时工人:工资为40元Y1:工作时间:9—13Y2:工作时间:10—14Y3:工作时间:11—15Y4:工作时间:12—16Y5:工作时间:13—17Min= (x1+x2)*100+(y1+y2+y3+y4+y5)*40Y1+y2+y3+y4+y5<39-10 X1+x2+y1>410-11 X1+x2+y1+y2>311-12 X1+x2+y1+y2+y3>412-13 x2+y1+y2+y3+y4>613-14 X1+y2+y3+y4+y5>514-15 x1+x2+y3+y4+y5>615-16 x1+x2+y4+y5>816-17 x1+x2 +y5>8Min =(x1+x2)*100+(y1+y2+y3+y4+y5)*40;y1+y2+y3+y4+y5<3;x1+x2+y1>4;x1+x2+y1+y2>3;x1+x2+y1+y2+y3>4;x2+y1+y2+y3+y4>6;x1+y2+y3+y4+y5>5;x1+x2+y3+y4+y5>6;x1+x2+y4+y5>8;x1+x2 +y5>8;@gin(x1);@gin(x2);@gin(y1);@gin(y2);@gin(y3);@gin(y4);@gin(y5);Global optimal solution found at iteration: 14Objective value: 820.0000Variable Value Reduced Cost X1 2.000000 100.0000 X2 5.000000 100.0000 Y1 0.000000 40.00000Y3 1.000000 40.00000 Y4 1.000000 40.00000 Y5 1.000000 40.00000Row Slack or Surplus Dual Price1 820.0000 -1.0000002 0.000000 0.0000003 3.000000 0.0000004 4.000000 0.0000005 4.000000 0.0000006 1.000000 0.0000007 0.000000 0.0000008 4.000000 0.0000009 1.000000 0.00000010 0.000000 0.000000第二问:Min =(x1+x2)*100;x1+x2 >4;x1+x2>3;x1+x2>4;x2 >6;x1 >5;x1+x2 >6;x1+x2 >8;x1+x2 >8;@gin(x1);@gin(x2);Global optimal solution found at iteration: 0Objective value: 1100.000Variable Value Reduced Cost X1 5.000000 100.0000 X2 6.000000 100.0000Row Slack or Surplus Dual Price1 1100.000 -1.0000002 7.000000 0.0000004 7.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 5.000000 0.0000008 3.000000 0.0000009 3.000000 0.000000第三问:Min =(x1+x2)*100+(y1+y2+y3+y4+y5)*40;x1+x2+y1>4;x1+x2+y1+y2>3;x1+x2+y1+y2+y3>4;x2+y1+y2+y3+y4>6;x1+y2+y3+y4+y5>5;x1+x2+y3+y4+y5>6;x1+x2+y4+y5>8;x1+x2 +y5>8;@gin(x1);@gin(x2);@gin(y1);@gin(y2);@gin(y3);@gin(y4);@gin(y5);Global optimal solution found at iteration: 5Objective value: 560.0000Variable Value Reduced Cost X1 0.000000 100.0000 X2 0.000000 100.0000 Y1 4.000000 40.00000 Y2 2.000000 40.00000 Y3 0.000000 40.00000 Y4 0.000000 40.00000 Y5 8.000000 40.00000Row Slack or Surplus Dual Price1 560.0000 -1.0000002 0.000000 0.0000004 2.000000 0.0000005 0.000000 0.0000006 5.000000 0.0000007 2.000000 0.0000008 0.000000 0.0000009 0.000000 0.0000003、指派问题:6个人计划做6项工作,其效益如下表(”-”表示某人无法完成某项工作),4、有限制的运输问题:6个发点6个收点,其供应量、接收量和运费如下表1(”-”表示某个发电无法向某个收点运输货物),如果某个发点向某个收点运输货物,则运输量不得低使用Lingo的一些注意事项Min z1.“>”与“>=”功能相同。

数学建模“教你如何进行人员分配”的问题

数学建模“教你如何进行人员分配”的问题

如何进行人员分配“A公司”是一家从事建筑工程的公司,现有41个专业技术人员,其结构和相应的工资水平分布如表1所示:表1 人员结构及工资情况目前,公司承接4个工程项目,其中2项是现场施工,分别在A地和B地,主要工作在现场完成;另外2项是工程设计,分别在C地和D地,主要工作在办公室完成。

由于4个项目来源于不同客户,并且工作的难易程度不同,因此,各项目的合同对有关技术人员的收费标准不同,具体情况如表2:表2 不同项目和各种人员的收费标准为了保证工程质量,各项目中必须保证专业人员结构符合客户的要求,具体情况如表3所示:表3 各项目对专业技术人员结构的要求说明:(1)项目D,由于技术要求较高,人员配备必须是助理工程师以上,技术员不能参加;(2)高级工程师相对稀少,而且是保证质量的关键,因此,各项目客户对高级工程师的配备要求不能少于一定数目的限制。

各项目对其他专业人员也有不同的限制或要求;(3)各项目客户对总人数都有限制;(4)由于C,D两项目是在办公室完成,所以每人每天有50元的管理费开支;由于收费是按人工计算的,而且4个项目总共同时最多需要的人数是10+16+11+18=55,多于公司现有人数41,应如何合理地分配现有的人员力量,使公司每天的直接受益最大?2011年高教社杯全国大学生数学建模竞赛选拔赛题目如何进行人员分配摘要人力资源管理是一个公司进行人力资源分配的重要工作,合理地安排人力资源,能够为企业带来最大的经济效益。

公司不只要对现有的人员进行任务分配,还要使公司的人力资源结构保持一个科学的比例。

本模型旨在为A建筑公司提供一个良好的人员分配方案,达到公司获利最大的目的,以及怎样在以后的人员招聘中使人力资源结构保持一个良好的比例。

在公司现有的情况下,通过分析各种影响因素,排除掉一些不必要的干扰因素,运用整数线性规划和分支定界法的知识建立数学模型,并使用LINGO软件进行编程求解,得出公司人员分配的最佳方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工作人员的最优时间分配问题的研究
【摘要】
由于每个人的工作效率不同,导致不同的分配方式会有不同的时间开销。

本文建立了0-1规划模型对最少时间成本下的工作人员分配问题进行了研究。

本问题中首先确定第i人做或者不做第j工作将问题定量化,再以全部的工作时间为目标函数,最后使用Lingo对目标函数求最优解得出最终结果。

关键词:最少时间最优解时间分配0-1模型Lingo 线性规划
一、问题重述
设有人员12个,工作10件,且一人做一个工作,第i人做第j件工作的时间(或费用)c(取值见表1.1),问:如何分派可使工作时间(或总费用)最少。


ij
表1.1 c ij
二、问题假设
1.每个人都能在自己的花销时间内完成工作。

2.每个人只能做一个工作,即既不能同时做两个工作,也不能在一个工作做完后再做其他工作。

3.每件工作都必须有人做,且只能由一个人独立完成。

4.各个工作之间没有相互联系。

即一个工作的完成与否,不受另一个工作的制约。

三、符号说明
z:完成所有工作的总时间
x:第i人做第j件工作的时间
ij
四、问题分析、模型的建立与求解
1.问题的分析
最少时间(即人力资源成本)是最大利润一个很有参考价值的数据,往往需要利用数学建模的方法对其进行定量的分析,首先确定第i人做或者不做第j工作将问题定量化,再以全部的工作时间为目标函数,最后对目标函数求最优解得出最终结果。

2.模型的建立
设:
10...3,2,112...3,2,1{.1.0===
j i x ij j i j i ,件工作
人做第第件工作人不做第第 则工作时间为: ∑∑===12110
1z i ij j ij x c
限定条件为:
12...3,2,11101=≤∑=i x
j ij ,(即每个人只能做一个工作(假设2),可以小
于1是因为人比工作多,允许有人空闲)
10...3,2,11121i ==∑=j x
ij ,(即每个工作都要有人做,且只能由一个人做
(假设3))
10or x ij =
不能完成任务的人:
,,
,
,,,,,
,
,,
,,,,
4
,122,129,1099989610,77865575110,448474326=x x x x x x x x x x x x x x x x
3.模型的求解
化为标准形式如下:
∑∑===12110
1
z Min i ij j ij x c
s.t. 12...3,2,11101=≤∑=i x
j ij ,
10...3,2,11121i ==∑=j x
ij ,
10
or x ij =
,,
,
,,,,,
,
,,
,,,,
4
,122,129,1099989610,77865575110,448474326 x x x x x x x x x x x x x x x x
将上述条件,以及数据写入Lingo 中,编写程序求解。

源程序及输出结果详见附件。

4.结果分析
程序调试完成后,得到结果如下:
X( 1, 7) =
1.000000 X( 2, 10) =
1.000000 X( 5, 5) =
1.000000 X( 6, 6) =
1.000000 X( 7, 4) =
1.000000 X( 8, 2) =
1.000000 X( 9, 1) =
1.000000 X( 10, 3) =
1.000000 X( 11, 8) =
1.000000 X( 12, 9) = 1.000000
最小时间为:
z = 23
将工作分派情况与表1.1,即每个人的花费时间作对比,如下表(表1.2):
表1.2 加粗的单元格即为选择做第j件事的第i个人
现在我们可以看到,最优解基本上是集中于取值较低(即花费时间较少)的人上面,受假设2(每个人只能做一个工作,即既不能同时做两个工作,也不能在一个工作做完后再做其他工作)的约束,每一横行只能选一个格子(即每个人只能做一件工作),可不选。

模型再受到假设3的约束(每件工作都必须有人做,且只能由一个人独立完成)),所以,每一竖行必须且只能选一个格子。

对照约束条件与表1.2,我们发现有些事件取值并非该人最高效事件(如第10人),但为满足约束,所以程序从全局高度对结果进行了取舍。

由表1.2,我们可以推断,在没有计算机辅助,或待求解量较少且对结果要求不高的情况下,可以采取“画格子”的方式粗糙地求解类似问题。

但也可从思维过程看出在计算机辅助的情况下节省了大量的较繁运算。

五、模型的评价
优点
模型明了简洁,具有相当的可推广性。

缺点
模型考虑的影响因素较少。

六、模型的推广与改进
在该问题的求解中,考虑的方面较为简略,还有很多因素可以考虑。

例如在可以协作的情况下,各个人做完了分配工作后可以再其他工作的情况下,以及该情形下他们不同的休息时间,各道工作有关联时的情况等因素。

但在单一工作及简单考虑情况下,该模型具有较大的生存空间,只需改动少许数值即可推广应用。

七、附件
Lingo源程序:
model:
sets:
si/1..12/;
sj/1..10/;
sij(si,sj):c,x;
endsets
data:
c=2 5 8 3 6 12 2 4 6 7
5 4 7 2 2 0 7 3 3 1
7 23 5 4 7 4 9 6 4 6
7 9 0 5 8 8 0 0 4 0
0 8 3 2 1 7 0 8 7 9
5 9
6 8 0 3 4
7
8 7
5 5
6 4
7 5 9 0 5 0
2 2 8 8 2 9 4
3 8 5
3 5 5 7 3 0 8 0 0 6
8 7 4 3 7 5 9 8 0 3
3 8 8 1
4 8 2 1 9 5
3 0 5 0 5 7 2 8 2 10;
enddata
min = @sum(sij:c*x);
@for(sij:@bin(x));!限制x为0-1变量;
@for(sj(j):@sum(si(i):x(i,j))=1); !(即每个工作都要有人做,且只能由一个人做(假设3));
@for(si(i):@sum(sj(j):x(i,j))<=1); !(即每个人只能做一个工作(假设2),可以小于1是因为人比工作多,允许有人空闲);
!强制等于0的量。

即无法完成某项工作的人;
x(2,6)=0;
x(4,3)=0; x(4,7)=0; x(4,8)=0; x(4,10)=0;
x(5,1)=0; x(5,7)=0;
x(6,5)=0;
x(7,8)=0; x(7,10)=0;
x(9,6)=0; x(9,8)=0; x(9,9)=0;
x(10,9)=0;
x(12,2)=0; x(12,4)=0;
Lingo求解输出结果:
Global optimal solution found at iteration: 21
Objective value: 23.00000
Variable Value Reduced Cost
X( 1, 7) 1.000000 2.000000
X( 2, 10) 1.000000 1.000000
X( 5, 5) 1.000000 1.000000
X( 6, 6) 1.000000 3.000000
X( 7, 4) 1.000000 4.000000
X( 8, 2) 1.000000 2.000000
X( 9, 1) 1.000000 3.000000
X( 10, 3) 1.000000 4.000000
X( 11, 8) 1.000000 1.000000
X( 12, 9) 1.000000 2.000000
【参考文献】
[1] 姜启源,谢金星,叶俊. 数学模型[M].北京:高等教育出版社,2003.8。

相关文档
最新文档