lingo解决线性规划问题(附程序)

合集下载

实验1 利用Lingo求解线性规划

实验1 利用Lingo求解线性规划

实验一:利用Lingo 软件求解线性规划问题实验一 利用Lingo 软件求解线性规划问题1、 实验目的和任务1.1. 进一步掌握Lingo 编程操作;1.2通过实验进一步掌握运筹学线性规划问题的建模以及求解过程,提高学生分析问题和解决问题能力。

2、 实验仪器、设备及材料计算机、Lingo3、 实验内容料场选址问题P10某公司有6个建筑工地要开工,每个工地的位置(用平面坐标a,b 表示,距离单位:km )及水泥日用量d(单位:t)由下表给出,目前有两个临时料场位于P (5,1),Q (2,7),日储量各有20t.请回答以下问题: 假设从料场到工地之间有直线道路相连,试制定每天的供应计划,即从P,Q 两料场分别向各工地运送多少吨水泥,使总的吨公量数最小。

工地的位置(a,b )及水泥日用量d建模 设工地的位置为(,)i i a b ,水泥日用量为i d ,i=1,2,…,6;料场位置为(,)j j x y ,日储量为j e ,j=1,2; 从料场j 向工地i 的运送量为ij c 。

决策变量:在问题(1)中,决策变量就是料场j 向工地i 的运送量为ij c ;在问题(2)中,决策变量除了料场j 向工地i 的运送量为ij c 外,新建料场位置(,)j j x y 也是决策变量。

目标函数:这个优化问题的目标函数f 是总砘公量数(运量乘以运输距离),所以优化目标可表为2611min j i f c ===∑∑约束条件:各工地的日用量必须满足,所以21,1,2, (6)ij ijc d i ===∑各料场的运送量不能超过日储量,所以61,1,2. ij jic e j =≤=∑求解过程编写模型程序:(介绍集合的定义及应用)model:sets:!确定变量a(1),a(2),a(3),a(4),a(5),a(6);demand/1..6/:a,b,d;supply/1..2/:x,y,e;link(demand,supply):c;endsetsdata:!分割数据的空格与逗号或回车的作用是等价的;a=1.25 8.75 0.5 5.75 3 7.25;b=1.25,0.75,4.75,5,6.5,7.75;d=3,5,4,7,6,11;e=20,20;!a=enddatainit:!lingo对数据是按列赋值的,而不是按行;x,y=5,1,2,7;endinit[OBJ] min=@sum(link(i,j):c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2));@for(demand(i):[demand_con] @sum(supply(j):c(i,j))=d(i););@for(supply(i):[supply_con] @sum(demand(j):c(j,i))<=e(i););@for(supply(i):@bnd(0.5,x(i),8.75);@bnd(0.75,y(i),7.75););End计算结果:(如果你使用的是试用版软件,则可能不能用全局求解器求解本例,因为问题规模太大了,激活全局最优求解程序的方法,是用“lingo|Options”菜单命令打开选项对话框,在“Global Solver”选项卡上选择“Use Global Solver”)Local optimal solution found.Objective value: 85.26604Total solver iterations: 61Variable Value Reduced CostA( 1) 1.250000 0.000000A( 2) 8.750000 0.000000A( 3) 0.5000000 0.000000A( 4) 5.750000 0.000000A( 5) 3.000000 0.000000A( 6) 7.250000 0.000000B( 1) 1.250000 0.000000B( 2) 0.7500000 0.000000B( 3) 4.750000 0.000000B( 4) 5.000000 0.000000B( 5) 6.500000 0.000000B( 6) 7.750000 0.000000D( 1) 3.000000 0.000000D( 2) 5.000000 0.000000D( 3) 4.000000 0.000000D( 4) 7.000000 0.000000D( 5) 6.000000 0.000000D( 6) 11.00000 0.000000X( 1) 3.254883 0.000000X( 2) 7.250000 0.6335133E-06 Y( 1) 5.652332 0.000000Y( 2) 7.750000 0.5438639E-06 E( 1) 20.00000 0.000000E( 2) 20.00000 0.000000C( 1, 1) 3.000000 0.000000C( 1, 2) 0.000000 4.008540C( 2, 1) 0.000000 0.2051358C( 2, 2) 5.000000 0.000000C( 3, 1) 4.000000 0.000000C( 3, 2) 0.000000 4.487750C( 4, 1) 7.000000 0.000000C( 4, 2) 0.000000 0.5535090C( 5, 1) 6.000000 0.000000C( 5, 2) 0.000000 3.544853C( 6, 1) 0.000000 4.512336C( 6, 2) 11.00000 0.000000Row Slack or Surplus Dual PriceOBJ 85.26604 -1.000000DEMAND_CON( 1) 0.000000 -4.837363DEMAND_CON( 2) 0.000000 -7.158911DEMAND_CON( 3) 0.000000 -2.898893DEMAND_CON( 4) 0.000000 -2.578982DEMAND_CON( 5) 0.000000 -0.8851584DEMAND_CON( 6) 0.000000 0.000000SUPPLY_CON( 1) 0.000000 0.000000SUPPLY_CON( 2) 4.000000 0.000000如果把料厂P,Q的位置看成是已知并且固定的,这时是LP模型,只需把上面的程序中初始段的语句移到数据段就可以了。

用LINGO求解线性规划问题

用LINGO求解线性规划问题

实验1 用LINGO求解线性规划问题LINGO使用简介LINGO软件是美国的LINDO系统公司(Lindo System Inc)开发的一套用于求解最优化问题的软件包.LINGO除了能用于求解线性规划和二次规划外,还可以用于非线性规划求解以及一些线性和非线性方程(组)的求解.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,而且执行速度快.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果,这里简单介绍LINGO的使用方法.LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络优化和排队论模型中的最优化问题等.一个LINGO程序一般会包含集合段、数据输入段、优化目标和约束段、初始段和数据预处理段等部分,每一部分有其独特的作用和语法规则,读者可以通过查阅相关的参考书或者LINGO的HELP文件详细了解,这里就不展开介绍了.LINGO的主要功能特色为:既能求解线性规划问题,也有较强的求解非线性规划问题的能力;输入模型简练直观;运算速度快、计算能力强;内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述大规模的优化模型;将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;并且能方便地与Excel、数据库等其他软件交换数据.LINGO的语法规定:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2)每个语句必须以分号“;”结束,每行可以有许多语句,语句可以跨行;(3)变量名称必须以字母(A~Z)开头,由字母、数字(0~9)和下划线所组成,长度不超过32个字符,不区分大小写;(4)可以给语句加上标号,例如[OBJ] MAX=200*X1+300*X2;(5)以惊叹号“!”开头,以分号“;”结束的语句是注释语句;(6)如果对变量的取值范围没有作特殊说明,则默认所有决策变量都非负;(7)LINGO模型以语句“MODEL:”开头,以“END”结束,对于比较简单的模型,这两个语句可以省略.实验目的1.对于给定的实际应用问题,正确的建立线性规划问题数学模型,并用LINGO求解;2.掌握灵敏度分析以及资源的影子价格的相关分析方法.实验数据与内容问题1.1某工厂在计划期内要安排生产A、B两种产品,已知生产单位产品所需设备台时及对甲、乙两种原材料的消耗,有关数据如表1.1.问:应如何安排生产计划,使工厂获利最大?.问题1.2 某公司饲养实验用的动物以供出售,已知这些动物的生长对饲料中3种营养成分(蛋白质、矿物质和维生素)特别敏感,每个动物每周至少需要蛋白质60g ,矿物质3g ,维生素8mg ,该公司能买到5种不同的饲料,每种饲料1kg 所含各种营养成分和成本如表1.2所示,如果每个小动物每周食用饲料不超过52kg ,求既能满足动物生长需要,又使总成本最低的饲料配方.实验指导问题1.1设计划生产两种产品分别为,则建立线性规划问题数学模型B A ,21,x x ⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,12416482.32max 21212121x x x x x x t s x x S 在LINGO 的MODEL 窗口内输入如下模型:model :max =2*x1+3*x2;x1+2*x2<=8;4*x1<=16;4*x2<=12;end选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解”按纽,如果模型有语法错误,则弹出一个标题为“LINGO Error Message ”(错误信息)的窗口,指出在哪一行有怎样的错误,每一种错误都有一个编号(具体含义可查阅相关文献或LINGO 的Help ).改正错误以后再求解,如果语法通过,LINGO 用内部所带的求解程序求出模型的解,然后弹出一个标题为“LINGO Solver Status ”(求解状态)的窗口,其内容为变量个数、约束条件个数、优化状态、耗费内存、所花时间等信息,点击Close 关闭窗口,屏幕上出现标题为“Solution Report ”(解的报告)的信息窗口,显示优化计算(线性规划中换基迭代)的步数、优化后的目标函数值、列出各变量的计算结果.求解结果:Global optimal solution found at iteration: 5Objective value: 14.00000Variable Value Reduced CostX1 4.000000 0.000000X2 2.000000 0.000000Row Slack or Surplus Dual Price1 14.00000 1.0000002 0.000000 1.5000003 0.000000 0.12500004 4.000000 0.000000该报告说明:运行5步找到全局最优解,目标函数值为14,变量值分别为.“Reduced Cost ”的含义是需缩减成本系数或需增加利润系数(最优解中取值非零的决策变量的Reduced Cost 值等于零).“Row ”是输入模型中的行号,目标函数是第一行;“Slack or Surplus ”的意思是松弛或剩余,即约束条件左边与右边的差值,对于“124,2==x x ≤”的不等式,右边减左边的差值为Slack (松弛),对于“”的不等式,左边减右边的差值为Surplus (剩余),当约束条件两边相等时,松弛或剩余的值等于零.“Dual Price ”的意思是对偶价格(或称为影子价格),上述报告中Row2的松弛值为0,表明生产甲产品4单位、乙产品2单位,所需设备8台时已经饱和,对偶价格1.5的含义是:如果设备增加1台时,能使目标函数值增加1.5.报告中Row4的松弛值为4,表明生产甲产品4单位、乙产品2单位,所需原材料乙8公斤还剩余4公斤,因此增加原材料乙不会使目标函数值增加,所以对偶价格为0.≥问题1.2设需要饲料分别为 kg ,则建立线性规划数学模型:54321,,,,A A A A A 54321,,,,x x x x x 123451234512345123451234512345min 0.20.70.40.30.50.320.6 1.8600.10.050.020.20.0530.050.10.020.20.088.52,,,,0S x x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++≥⎧⎪++++⎪⎪≥++++⎨⎪++++≤⎪≥⎪⎩≥ 在LINGO 的MODEL 窗口内输入如下模型:Min=0.2*x1+0.7*x2+0.4*x3+0.3*x4+0.5*x5;0.3*x1+2*x2+x3+0.6*x4+1.8*x5>60;0.1*x1+0.05*x2+0.02*x3+0.2*x4+0.05*x5>3;0.05*x1+0.1*x2+0.02*x3+0.2*x4+0.08*x5>8;x1+x2+x3+x4+x5<52;求解输出结果如下:Global optimal solution found at iteration: 4Objective value: 22.40000Variable Value Reduced CostX1 0.000000 0.7000000X2 12.00000 0.000000X3 0.000000 0.6166667X4 30.00000 0.000000X5 10.00000 0.000000Row Slack or Surplus Dual Price1 22.40000 -1.0000002 0.000000 -0.58333333 4.100000 0.0000004 0.000000 -4.1666675 0.000000 0.8833333因此,每周每个动物的配料为饲料、、分别为12、30和10kg ,合计为52,可使得饲养成本达到最小,最小成本为22.4元;不选用饲料和的原因是因为这两种饲料的价格太高了,没有竞争力.“Reduced Cost ”分别等于0.7和0.617,说明当这两种饲料的价格分别降低0.7元和0.62元以上时,不仅选用这两种饲料而且使得饲养成本降低.从“Slack or Surplus”可以看出,蛋白质和维生素刚达到最低标准,矿物质超过最低标准4.12A 4A 5A kg kg kg 1A 3A g ;从“Dual Price”可以得到降低标准蛋白质1单位可使饲养成本降低0.583元,降低标准维生素1单位可使饲养成本降低4.167元,但降低矿物质的标准不会降低饲养成本,如果动物的进食量减少,就必须选取精一些的饲料但要增加成本,大约进食量降低1可使得饲养成本增加0.88元.kg 对于目标函数系数和约束条件右端常数项的灵敏度分析,可以通过LINGO 软件求解的灵敏度分析给出.如果要看灵敏度分析结果,必须激活灵敏度计算功能才会在求解时给出灵敏度分析结果,默认情况下这项功能是关闭的.想要激活它,必须运行LINGO|Options …命令,选择Gengral Solver ,在Dual Computation 列表框中,选择Prices and Ranges 选项并确定.对于例1.1问题进行灵敏度分析,结果如下:以下是灵敏度分析的结果Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 2.000000 INFINITY 0.5000000X2 3.000000 1.000000 3.000000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 8.000000 2.000000 4.0000003 16.00000 16.00000 8.0000004 12.00000 INFINITY 4.000000对于例1.2问题进行灵敏度分析,结果如下:Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 0.2000000 INFINITY 0.7000000X2 0.7000000 INFINITY 0.1358974X3 0.4000000 INFINITY 0.6166667X4 0.3000000 1.400000 1.000000X5 0.5000000 0.1247059 INFINITYRighthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 60.00000 4.800000 4.8000003 3.000000 4.100000 INFINITY4 8.000000 0.3428571 0.48000005 52.00000 1.846154 1.411765思考题某投资公司拟制定今后5年的投资计划,初步考虑下面四个投资项目:项目A:从第1年到第4年每年年初可以投资,于次年年末收回成本,并可获利润15%;项目B:第3年年初可以投资,到第5年年末可以收回成本,并获得利润25%,但为了保证足够的资金流动,规定该项目的投资金额上限为不超过总金额的40%;项目C:第2年年初可以投资,到第5年年末可以收回成本,并获得利润40%,但公司规定该项目的最大投资金额不超过总金额的30%;项目D:5年内每年年初可以购买公债,于当年年末可以归还本金,并获利息6%.该公司现有投资金额100万元,请帮助该公司制定这些项目每年的投资计划,使公司到第5年年末核算这5年投资的收益率达到最大.建立线性规划问题的数学模型,并用LINGO求解.。

运用Lingo进行线性规划求解(实例)

运用Lingo进行线性规划求解(实例)
LinDo/LinGo软件
LinDo
输入模型 求解
点击求解按钮 结果
即可
♂返回
!注释内容,可用中文

!目标函数:最大-max,最小-min,大小写不分
max 3 x1+5 x2+4 x3

!约束,以subject to开始

subject to

2 x1+3 x2<=1500
2 x2+4 x3<=800
3*x1+2*x2+5*x3<=2 000; end
注意与LinDo的区别
目标函数中加等号 变量与系数之间用“*” Model:-end可省略
♂返回
LinGo 模 式
Model: Sets: !定义集合
Endsets
Data:
!定义数据
Enddata 调用函数与计算
end
♂返回
model: !开始

@sum(set(set_index_list)|condition:expressi
on)
@min(max)(set(set_index_list)|condition:ex pression)
♂返回
Global optimal solution found at
iteration:
3

Objective value: 2675.000

Variable Value
Reduced Cost
C( 1) 3.000000
0.000000
C( 2) 5.000000
0.000000
C( 3) 4.000000
0.000000

用lingo解线性规划问题

用lingo解线性规划问题

2. 所用原料钢管总根数最少
决策变量 xi ~按第i 种模式切割的原料钢管根数(i=1,2,…7)
目标1(总余量) Min Z1 3x1 x2 3x3 3x4 x5 x6 3x7
模 式 1 2 3 4 5 6 7 需 求 4米 根数 4 3 2 1 1 0 0 50 6米 根数 0 1 0 2 1 3 0 20 8米 根数 0 0 1 0 1 0 2 15 余 料 3 1 3 3 1 1 3
x1 x2 50
12x1 8x2 480
约束条件
劳动时间 加工能力 非负约束
3x1 100 x1 , x2 0
线性 规划 模型 (LP)
模型求解
20桶牛奶生产A1, 30桶生产A2,利润3360元。
结果解释
Max= 72x1+64x2
2)x1+x2<50 3)12x1+8x2<480
解:直接在LINGO的模型窗口中输 入程序
LINDO/LINGO软件的求解过程
1. 确定常数
2. 识别类型
LINDO/LINGO预处理程序
LP QP NLP IP 全局优化(选) 分枝定界管理程序
ILP
线性优化求解程序 1. 单纯形算法 2. 内点算法(选)
IQP
INLP
非线性优化求解程序
LINDO和LINGO软件能求解的优化模型
钢管下料问题1
模式 1 2 3 4 5 6 7 4米钢管根数 4 3 2 1 1 0 0
合理切割模式
8米钢管根数 0 0 1 0 1 0 2 余料(米) 3 1 3 3 1 1 3
6米钢管根数 0 1 0 2 1 3 0
为满足客户需要,按照哪些种合理模式,每种模式 切割多少根原料钢管,最为节省? 两种 标准 1. 原料钢管剩余总余量最小

Lingo初级应用作业(附程序)

Lingo初级应用作业(附程序)

Lingo 初级应用作业1、将下面公式编成Lingo 程序并得出结果。

(1)(2)⎪⎪⎩⎪⎪⎨⎧≥--≤-+++++=为整数为实数2112121222121,;;827;1363..3921445min x x x x x x x T S x x x x zLingo 程序:max =120*x1+108*x2+150*x3+190*x4+160*x5+200*x6+98*x7;100*x1+98*x2+130*x3+160*x4+130*x5+170*x6+88*x7<=1600;x1+x2+x3<=2; x4+x5>=1; x6+x7>=1; x6+x7>=1; @bin (x); @gin (x1); @gin (x2); @gin (x3);⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥+≥+≤++≤++++++++++++=1..011216008817013016013098100..98200160190150108120max 765432176543217654321or x x x x x x x x x x x x x x x t s x x x x x x x z i2、背包问题(0,1规划问题)一个旅行者的背包最多只能装 6kg 物品,现有 4 件物品的重量和价值分别为 2 kg ,3 kg ,3 kg ,4 kg ;1 元,1.2元,0.9元,1.1元。

问应怎样携带那些物品使得携带物品的价值最大?Lingo 程序:model:min=3*x1+x2+3*x3+3*x4+x5+x6+3*x7; 4*x1+3*x2+2*x3+x4+x5>=50; x2+2*x4+x5+3*x6>=20; x3+x5+2*x7>=15; @gin(x1); @gin(x2); @gin(x3); @gin(x4); @gin(x5); @gin(x6); @gin(x7); end3、线性规划问题某公司有四个建筑工地,位置坐标如下表,位置坐标为(i b a ,1) (单位:公里),水泥日用量i d (单位:吨),现有两料场,位于A (5,1),B (2,7),记(j j y x ,),日储量各有20吨。

用LINGO求解线性规划问题

用LINGO求解线性规划问题

实验1 用LINGO求解线性规划问题LINGO使用简介LINGO软件是美国的LINDO系统公司(Lindo System Inc)开发的一套用于求解最优化问题的软件包.LINGO除了能用于求解线性规划和二次规划外,还可以用于非线性规划求解以及一些线性和非线性方程(组)的求解.LINGO软件的最大特色在于它允许优化模型中的决策变量为整数,而且执行速度快.LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果,这里简单介绍LINGO的使用方法.LINGO可以求解线性规划、二次规划、非线性规划、整数规划、图论及网络优化和排队论模型中的最优化问题等.一个LINGO程序一般会包含集合段、数据输入段、优化目标和约束段、初始段和数据预处理段等部分,每一部分有其独特的作用和语法规则,读者可以通过查阅相关的参考书或者LINGO的HELP文件详细了解,这里就不展开介绍了.LINGO的主要功能特色为:既能求解线性规划问题,也有较强的求解非线性规划问题的能力;输入模型简练直观;运算速度快、计算能力强;内置建模语言,提供几十个内部函数,从而能以较少语句,较直观的方式描述大规模的优化模型;将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;并且能方便地与Excel、数据库等其他软件交换数据.LINGO的语法规定:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2)每个语句必须以分号“;”结束,每行可以有许多语句,语句可以跨行;(3)变量名称必须以字母(A~Z)开头,由字母、数字(0~9)和下划线所组成,长度不超过32个字符,不区分大小写;(4)可以给语句加上标号,例如[OBJ] MAX=200*X1+300*X2;(5)以惊叹号“!”开头,以分号“;”结束的语句是注释语句;(6)如果对变量的取值范围没有作特殊说明,则默认所有决策变量都非负;(7)LINGO模型以语句“MODEL:”开头,以“END”结束,对于比较简单的模型,这两个语句可以省略.实验目的1.对于给定的实际应用问题,正确的建立线性规划问题数学模型,并用LINGO求解;2.掌握灵敏度分析以及资源的影子价格的相关分析方法.实验数据与内容问题1.1某工厂在计划期内要安排生产A、B两种产品,已知生产单位产品所需设备台时及对甲、乙两种原材料的消耗,有关数据如表1.1.问:应如何安排生产计划,使工厂获利最大?.问题1.2 某公司饲养实验用的动物以供出售,已知这些动物的生长对饲料中3种营养成分(蛋白质、矿物质和维生素)特别敏感,每个动物每周至少需要蛋白质60g ,矿物质3g ,维生素8mg ,该公司能买到5种不同的饲料,每种饲料1kg 所含各种营养成分和成本如表1.2所示,如果每个小动物每周食用饲料不超过52kg ,求既能满足动物生长需要,又使总成本最低的饲料配方.实验指导问题1.1设计划生产两种产品分别为,则建立线性规划问题数学模型B A ,21,x x ⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0,12416482.32max 21212121x x x x x x t s x x S 在LINGO 的MODEL 窗口内输入如下模型:model :max =2*x1+3*x2;x1+2*x2<=8;4*x1<=16;4*x2<=12;end选菜单Lingo|Solve(或按Ctrl+S),或用鼠标点击“求解”按纽,如果模型有语法错误,则弹出一个标题为“LINGO Error Message ”(错误信息)的窗口,指出在哪一行有怎样的错误,每一种错误都有一个编号(具体含义可查阅相关文献或LINGO 的Help ).改正错误以后再求解,如果语法通过,LINGO 用内部所带的求解程序求出模型的解,然后弹出一个标题为“LINGO Solver Status ”(求解状态)的窗口,其内容为变量个数、约束条件个数、优化状态、耗费内存、所花时间等信息,点击Close 关闭窗口,屏幕上出现标题为“Solution Report ”(解的报告)的信息窗口,显示优化计算(线性规划中换基迭代)的步数、优化后的目标函数值、列出各变量的计算结果.求解结果:Global optimal solution found at iteration: 5Objective value: 14.00000Variable Value Reduced CostX1 4.000000 0.000000X2 2.000000 0.000000Row Slack or Surplus Dual Price1 14.00000 1.0000002 0.000000 1.5000003 0.000000 0.12500004 4.000000 0.000000该报告说明:运行5步找到全局最优解,目标函数值为14,变量值分别为.“Reduced Cost ”的含义是需缩减成本系数或需增加利润系数(最优解中取值非零的决策变量的Reduced Cost 值等于零).“Row ”是输入模型中的行号,目标函数是第一行;“Slack or Surplus ”的意思是松弛或剩余,即约束条件左边与右边的差值,对于“124,2==x x ≤”的不等式,右边减左边的差值为Slack (松弛),对于“”的不等式,左边减右边的差值为Surplus (剩余),当约束条件两边相等时,松弛或剩余的值等于零.“Dual Price ”的意思是对偶价格(或称为影子价格),上述报告中Row2的松弛值为0,表明生产甲产品4单位、乙产品2单位,所需设备8台时已经饱和,对偶价格1.5的含义是:如果设备增加1台时,能使目标函数值增加1.5.报告中Row4的松弛值为4,表明生产甲产品4单位、乙产品2单位,所需原材料乙8公斤还剩余4公斤,因此增加原材料乙不会使目标函数值增加,所以对偶价格为0.≥问题1.2设需要饲料分别为 kg ,则建立线性规划数学模型:54321,,,,A A A A A 54321,,,,x x x x x 123451234512345123451234512345min 0.20.70.40.30.50.320.6 1.8600.10.050.020.20.0530.050.10.020.20.088.52,,,,0S x x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++≥⎧⎪++++⎪⎪≥++++⎨⎪++++≤⎪≥⎪⎩≥ 在LINGO 的MODEL 窗口内输入如下模型:Min=0.2*x1+0.7*x2+0.4*x3+0.3*x4+0.5*x5;0.3*x1+2*x2+x3+0.6*x4+1.8*x5>60;0.1*x1+0.05*x2+0.02*x3+0.2*x4+0.05*x5>3;0.05*x1+0.1*x2+0.02*x3+0.2*x4+0.08*x5>8;x1+x2+x3+x4+x5<52;求解输出结果如下:Global optimal solution found at iteration: 4Objective value: 22.40000Variable Value Reduced CostX1 0.000000 0.7000000X2 12.00000 0.000000X3 0.000000 0.6166667X4 30.00000 0.000000X5 10.00000 0.000000Row Slack or Surplus Dual Price1 22.40000 -1.0000002 0.000000 -0.58333333 4.100000 0.0000004 0.000000 -4.1666675 0.000000 0.8833333因此,每周每个动物的配料为饲料、、分别为12、30和10kg ,合计为52,可使得饲养成本达到最小,最小成本为22.4元;不选用饲料和的原因是因为这两种饲料的价格太高了,没有竞争力.“Reduced Cost ”分别等于0.7和0.617,说明当这两种饲料的价格分别降低0.7元和0.62元以上时,不仅选用这两种饲料而且使得饲养成本降低.从“Slack or Surplus”可以看出,蛋白质和维生素刚达到最低标准,矿物质超过最低标准4.12A 4A 5A kg kg kg 1A 3A g ;从“Dual Price”可以得到降低标准蛋白质1单位可使饲养成本降低0.583元,降低标准维生素1单位可使饲养成本降低4.167元,但降低矿物质的标准不会降低饲养成本,如果动物的进食量减少,就必须选取精一些的饲料但要增加成本,大约进食量降低1可使得饲养成本增加0.88元.kg 对于目标函数系数和约束条件右端常数项的灵敏度分析,可以通过LINGO 软件求解的灵敏度分析给出.如果要看灵敏度分析结果,必须激活灵敏度计算功能才会在求解时给出灵敏度分析结果,默认情况下这项功能是关闭的.想要激活它,必须运行LINGO|Options …命令,选择Gengral Solver ,在Dual Computation 列表框中,选择Prices and Ranges 选项并确定.对于例1.1问题进行灵敏度分析,结果如下:以下是灵敏度分析的结果Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 2.000000 INFINITY 0.5000000X2 3.000000 1.000000 3.000000Righthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 8.000000 2.000000 4.0000003 16.00000 16.00000 8.0000004 12.00000 INFINITY 4.000000对于例1.2问题进行灵敏度分析,结果如下:Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable AllowableVariable Coefficient Increase DecreaseX1 0.2000000 INFINITY 0.7000000X2 0.7000000 INFINITY 0.1358974X3 0.4000000 INFINITY 0.6166667X4 0.3000000 1.400000 1.000000X5 0.5000000 0.1247059 INFINITYRighthand Side RangesRow Current Allowable AllowableRHS Increase Decrease2 60.00000 4.800000 4.8000003 3.000000 4.100000 INFINITY4 8.000000 0.3428571 0.48000005 52.00000 1.846154 1.411765思考题某投资公司拟制定今后5年的投资计划,初步考虑下面四个投资项目:项目A:从第1年到第4年每年年初可以投资,于次年年末收回成本,并可获利润15%;项目B:第3年年初可以投资,到第5年年末可以收回成本,并获得利润25%,但为了保证足够的资金流动,规定该项目的投资金额上限为不超过总金额的40%;项目C:第2年年初可以投资,到第5年年末可以收回成本,并获得利润40%,但公司规定该项目的最大投资金额不超过总金额的30%;项目D:5年内每年年初可以购买公债,于当年年末可以归还本金,并获利息6%.该公司现有投资金额100万元,请帮助该公司制定这些项目每年的投资计划,使公司到第5年年末核算这5年投资的收益率达到最大.建立线性规划问题的数学模型,并用LINGO求解.。

三组 LINGO问题

三组 LINGO问题
1)最亮 model:
max = 2*h1 / (x^2 + h1^2)^(3/2) + 3*h2 / ((20-x)^2 + h2^2)^(3/2); x>=0; x<=20; data: h1 = 5; h2 = 6; enddata end
1
5.00
2
6.00
19.97
最暗 model:
min = 2*h1 / (x^2 + h1^2)^(3/2) + 3*h2 / ((20-x)^2 + h2^2)^(3/2); x>=0; x<=20; data: h1 = 5; h2 = 6; enddata end
② 表示:生产一件晶体管需要占用晶体管质量控制区域 0.5h 的时间,生产一件 微型模块需要占用质量控制区域 0.4h 的时间,总时间不超过 200h;
③ 表示:生产一件电路集成器需要占用测试与包装区域 0.5h 的时间,总时间不 超过 200h;
④ 表示:生产一件电路集成器需要占用电路印刷区域 0.1h 的时间,总时间不超 过 200h; 将③和④合并后约束条件变为:
v(t)
������������ ������������

������������ ������������
������
−������������������������
对速度积分可以得到下落位移关于时间的函数
������(������)
������������ ������������
������
/ ((20-x(j))^2 + h2(i)^2)^(3/2)));
ans = @max(set(i):m(i));

lingo解决线性规划问题的程序(经典)要点

lingo解决线性规划问题的程序(经典)要点
2*x+y<600; !决策变量黙认为非负 ; <相当于 <=; 大小写不区分
当规划问题的规模很大时,需要定义数组 下面定义下标集和对应数组的三种方法, sets : r1/1..3/:a; r2 : b; r3 : c; link2(r1,r2): x; link3(r1,r2,r3): y; endsets data : ALPHA = 0.7; a=11 12 13 ; r2 = 1..3; b = 11 12 13; c = 11 12 13; enddata
model : !6 发点 8收点运输问题 ;
sets :
rows/1..6/: s;
! 发点的产量限制 ;
cols/1..8/: d;
! 售点的需求限制 ;
links(rows,cols): c, x; endsets
! 运输单价,决策运输量 ;
!==================================; data :
! 目标函数 =运输总成本 ;
@sum(cols(j): x(i,j))<=s(i) ); @for (cols(j):
! 产量约束 ;
@sum(rows(i): x(i,j))=d(j) ); end
! 需求约束 ;
例 3 把上述程序进行改进,引进运行子模块和打印运算结果的语句:
!exam_3.lg4 源程序
Lingo12 软件培训教案
Lingo 主要用于求解线性规划,整数规划,非线性规划,
例 1 一个简单的线性规划问题
V10 以上版本可编程。
max z 2 x 3 y st. x y 350
x 100 2 x y 600 x, y 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北方民族大学第六届数学建模竞赛竞赛论文竞赛分组:竞赛题目:组员:所在学院:信息与计算科学学院制版北方民族大学第六届数学建模竞赛承诺书为保证竞赛的公平、公正,维护竞赛的严肃性,在竞赛期间,我们承诺遵守以下竞赛规定:只在本参赛队的三人之间进行问题的讨论,绝不与本参赛队外的其他人讨论与竞赛题目相关的任何问题,不抄袭、剽窃他人的成果,引用的参考文献在答卷中进行标注。

承诺人签名:承诺人所在分组:承诺人所在学院:年月日摘要在工程技术、经济管理等诸多领域中,人们经常遇到的一类决策问题是:在一系列客观或主观限制条件下,寻求所要关注的某个或多个指标达到最大(或最小)的决策。

例如,酒店客房分配,我们常常不能使得客房刚好满足顾客的要求,此时,客房是有限的,但是顾客需要的客房数已经超出酒店可提供的客房数目,我们就会选择一种客房分配方案,来使得酒店的收益获得最大的。

7天连锁酒店利用网络系统为常客户开设标准间和商务间两类客房的预定服务,酒店以一周(从星期一到星期日)为一个时段处理这项业务。

现在收到一个会务组提出的一个一周的预定需求单,现要求我们依据题目所提供的信息,以酒店收入最大为目标,针对3种不同情况,制定相应的分配方案。

我们把这类决策问题通常归为最优化问题,解决问题的方案是,找到问题的决策变量,目标函数及约束条件。

如果需要作出决策的变量较多时,我们就会首选LINGO软件来解决线性规划的问题。

关键词:最优分配、数学建模、线性规划、LINGO目录1.问题的重述 (4)2.问题的分析 (4)3.模型的假设 (5)4.符号的约定 (6)5.模型的建立与求解 (7)5.1问题(1)的求解 (8)5.2问题(2)的求解 (9)5.3问题(3)的求解 (12)5.4问题(4)的求解 (15)6.模型的评价与改进 (15)7.参考文献 (15)8.附录 (16)酒店客房的最优分配方案1、问题的重述7天连锁酒店利用网络系统为常客户开设标准间和商务间两类客房的预定服务,酒店以一周(从星期一到星期日)为一个时段处理这项业务。

现在收到一个会务组提出的一个一周的预定需求单,见附录中的表1和表2.由于酒店客房每天的可提供量是有一定限制的,所以就要求我们以酒店收入最大为目标,根据附录中表1至表5所提供的信息,针对一下3种不同情况,制定客房分配方案。

(1)常规策略:完全按照客户提出的不同类型客房预定要求制定分配方案。

(2)免费升级策略:在标准间(低价位客房)不够分配、而商务间(高价位客房)有剩余的情况下,将一部分商务间客房按标准间的需求进行分配并收费。

(3)折扣优惠策略:在首选价位客房无法满足需求、而其它价位客房有剩余的情况下,采用打折优惠的办法鼓励部分顾客改变原来的需求,选择其它价位客房。

(4)根据酒店所提供的更多类型的客房以及优惠政策,试推广你的模型。

2、问题分析根据所给的数据,我们可以看出所需的客房在一定程度上,是无法满足客户要求的,必须做出一定的更改,以满足客户的要求,这就涉及到了线性规划。

我们采用了LINGO软件,来完成所给出的问题。

问题一的分析:根据题目中表格所提供的信息,计算后我们得知该酒店标准间在星期一和星期二数量充足,但是从星期三之后数量就严重不足,所以必须取消一部分顾客的订单。

但是取消哪些顾客的订单,这是我们需要研究的问题。

我们的取舍要求就是取消一部分订单使留下来的订单可以给该酒店带来最大利润。

这是一个最优化问题,我们可以利用线性规划的知识来解决该问题。

再利用LINGO 软件算出目标函数的结果,进而给出我们最优的分配方案。

问题二的分析:该酒店标准间从星期三之后数量就严重不足,但是商务间的数量从星期一到星期日都是充足的。

根据问题二的题目要求,标准间数量不足时,可以将多出的标准间订单调配到商务间,以使酒店利润最大。

但是将哪些标准间的订单调配到商务间,这是我们需要研究的问题。

我们的取舍要求就是将一部分多出的标准间订单调配到商务间,使得该酒店标准间的获利与商务间的获利之和达到最大化。

这也这也是一个最优化问题,我们同样可以利用线性规划的知识来解决该问题。

再利用LINGO 数学软件算出目标函数的结果。

进而给出我们最优的分配方案。

问题三的分析:问题三与问题二非常相似,都是将多出的标准间订单调配到商务间以使酒店利润最大。

但是问题二的前提是标准间调配到商务间的价钱是按标准间的价钱计算。

而问题三则是先确定一个打折率,然后标准间调配到商务间的价钱就是商务间打完折之后的价钱计算。

这样我就可以根据问题二的分析解决问题三。

问题四的分析:由于模型的选择无误,及LINGO 软件超强的运行功能,即使酒店有再多类型的客房,我们可以以不同类型的客房作为决策变量,来通过对目标函数和决策变量的更改,来求得最大收入。

在只有两种类型的客房时,我们只是设了变量i x (28,...,2,1=i )、i y (28,...,2,1=i )分别表示从对应的时间住到应住的天数可供预定的标准间、商务间数目;如果有更多的变量时,我们亦可以设出更多的变量,来提出较为准确、较为合理的分配方案。

3、模型假设(1)题目所给数据完全正确,所查资料完全可靠; (2)会务组所有入住成员均服从酒店安排;(3)客户入住期间均无中途退房,且住房资金到位; (4)该酒店内部及其周围各种因素保持稳定;(5)假设酒店在首选价位房间客满时,以打九折的优惠政策,鼓励顾客改变客房价位。

4、符号的约定z 表示目标函数,即酒店获得的最大收益。

i x (28,...,2,1=i )表示从对应的时间住到天数可供预定的标准间房间数;表一 标准间需要的房间数(单位:间)星期一星期二星期三星期四星期五星期六星期日星期一1x2x4x7x11x 16x 22x星期二3x5x 8x 12x17x 23x星期三6x9x13x 18x24x星期四10x14x19x 25x星期五15x 20x 26x星期六21x27x星期日28xiy (28,...,2,1=i )表示从对应的时间住到天数可供预定的商务间房间数;表二 商务间需要的房间数(单位:间)星期一星期二星期三星期四星期五星期六星期日星期一1y2y4y7y11y16y22y星期二3y5y 8y12y 17y 23y 星期三6y9y 13y18y24y星期四10y14y 19y 25y星期五15y 20y26y 星期六21y27y 星期日28y5、模型的求解与建立5.1 问题(1)的求解对于问题一,我们通过建立目标函数,即酒店利润最大函数,并且给出相应的约束条件,利用LINGO 数学软件,得出结果,从而给出最优分配方案,以及获得的最大收入。

目标函数为)(1690)(999)(88895228211510631x x x x x x x x x x Z ++⨯+++⨯++++⨯= 2619138427201426792664)(2530)(19981776x x x x x x x x ⨯+⨯+++⨯++⨯+⨯+ +⨯++⨯+⨯+⨯++⨯+24171125181274012)(399832193374)(3198x x x x x x x +⨯++++⨯+⨯+⨯+⨯1510631222316(1200)(1100502345624798y y y y y x x x)(300023002400)(2200)13842720149522821y y y y y y y y y y y ++⨯+⨯+⨯++++⨯++ +++⨯++++⨯++⨯+)(5000)(4000)(33002417112518127269y y y y y y y y y 2223166200)(5900y y y ⨯++⨯。

约束条件为1102216117421<=++++++x x x x x x x ;;140231712853221611742<=+++++++++++x x x x x x x x x x x x160241813962317128522161174<=++++++++++++++x x x x x x x x x x x x x x x ;;1892524232219181716151413121110987<=++++++++++++++++x x x x x x x x x x x x x x x x x ;149262524232220191817161514131211<=++++++++++++++x x x x x x x x x x x x x x x ;150272625242322212019181716<=+++++++++++x x x x x x x x x x x x ;15028272625242322<=++++++x x x x x x x ;802216117421<=++++++y y y y y y y;120231712853221611742<=+++++++++++y y y y y y y y y y y y;120241813962317128522161174<=++++++++++++++y y y y y y y y y y y y y y y;1202524232219181716151413121110987<=++++++++++++++++y y y y y y y y y y y y y y y y y ;118262524232220191817161514131211<=++++++++++++++y y y y y y y y y y y y y y y ;118272625242322212019181716<=+++++++++++y y y y y y y y y y y y ;11828272625242322<=++++++y y y y y y y此组约束条件表示每天入住需要的客房数小于酒店可提供的客房数。

;10;12;0;8;6;20;27654321<=<==<=<=<=<=x x x x x x x ;6;14;12;16;0;17;8141312111098<=<=<=<==<=<=x x x x x x x ;18;26;15;10;10;18;3021201918171615<=<=<=<=<=<=<=x x x x x x x ;22;0;21;20;30;20;728272625242322<==<=<=<=<=<=x x x x x x x此组约束条件表示需要标准间客房数不得超过当天会务组对酒店提出的要求。

相关文档
最新文档