2020年四川省眉山市仁寿县中考数学二诊试卷

合集下载

四川眉山市 2020届高考数学第二次诊断性考试(解析版)

四川眉山市 2020届高考数学第二次诊断性考试(解析版)

序,输出 m , n 的值,则 m n
A. 6
B. 8 C.10
D. 12
答案:D. 解析:由题意得 n 的取值为成绩高于 90 分(包括 90 分)的人数,m 的取值为 成绩高于 60 分(包括 60 分)且低于 90 分的人数,故 m 24 ,n 12 ,所以 m n 12 .
2
8.
为单位计分.已知张明每次击中鼓的概率为
3 4
,王慧每次击中鼓的概率为
2 3
;每轮游戏中张明和王慧击中与
否互不影响,假设张明和王慧他们家庭参加两轮蒙眼击鼓游戏.
(1)若家庭最终积分超过 200 分时,这个家庭就可以领取一台全自动洗衣机,问张明和王慧他们家庭可以
领取一台全自动洗衣机的概率是多少?
6
(2)张明和王慧他们家庭两轮游戏得积分之和 的分布列和数学期望 E .
a 1.
【解析点评】关键把题意转化成方程有解求参数的问题.
三、解答题(本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤)
17.如图,EFGH 是矩形,△ABC 的顶点 C 在边 FG 上,点 A, B 分别是 EF ,GH 上的
动 点 ( EF 的 长 度 满 足 需 求 ) . 设 BAC , ABC , ACB , 且 满 足
x,
x
0 是奇函数,则
0
g
f
1
的值为(
)
A. 10
B. 9
C. 7
答案:B.
解析: g f 1 g f 1 g 2 f 2 f 2 9 ,故 B 正确.
D.1
1
5. 给出以下四个命题:
①依次首尾相接的四条线段必共面;
②过不在同一条直线上的三点,有且只有一个平面;

2020年四川省眉山市仁寿县中考数学二模试卷含答案解析

2020年四川省眉山市仁寿县中考数学二模试卷含答案解析

2020年四川省眉山市仁寿县中考数学二模试卷一、选择题(.每小题3分,共30分)1.到2008年5月8日止,青藏铁路共运送旅客265.3万人次,用科学记数法表示265.3万正确的是()A.2.653×105 B.2.653×106 C.2.653×107 D.2.653×1082.﹣的绝对值为()A.﹣2 B.﹣C.D.13.下面的三视图所对应的物体是()A.B.C.D.4.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.5.下列运算正确的是()A.a2•a3=a5B.(ab)2=ab2C.(a3)2=a9 D.a6÷a3=a26.已知甲、乙两组数据的平均数分别是=80,=90,方差分别是S甲2=10,S乙2=5,比较这两组数据,下列说法正确的是()A.甲组数据较好 B.乙组数据较好C.甲组数据比较整齐 D.乙组数据的波动较小7.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是()A.12πcm2B.15πcm2C.18πcm2D.24πcm28.已知二次函数y=ax2+bx+c(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x轴的交点至少有一个在y轴的右侧;④方程ax2+bx=0一定有两个不相等的实数根.以上说法正确的个数为()A.1 B.2 C.3 D.49.解放军某部接到上级命令,乘车前往四川地震灾区抗震救灾、前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往、若部队离开驻地的时间为t(小时),离开驻地的距离为s(千米),则能反映s与t之间函数关系的大致图象是()A.B.C.D.10.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为()A.B.4 C. D.4.5二、填空题(每小题3分,共24分)11.使代数式有意义的x的取值范围是.12.一个口袋中装有4个红球,x个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是,则袋里有个绿球.13.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为.14.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.15.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.16.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为.17.已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是.18.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2020次,点P依次落在点P1,P2,P3,…P2020的位置,则点P2020的横坐标为.三、解答题(19、20每小题9分,共18分)19.先化简,再求值:,其中a=+1,b=﹣1.20.在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.四、解答题(本题14分)21.2020年开始辽宁足球队把盘锦辽滨锦绣体育场作为了自己的主场,小球迷“球球”对自己学校部分学生对去赛场为辽宁队加油助威进行了抽样调查,根据收集到的数据绘制了如下不完整的统计图表.调查情况(说明:A:特别愿意去;B:愿意去;C:去不去都行;D:不愿意去)(1)求出不愿意去的学生的人数占被调查总人数的百分比;(2)求出扇形统计图中C所在的扇形圆心角的度数;(3)若该校学生共有2000人,请你估计特别愿意去加油助威的学生共有多少人?(4)大赛组委会为了鼓励大众到体育场为球队加油助威的热情,进行了“玩游戏,赠门票”的活动,一个被等分成4个扇形的圆形转盘,分别标有数字2,3,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).若转两次的数字之和大于等于10则赠送一张门票,请用“列表法”或“画树形图”的方法求出获赠门票的概率.五、解答题(22小题12分、23小题12分,共24分)22.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.23.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)求证:△BCD∽△BEC;(3)若tan∠CED=,⊙O的半径为3,求OA的长.六、解答题(本题12分)24.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本)七、解答题(本题14分)25.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=AC(用含α的三角函数表示),并给出证明.八、解答题(本题14分)26.已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点.(1)求抛物线的函数关系式;(2)若过点B的直线y=kx+b与抛物线交于点C(2,m),请求出△OBC的面积S的值;(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED,是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.2020年四川省眉山市仁寿县中考数学二模试卷参考答案与试题解析一、选择题(.每小题3分,共30分)1.到2008年5月8日止,青藏铁路共运送旅客265.3万人次,用科学记数法表示265.3万正确的是()A.2.653×105 B.2.653×106 C.2.653×107 D.2.653×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:265.3=2 653 000=2.653×106.故选B.2.﹣的绝对值为()A.﹣2 B.﹣C.D.1【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣|=,∴﹣的绝对值为.故选:C.3.下面的三视图所对应的物体是()A.B.C.D.【考点】由三视图判断几何体.【分析】本题可利用排除法解答.从主视图看出这个几何体上面一个是圆,直径与下面的矩形的宽相等,故可排除B,C,D.【解答】解:从主视图左视图可以看出这个几何体是由上、下两部分组成的,故排除D选项,从上面物体的三视图看出这是一个圆柱体,故排除B选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体,故选A.4.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:解不等式①,得x<2,解不等式②,得x>﹣1,所以不等式组的解集是﹣1<x<2,故选C.5.下列运算正确的是()A.a2•a3=a5B.(ab)2=ab2C.(a3)2=a9 D.a6÷a3=a2【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂相乘,积的乘方的性质,幂的乘方的性质,同底数幂的除法的性质,对各选项分析判断后利用排除法求解.【解答】解:A、a2•a3=a5,正确;B、错误,应为(ab)2=a2b2;C、错误,应为(a3)2=a6;D、错误,应为a6÷a3=a3.故选A.6.已知甲、乙两组数据的平均数分别是=80,=90,方差分别是S甲2=10,S乙2=5,比较这两组数据,下列说法正确的是()A.甲组数据较好 B.乙组数据较好C.甲组数据比较整齐 D.乙组数据的波动较小【考点】方差.【分析】比较两组数值哪组较好,不只要比较平均数,还要比较方差,方差越小数据的波动越小.由此可得出答案.【解答】解:因为甲的方差大于乙的,因此乙组数据波动较小.故选D.7.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是()A.12πcm2B.15πcm2C.18πcm2D.24πcm2【考点】圆锥的计算.【分析】利用圆锥的底面周长易得圆锥的底面半径,那么利用勾股定理易得圆锥的母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:∵底面周长是6π,∴底面圆的半径为3cm,∵高为4cm,∴母线长5cm,∴S=15πcm2.故选B.8.已知二次函数y=ax2+bx+c(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x轴的交点至少有一个在y轴的右侧;④方程ax2+bx=0一定有两个不相等的实数根.以上说法正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】由a、b、c的符号可判断开口方程,对称轴,顶点坐标,再结合一元二次方程根与系数的关系逐项判断,可得出答案.【解答】解:∵a>0,∴二次函数图象开口向上,故①正确;∵a>0,b>0,c<0,∴﹣<0,<0,∴其顶点坐标一定在第二象限,故②不正确;在y=ax2+bx+c中,令y=0可得ax2+bx+c=0,设该方程的两根分别为x1和x2,由根与系数的关系可知x1x2=<0,∴x1和x2中必有一个为正值,∴二次函数图象与x轴的交点至少有一个在y轴的右侧;故③正确;∵ax2+bx=x(ax+b)=0,∴方程的两根为x=0或x=﹣,∴b≠0,∴﹣≠0,∴方程ax2+bx=0有两个不相等的实数根,故④正确;综上可知正确的有3个,故选C.9.解放军某部接到上级命令,乘车前往四川地震灾区抗震救灾、前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往、若部队离开驻地的时间为t(小时),离开驻地的距离为s(千米),则能反映s与t之间函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】因为前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往,由此即可求出答案.【解答】解:根据题意:分为3个阶段:1、前进一段路程后,位移增大;2、部队通过短暂休整,位移不变;3、部队步行前进,位移增大,但变慢;故选A.10.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为()A.B.4 C. D.4.5【考点】等边三角形的判定与性质;全等三角形的判定与性质;勾股定理.【分析】首先以CD为边作等边△CDE,连接AE,利用全等三角形的判定得出△BCD≌△ACE,进而求出DE的长即可.【解答】解:如图,以CD为边作等边△CDE,连接AE.∵∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,∴在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE.又∵∠ADC=30°,∴∠ADE=90°.在Rt△ADE中,AE=5,AD=3,于是DE=,∴CD=DE=4.故选:B.二、填空题(每小题3分,共24分)11.使代数式有意义的x的取值范围是x>2.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据分式有意义,分母不为0;二次根式的被开方数是非负数进行解答.【解答】解:由题意得,x﹣2>0,解得x>2.故答案为:x>2.12.一个口袋中装有4个红球,x个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是,则袋里有3个绿球.【考点】概率公式.【分析】设袋中有x个绿球,再根据概率公式求出x的值即可.【解答】解:设袋中有x个绿球,∵袋中有红球4个,黄球2个,从中任意摸出一个球是绿球的概率为,∴=,解得:x=3,故答案为:3.13.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为1.【考点】中位数;算术平均数.【分析】根据平均数的定义先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:这组数据的平均数为1,有(1+2+0﹣1+x+1)=1,可求得x=3.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是1与1,其平均数即中位数是(1+1)÷2=1.故答案为:1.14.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设获得一等奖的学生有x名,二等奖的学生有y名,根据“一等奖和二等奖共30名学生,”“一等奖和二等奖共花费528元,”列出方程组即可.【解答】解:设获得一等奖的学生有x名,二等奖的学生有y名,由题意得.故答案为:.15.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.【考点】反比例函数系数k的几何意义.【分析】根据反比例函数的几何意义,可知图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,据此作答.【解答】解:由题意,可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).解法一:∵S1=1×(2﹣1)=1,S2=1×(1﹣)=,S3=1×(﹣)=,∴S1+S2+S3=1++=.解法二:∵图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.故答案为:.16.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为3.【考点】勾股定理;相似三角形的判定与性质.【分析】根据相似三角形的性质,相似三角形的对应边成比例,即可求GF的长.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB.∴△AEG∽△BFE,从而推出对应边成比例:,又∵AE=BE,∴AE2=AG•BF=2,推出AE=(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3.故答案为:3.17.已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是23°或67°.【考点】圆周角定理.【分析】按点D在直线OC左侧、右侧两种情形分类讨论,利用圆周角定理求解.【解答】解:由题意,①当点D在直线OC左侧时,如答图1所示.连接OD,则∠1=∠2=22°,∴∠COD=180°﹣∠1﹣∠2=136°,∴∠AOD=∠COD﹣∠AOC=136°﹣90°=46°,∴∠ABD=∠AOD=23°;②当点D在直线OC右侧时,如答图2所示.连接OD,则∠1=∠2=22°;并延长CO,则∠3=∠1+∠2=44°.∴∠AOD=90°+∠3=90°+44°=134°,∴∠ABD=∠AOD=67°.综上所述,∠ABD的度数是23°或67°,故答案为:23°或67°.18.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2020次,点P依次落在点P1,P2,P3,…P2020的位置,则点P2020的横坐标为2020.【考点】规律型:点的坐标;旋转的性质.【分析】根据图形的翻转,分别得出P1、P2、P3…的横坐标,再根据规律即可得出各个点的横坐标.【解答】解:观察图形结合翻转的方法可以得出P1、P2的横坐标是1,P3的横坐标是2.5,P4、P5的横坐标是4,P6的横坐标是5.5…依此类推下去,因为2020÷3=671,×3+2.5=2020.5,所以P2020的横坐标为2020.5.P2020、P2020的横坐标是2020.故答案为:2020.三、解答题(19、20每小题9分,共18分)19.先化简,再求值:,其中a=+1,b=﹣1.【考点】分式的化简求值;分母有理化.【分析】本题考查了化简与代值计算,关键是正确进行分式的通分、约分,并准确代值计算.【解答】解:原式=÷=﹣=﹣;当a=+1,b=﹣1时,原式=﹣=﹣.20.在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.【考点】分式方程的应用.【分析】速度分别是:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时;路程:都是15千米,时间表示为:.关键描述语为:“抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地”.等量关系为:抢修车的时间﹣吉普车的时间=.【解答】解:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意得:.解得:x=20.经检验:x=20是原方程的解.∴当x=20时,1.5x=30.答:抢修车的速度为20千米/时,吉普车的速度为30千米/时.四、解答题(本题14分)21.2020年开始辽宁足球队把盘锦辽滨锦绣体育场作为了自己的主场,小球迷“球球”对自己学校部分学生对去赛场为辽宁队加油助威进行了抽样调查,根据收集到的数据绘制了如下不完整的统计图表.调查情况(说明:A:特别愿意去;B:愿意去;C:去不去都行;D:不愿意去)(1)求出不愿意去的学生的人数占被调查总人数的百分比;(2)求出扇形统计图中C所在的扇形圆心角的度数;(3)若该校学生共有2000人,请你估计特别愿意去加油助威的学生共有多少人?(4)大赛组委会为了鼓励大众到体育场为球队加油助威的热情,进行了“玩游戏,赠门票”的活动,一个被等分成4个扇形的圆形转盘,分别标有数字2,3,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).若转两次的数字之和大于等于10则赠送一张门票,请用“列表法”或“画树形图”的方法求出获赠门票的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)首先求出总人数为50人,再计算不愿意去的学生的人数的百分比即可;(2)由C的总人数和总人数作比值再乘以360°,即可得到C所在的扇形圆心角的度数;(3)用2000乘以特别愿意去加油助威的学生所占的百分比即可;(4)列出所有情况,然后求出两次的数字之和大于等于10的情况计算即可.【解答】解:(1)25÷50%=50(人),2÷50=4%,不愿意去的学生的人数占被调查总人数的百分比为4%;(2)(10÷50)×360=72°,扇形统计图中C所在的扇形圆心角的度数为72°;(3)2000×50%=1000(人),∴估计特别愿意去加油助威的学生共有1000人;(4)列表如下:2 3 5 6第1次第2次2 (2,2)(3,2)(5,2)(6,2)3 (2,3)(3,3)(5,3)(6,3)5 (2,5)(3,5)(5,5)(6,5)6 (2,6)(3,6)(5,6)(6,6)由表可知,所有可能出现的结果共有16个,且每种结果出现的可能性相等,其中两次的和大于等于10(记为事件A)的结果有4个,即(5,5),(5,6),(6,5),(6,6),∴P(A)==.五、解答题(22小题12分、23小题12分,共24分)22.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.【考点】解直角三角形的应用-方向角问题.【分析】过点C作CD⊥AD于点D,分别在Rt△CBD、Rt△CAD中用式子表示CD、AD,再根据已知求得BD、CD的长,从而再将CD于9比较,若大于9则无危险,否则有危险.【解答】解:过点C作CD⊥AD于点D,∵∠EAC=60°,∠FBC=30°,∴∠CAB=30°,∠CBD=60°.∴在Rt△CBD中,CD=BD.在Rt△CAD中,AD=CD=3BD=24×0.5+BD,∴BD=6.∴CD=6.∵6>9,∴货船继续向正东方向行驶无触礁危险.23.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)求证:△BCD∽△BEC;(3)若tan∠CED=,⊙O的半径为3,求OA的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连结OC,如图,根据等腰三角形的性质得OC⊥AB,然后根据切线的判定定理即可得到直线AB是⊙O的切线;(2)根据圆周角定理求得∠ECD=90°,进而求得∠BCD=∠E,根据∠CBD=∠EBC,即可证明△BCD∽△BEC.(3)设BD的长是x,因为△BCD∽△BEC,根据相似三角形的对应边成比例,可求出x的值,然后根据OB=OA=x+3求解即可.【解答】(1)证明:如图,连接OC.∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切线.(2)证明:∵ED是直径,∴∠ECD=90°.∴∠E+∠EDC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.(3)解:∵,∴.∵△BCD∽△BEC,∴.设BD=x,则BC=2x.又∵BC2=BD•BE,(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=2+3=5.六、解答题(本题12分)24.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本)【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据销售利润y=(每千克销售价﹣每千克成本价)×销售量w,即可列出y与x之间的函数关系式;(2)先利用配方法将(1)的函数关系式变形,再利用二次函数的性质即可求解;(3)先把y=150代入(1)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.【解答】解:(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,则y=﹣2x2+120x﹣1600.由题意,有,解得20≤x≤40.故y与x的函数关系式为:y=﹣2x2+120x﹣1600,自变量x的取值范围是20≤x≤40;(2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴当x=30时,y有最大值200.故当销售价定为30元/千克时,每天可获最大销售利润200元;(3)当y=150时,可得方程﹣2x2+120x﹣1600=150,整理,得x2﹣60x+875=0,解得x1=25,x2=35.∵物价部门规定这种产品的销售价不得高于28元/千克,∴x2=35不合题意,应舍去.故当销售价定为25元/千克时,该农户每天可获得销售利润150元.七、解答题(本题14分)25.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=AC(用含α的三角函数表示),并给出证明.【考点】解直角三角形;全等三角形的判定;角平分线的性质.【分析】(1)由角平分线的性质可证∠ACB=∠ACD=30°,又由直角三角形的性质,得AB+AD=AC.(2)根据角平分线的性质过点C分别作AM,AN的垂线,垂足分别为E,F,可证AE+AF=AC,只需证AB+AD=AE+AF即可,由△CED≌△CFB,即可得AB+AD=AE+AF.(3)由(2)知ED=BF,AE=AF,在直角三角形AFC中,可求AB+AD=2cos AC.【解答】(1)证明:∵AC平分∠MAN,∠MAN=120°,∴∠CAB=∠CAD=60°,∵∠ABC=∠ADC=90°,∴∠ACB=∠ACD=30°,∴AB=AD=AC,∴AB+AD=AC.(2)解:成立.证法一:如图,过点C分别作AM,AN的垂线,垂足分别为E,F,∵AC平分∠MAN,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,∵∠CED=∠CFB=90°,∴△CED≌△CFB,∴ED=FB,∴AB+AD=AF+BF+AE﹣ED=AF+AE,由(1)知AF+AE=AC,∴AB+AD=AC,证法二:如图,在AN上截取AG=AC,连接CG,∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG,∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,∴∠CBG=∠ADC,∴△CBG≌△CDA,∴BG=AD,∴AB+AD=AB+BG=AG=AC;(3)证明:由(2)知,ED=BF,AE=AF,在Rt△AFC中,cos∠CAF=,即cos,∴AF=ACcos,∴AB+AD=AF+BF+AE﹣ED=AF+AE=2AF=2cos AC.把α=60°,代入得AB+AD=AC.八、解答题(本题14分)26.已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点.(1)求抛物线的函数关系式;(2)若过点B的直线y=kx+b与抛物线交于点C(2,m),请求出△OBC的面积S的值;(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED,是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把A,B,C三点代入二次函数解析式即可求得二次函数解析式.(2)把点C的横坐标代入抛物线解析式,可求得纵坐标,把点C、B坐标代入一次函数解析式即可求得一次函数解析式.进而求得OG长.S△OBC=S△OGC+S△OGB(3)两三角形相似,已有两个直角相等,那么夹直角的两边对应成比例;注意对应边的不同可分两种情况进行分析.【解答】解:(1)由题意得:,解得.故抛物线的函数关系式为y=﹣x2+5x;(2)因为C在抛物线上,所以﹣22+5×2=m,所以m=6所以C点坐标为(2,6)因为B,C在直线y=kx+b′上,所以.解得k=﹣3,b′=12直线BC的解析式为y=﹣3x+12设BC与x轴交于点G,则G的坐标为(4,0)所以S△OBC==24(3)存在P,使得△OCD∽△CPE设P(m,n),∵∠ODC=∠E=90°故CE=m﹣2,EP=6﹣n若要△OCD∽△CPE,则要=或=即=或=解得m=20﹣3n或n=12﹣3m又因为(m,n)在抛物线上,.或.解得,即,或,即,故P点坐标为(,)和(6,﹣6).2020年6月2日。

四川省眉山市仁寿县中考数学调研试卷

四川省眉山市仁寿县中考数学调研试卷

C. 顺
5. 如图,把一个直角三角尺的直角顶点放在直尺的一边上, 若∠1=55°,则∠2=( )
A. 15°
B. 25°
C. 30°
D. 35°
D. 利
6. 已知 m、n 是一元二次方程 x2-3x-1=0 的两个实数根,则 =( )
A. 3
B. -3
C.
D. -
7. 小明和小强同学分别统计了自己最近 10 次“一分钟跳绳”的成绩,下列统计量中
24. 某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:
商品


进价(元/件) x+60
x
售价(元/件) 200
100
若用 360 元购进甲种商品的件数与用 180 元购进乙种商品的件数相同.
(1)求甲、乙两种商品的进价是多少元?
(2)若超市销售甲、乙两种商品共 50 件,其中销售甲种商品为 a 件(a≥30),设
A. 图形顶点坐标为(-2,-1),对称轴为直线 x=2
B. 当 x<2 时,y 的值随 x 的增大而减小
C. 它的图象可以由 y=x2 的图象向右平移 2 个单位长度,再向下平移 1 个单位长度
得到
D. 图象与 x 轴的两个交点之间的距离为 2
12. 已知如图,在正方形 ABCD 中 AD=4,E,F 分别是 CD
中考数学调研试卷
题号 得分



总分
一、选择题(本大题共 12 小题,共 48.0 分) 1. 2020 的相反数是( )
A. 2020
B. -2020
C.
D.
2. 预计到 2025 年我国高铁运营里程将达到 385000 千米,将数据 385000 用科学记数

四川省眉山市2020年中考数学二模试卷(I)卷

四川省眉山市2020年中考数学二模试卷(I)卷

四川省眉山市2020年中考数学二模试卷(I)卷姓名:________ 班级:________ 成绩:________一、填空题 (共12题;共12分)1. (1分)(2019·广西模拟) - 的倒数的绝对值是________2. (1分)(2020·天津) 计算的结果等于________.3. (1分) (2019七下·越城期末) 一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22﹣12=3,3就是智慧数,从0开始,不大于2019的智慧数共有________个.4. (1分)(2018·江都模拟) 据统计,2018年扬州五一黄金周共接待游客约3500000人次,数据“3500000”用科学记数法可表示为________.5. (1分) (2019七下·黄梅期末) 如图,直线a、b被第三条直线c所截,如果a∥b,∠1=50°,那么∠2=________。

6. (1分) (2018九上·苏州月考) 如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为________.7. (1分)(2020·鹿城模拟) 过直径是6m的圆O上一点A作两条弦AB、AD,且AB=AD。

以线段AB,AD为邻边作菱形ABCD.顶点C恰好落在该圆直径的三等分点处,则所作的菱形的边长为________8. (1分) (2016九上·柳江期中) 若抛物线y=x2﹣2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为________.9. (1分)一次函数y=kx+b(k、b为常数,且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=﹣3的解为________10. (1分)已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s=________ (用只含有k的代数式表示).11. (1分) (2019八下·北海期末) 如图,在直角坐标系中,A、B两点的坐标分别为(0,8)和(6,0),将一根橡皮筋两端固定在A、B两点处,然后用手勾住橡皮筋向右上方拉升,使橡皮筋与坐标轴围成一个矩形AOBC,则橡皮筋被拉长了________个单位长度.12. (1分)已知:tanx=2,则=________二、选择题 (共5题;共10分)13. (2分) (2019七下·岳池期中) 下列运算正确是()A .B .C .D .14. (2分)(2016·义乌) 如图是一个正方体,则它的表面展开图可以是()A .B .C .D .15. (2分)“买一张福利彩票,开奖后会中奖”这一事件是()A . 不可能事件B . 必然事件C . 随机事件D . 确定事件16. (2分) (2019八下·水城期末) 直角三角形纸片的两直角边长分别为6,8,现将△ABC如图折叠,使点A与点B重合,则折痕DE的长是()A .B .C .D .17. (2分)已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是A . x1=1,x2=-2B . x1=1,x2=2C . x1=1,x2=0D . x1=1,x2=3三、解答题 (共11题;共105分)18. (5分) (2020八下·长沙期末) 计算:.19. (5分) (2019七上·浦东月考) 解方程:=-2 .20. (7分)(2020·泰州) 一只不透明袋子中装有个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是________(精确到0.01),由此估出红球有________个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.21. (13分)(2019·大庆) 某校为了解七年级学生的体重情况,随机抽取了七年级m名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图。

四川省眉山市2020版中考数学试卷(II)卷

四川省眉山市2020版中考数学试卷(II)卷

四川省眉山市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 3的平方根是()A . 3B . -3C .D . ±2. (2分) (2017七下·无锡期中) 如图,已知矩形ABCD ,一条直线将该矩形 ABCD 分割成两个多边形,若这两个多边形的内角和分别为 M和 N,则M + N 不可能是()A . 360°B . 540°C . 720°D . 630°3. (2分)某班一些学生作图钉随机抛掷的实验,求图钉尖触地还是图钉面触地的概率,下列做法正确的是()A . 甲做了4000次,得出针尖触地的频率约为42%,于是他断定在做第4001次时,针尖肯定不会触地B . 乙认为一次一次做,速度太慢,他拿来了大把材料,形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的个数,这样大大提高了速度C . 老师安排每位同学回家做实验,各人的图钉大小、质地均匀程度都不一样,同学交来的结果,老师进行统计D . 老师安排同学回家做实验,图钉统一发(完全一样的图钉),同学交来的结果,老师进行统计4. (2分)(2017·东丽模拟) 函数y= + 中自变量x的取值范围是()A . x≤2B . x≤2且x≠1C . x<2且x≠1D . x≠15. (2分)若一直角三角形两边长分别为12和5,则第三边长的平方为()A . 169B . 169或119C . 169或225D . 2256. (2分) (2018七上·湖州月考) 小亮用天平称得一个罐头的质量为 2.026 kg,用四舍五入法将 2.026 精确到 0.01 的近似值为()A . 2B . 2.0C . 2.02D . 2.037. (2分)(2019·台州模拟) 如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置时,若AB=2,AD=4,则阴影部分的面积为()A .B .C .D .8. (2分)已知0<x<1,则x2、x、大小关系是()A . x2<x<B . x<x2<C . x<<x2D . <x<x29. (2分) (2019七下·咸安期末) 如图,直角坐标平面内,动点按图中箭头所示方向依次运动,第1次从点运动到点,第2次运动到点,第3次运动到点,…按这样的运动规律,动点第2019次运动到点()A .B .C .D .10. (2分)在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A . x>1B . x<1C . x>﹣1D . x<﹣1二、填空题 (共6题;共7分)11. (1分) (2020七下·中卫月考) 一个正方体的棱长是厘米,则它的体积是________立方厘米.12. (2分) (2019八下·嘉兴期中) 已知3 ,a ,4, b, 5这五个数据,其中a,b是方程x2+2=3x的两个根,那么这五个数据的平均数是________,方差是________.13. (1分)如图,矩形ABCD中,对角线AC=8cm,△AOB是等边三角形,则AD的长为________ cm.14. (1分) (2016九上·南充开学考) 某一次函数的图象经过点(﹣1,3),且函数y随x的增大而减小,请你写出一个符合条件的函数解析式________15. (1分)在Rt△ABC中,∠C=90°,若BC=4,AB=8,则∠A=________16. (1分)用火柴棍像如图这样搭三角形:你能找出规律吗?猜想:搭 n 个三角形需要________根火柴棍.三、解答题 (共8题;共84分)17. (5分)(2017·沭阳模拟) 解方程:.18. (12分)(2017·安顺) 随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1) 2017年“五•一”期间,该市周边景点共接待游客________万人,扇形统计图中A景点所对应的圆心角的度数是________,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.19. (10分) (2017九下·萧山开学考) 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.20. (10分)△ABC是等边三角形,点E为射线AN上任意一点(点E与点A不重合),连接CE,将线段CE 绕点C顺时针旋转60°得到线段CD,直线DB交直线AN于点F.(1)如图1,若∠NAC是锐角时,求∠DFA的度数;(2)如图2,若∠NAC=135°,∠ACE=15°,AC=6,求BD的长.21. (12分) (2019九上·房山期中) 有这样一个问题:探究函数y=的图象与性质.小美根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小美的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是________;(2)下表是y与x的几组对应值.x﹣2﹣﹣1﹣1234…﹣1﹣my0﹣求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:________.22. (10分)(2017·黄冈模拟) 如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航行,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)23. (10分) (2020九上·南昌期末) 如图,AB是⊙O的直径,C、D在⊙O上,连结BC,过D作PF∥AC交AB于E,交⊙O于F,交BC于点G,交过B点的直线于点P,且∠BPF=∠ADC.(1)判断直线BP与⊙O的位置关系,并说明理由(2)若⊙O的半径为,AC=2,BE=1,求BP的长。

四川省眉山市2020版中考数学二模试卷(II)卷

四川省眉山市2020版中考数学二模试卷(II)卷

四川省眉山市2020版中考数学二模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·徐州) -2的倒数是()A .B .C . 2D .2. (2分)(2019·广东模拟) 由若干个相同的正方体组成的几何体如图M2-1,则这个几何体的俯视图是()A .B .C .D .3. (2分)我市大约有34万中小学生参加了“廉政文化进校园”教育活动,将数据34万用科学记数法表示,正确的是().A . 0.34×105B . 3.4×105C . 34×105D . 340×1054. (2分)一组数据4,5,6,7,7,8的中位数和众数分别是()A . 7,7B . 7,6.5C . 5.5,7D . 6.5,75. (2分)如图,在△ABC中,过顶点A的直线DE∥BC,∠ABC、∠ACB的平分线分别交DE于点E、D,若AC=3,AB=4,则DE的长为()A . 6B . 7C . 8D . 96. (2分)点P(m+3,m+1)在x轴上,则点P坐标为()A . (0,-2)B . (2,0)C . (4,0)D . (0,-4)7. (2分)(2020·贵港) 如图,点E,F在菱形ABCD的对角线AC上,∠ADC=120°,∠BEC=∠CBF=50°,ED 与BF的延长线交于点M.则对于以下结论:①∠BME=30° ;②△ADE≌ABE;③EM= BC;④AE+ BM= EM,其中正确结论的个数是()A . 1个B . 2个C . 3个D . 4个8. (2分)关于x的一元二次方程x2﹣3x+m=0没有实数根,则实数m的取值范围为()A .B .C .D .9. (2分)在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线的解析式是()A . y=(x+2)2+2B . y=(x-2)2-2C . y=(x-2)2+2D . y=(x+2)2-210. (2分)(2016·鸡西模拟) 如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为()A .B .C .D .二、填空题 (共8题;共11分)11. (1分) (2020七下·嘉兴期末) 设,,若,则的值为________.12. (1分)(2016·呼和浩特) 在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率________.13. (2分) (2018九上·东台月考) 如图所示,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12米,塔影长DE=18米,小明和小华的身高都是1.6米,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2米和1米,那么塔高AB为________米。

四川省眉山市2019-2020学年中考第二次适应性考试数学试题含解析

四川省眉山市2019-2020学年中考第二次适应性考试数学试题含解析

四川省眉山市2019-2020学年中考第二次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是( )A .416π-B .816π-C .1632π-D .3216π-2. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )A .B .C .D .3.已知正比例函数(0)y kx k =≠的图象经过点(1,3)-,则此正比例函数的关系式为( ). A .3y x =-B .3y x =C .13y x =D .13y x =-4.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC ,若∠CAB=22.5°,CD=8cm ,则⊙O 的半径为( )A .8cmB .4cmC .2D .5cm5.若关于x 的不等式组2x a x >⎧⎨<⎩恰有3个整数解,则字母a 的取值范围是( )A .a≤﹣1B .﹣2≤a <﹣1C .a <﹣1D .﹣2<a≤﹣16.抛物线y =mx 2﹣8x ﹣8和x 轴有交点,则m 的取值范围是( ) A .m >﹣2B .m≥﹣2C .m≥﹣2且m≠0D .m >﹣2且m≠07.如图,在ABC ∆中,10 , 8 , 6AB AC BC === ,以边AB 的中点O 为圆心,作半圆与AC 相切,点, P Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A .6B .2131+C .9D .3238.已知二次函数y=(x+a )(x ﹣a ﹣1),点P (x 0,m ),点Q (1,n )都在该函数图象上,若m <n ,则x 0的取值范围是( ) A .0≤x 0≤1 B .0<x 0<1且x 0≠12C .x 0<0或x 0>1D .0<x 0<19.如图,BD 是∠ABC 的角平分线,DC ∥AB ,下列说法正确的是( )A .BC=CDB .AD ∥BCC .AD=BCD .点A 与点C 关于BD 对称10.下列各式:①33②177;2682;2432;其中错误的有( ).A .3个B .2个C .1个D .0个11.关于x 的一元二次方程x 2-4x+k=0有两个相等的实数根,则k 的值是( ) A .2B .-2C .4D .-412.某种超薄气球表面的厚度约为0.00000025mm ,这个数用科学记数法表示为( ) A .72.510-⨯B .70.2510-⨯C .62.510-⨯D .52510-⨯二、填空题:(本大题共6个小题,每小题4分,共24分.)13.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷) 品种 第1年 第2年 第3年 第4年 第5年 品种 甲 9.8 9.9 10.1 10 10.2 甲 乙9.410.310.89.79.8乙经计算,x 10 x 10==甲乙,,试根据这组数据估计_____中水稻品种的产量比较稳定.14.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.15.下面是“利用直角三角形作矩形”尺规作图的过程.已知:如图1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如图2,(1)分别以点A、C为圆心,大于12AC同样长为半径作弧,两弧交于点E、F;(2)作直线EF,直线EF交AC于点O;(3)作射线BO,在BO上截取OD,使得OD=OB;(4)连接AD,CD.∴四边形ABCD就是所求作的矩形.老师说,“小明的作法正确.”请回答,小明作图的依据是:__________________________________________________.16.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB周长等于_____.(结果保留根号及π).17.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,(3,0)A-,(4,0)B,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为D¢),相应地,点C的对应点C'的坐标为_______.18.分解因式:ab2﹣9a=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k 的值;当﹣1<x <0时,抛物线与x 轴有且只有一个公共点,求k 的取值范围.20.(6分)已知:如图,在Rt △ABO 中,∠B=90°,∠OAB=10°,OA=1.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN=60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题:(发现)(1)MN n的长度为多少;(2)当t=2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积. (探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.(拓展)当MN n与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.21.(6分)先化简,再求代数式(22222x y x x xy y x xy ---+-)÷2yx y-的值,其中x=sin60°,y=tan30°.22.(8分)计算:4cos30°﹣12+20180+|1﹣3|23.(8分)如图(1),AB=CD ,AD=BC ,O 为AC 中点,过O 点的直线分别与AD 、BC 相交于点M 、N ,那么∠1与∠2有什么关系?请说明理由;若过O 点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.24.(10分)如图,正方形ABCD 的边长为2,BC 边在x 轴上,BC 的中点与原点O 重合,过定点M(-2,0)与动点P(0,t)的直线MP 记作l.(1)若l 的解析式为y =2x +4,判断此时点A 是否在直线l 上,并说明理由; (2)当直线l 与AD 边有公共点时,求t 的取值范围.25.(10分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).26.(12分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.27.(12分)先化简22442x xx x-+-÷(x-4x),然后从55x的值代入求值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】连接OA、OB,利用正方形的性质得出OA=ABcos45°2,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.【详解】解:连接OA、OB,∵四边形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×222,所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故选B.【点睛】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.2.C【解析】【分析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.A【解析】【分析】根据待定系数法即可求得.【详解】解:∵正比例函数y=kx的图象经过点(1,﹣3),∴﹣3=k,即k=﹣3,∴该正比例函数的解析式为:y=﹣3x.故选A.【点睛】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.C【解析】连接OC ,如图所示,由直径AB 垂直于CD ,利用垂径定理得到E 为CD 的中点,即CE=DE ,由OA=OC ,利用等边对等角得到一对角相等,确定出三角形COE 为等腰直角三角形,求出OC 的长,即为圆的半径. 【详解】解:连接OC ,如图所示:∵AB 是⊙O 的直径,弦CD ⊥AB , ∴14cm 2CE DE CD ===, ∵OA=OC ,∴∠A=∠OCA=22.5°, ∵∠COE 为△AOC 的外角, ∴∠COE=45°,∴△COE 为等腰直角三角形, ∴242cm OC CE ==,故选:C .【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键. 5.B 【解析】 【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a 的取值范围. 【详解】解:∵x 的不等式组2x ax >⎧⎨<⎩恰有3个整数解,∴整数解为1,0,-1, ∴-2≤a <-1. 故选B. 【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公6.C 【解析】 【分析】根据二次函数的定义及抛物线与x 轴有交点,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围. 【详解】解:∵抛物线288y mx x =--和x 轴有交点,20(8)4(8)0m m ≠⎧∴⎨--⋅-⎩…, 解得:m 2≥﹣且m 0≠. 故选C . 【点睛】本题考查了抛物线与x 轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当240b ac ∆=-≥时,抛物线与x 轴有交点是解题的关键. 7.C 【解析】 【分析】如图,设⊙O 与AC 相切于点E ,连接OE ,作OP 1⊥BC 垂足为P 1交⊙O 于Q 1,此时垂线段OP 1最短,P 1Q 1最小值为OP 1-OQ 1,求出OP 1,如图当Q 2在AB 边上时,P2与B 重合时,P 2Q 2最大值=5+3=8,由此不难解决问题. 【详解】解:如图,设⊙O 与AC 相切于点E ,连接OE ,作OP 1⊥BC 垂足为P 1交⊙O 于Q 1,此时垂线段OP 1最短,P 1Q 1最小值为OP 1-OQ 1, ∵AB=10,AC=8,BC=6, ∴AB 2=AC 2+BC 2,∴∠C=10°, ∵∠OP 1B=10°, ∴OP 1∥AC ∵AO=OB ,\ ∴P 1C=P 1B , ∴OP 1=12AC=4, ∴P 1Q 1最小值为OP 1-OQ 1=1,如图,当Q 2在AB 边上时,P2与B 重合时,P 2Q 2经过圆心,经过圆心的弦最长, P 2Q 2最大值=5+3=8,∴PQ 长的最大值与最小值的和是1. 故选:C . 【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ 取得最大值、最小值时的位置,属于中考常考题型. 8.D 【解析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.详解:二次函数y=(x+a )(x ﹣a ﹣1),当y=0时,x 1=﹣a ,x 2=a+1,∴对称轴为:x=122x x =12 当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得:0<x 0≤12;当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得:12<x 0<1.综上所述:m <n ,所求x 0的取值范围0<x 0<1. 故选D .点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏. 9.A 【解析】 【分析】由BD 是∠ABC 的角平分线,根据角平分线定义得到一对角∠ABD 与∠CBD 相等,然后由DC ∥AB ,根据两直线平行,得到一对内错角∠ABD 与∠CDB 相等,利用等量代换得到∠DBC=∠CDB ,再根据等角对等边得到BC=CD ,从而得到正确的选项. 【详解】∵BD 是∠ABC 的角平分线,∴∠ABD=∠CBD , 又∵DC ∥AB , ∴∠ABD=∠CDB , ∴∠CBD=∠CDB , ∴BC=CD . 故选A . 【点睛】此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力. 10.A 【解析】17=1不能计算;,正确. 故选A. 11.C 【解析】 【分析】 【详解】对于一元二次方程a 2x +bx+c=0,当Δ=2b -4ac=0时,方程有两个相等的实数根. 即16-4k=0,解得:k=4. 考点:一元二次方程根的判别式 12.A 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】70.00000025 2.510-=⨯,故选:A . 【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.甲【解析】【分析】根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.【详解】甲种水稻产量的方差是:()()()()()2222219.8109.91010.110101010.2100.025⎡⎤-+-+-+-+-=⎣⎦, 乙种水稻产量的方差是:()()()()()2222219.41010.31010.8109.7109.8100.045⎡⎤-+-+-+-+-=⎣⎦, ∴0.02<0.124.∴产量比较稳定的小麦品种是甲.14.(1,4).【解析】试题分析:把A (0,3),B (2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.15.到线段两端点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个角为90°的平行四边形为矩形【解析】【分析】先利用作法判定OA=OC ,OD=OB ,则根据平行四边形的判定方法判断四边形ABCD 为平行四边形,然后根据矩形的判定方法判断四边形ABCD 为矩形.【详解】解:由作法得EF 垂直平分AC ,则OA=OC ,而OD=OB ,所以四边形ABCD 为平行四边形,而∠ABC=90°,所以四边形ABCD 为矩形.故答案为到线段两段点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个内角为90°的平行四边形为矩形.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.16【解析】根据正方形的性质,得扇形所在的圆心角是90°,扇形的半径是.解:根据图形中正方形的性质,得∠AOB=90°,.∴扇形OAB 的弧长等于90180π⨯=. 17.()7,4【解析】分析:根据勾股定理,可得OD ' ,根据平行四边形的性质,可得答案.详解:由勾股定理得:OD '4= ,即D ¢(0,4).矩形ABCD 的边AB 在x 轴上,∴四边形ABC D ''是平行四边形,A D ¢=BC ', C 'D ¢=AB=4-(-3)=7, C '与D ¢的纵坐标相等,∴C '(7,4),故答案为(7,4).点睛:本题考查了多边形,利用平行四边形的性质得出A D ¢=B C ',C 'D ¢=AB=4-(-3)=7是解题的关键. 18.a (b+3)(b ﹣3).【解析】【分析】根据提公因式,平方差公式,可得答案.【详解】解:原式=a (b 2﹣9)=a (b+3)(b ﹣3),故答案为:a (b+3)(b ﹣3).【点睛】本题考查了因式分解,一提,二套,三检查,分解要彻底.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)k =﹣1;(2)当﹣4<k <﹣1时,抛物线与x 轴有且只有一个公共点.【解析】【分析】(1)由抛物线的对称轴直线可得h ,然后再由抛物线交于原点代入求出k 即可;(2)先根据抛物线与x 轴有公共点求出k 的取值范围,然后再根据抛物线的对称轴及当﹣1<x <2时,抛物线与x 轴有且只有一个公共点,进一步求出k 的取值范围即可.【详解】解:(1)∵抛物线y =(x ﹣h )2+k 的对称轴是直线x =1,∴h =1,把原点坐标代入y =(x ﹣1)2+k ,得,(2﹣1)2+k =2,解得k =﹣1;(2)∵抛物线y =(x ﹣1)2+k 与x 轴有公共点,∴对于方程(x ﹣1)2+k =2,判别式b 2﹣4ac =﹣4k≥2,∴k≤2.当x =﹣1时,y =4+k ;当x =2时,y =1+k ,∵抛物线的对称轴为x =1,且当﹣1<x <2时,抛物线与x 轴有且只有一个公共点,∴4+k >2且1+k <2,解得﹣4<k <﹣1,综上,当﹣4<k <﹣1时,抛物线与x 轴有且只有一个公共点.【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.20.【发现】(3)MN n 的长度为π3;(2)重叠部分的面积为8;【探究】:点P 的坐标为10(,);或 03()或 03-();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析. 【解析】【分析】发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=3,进而求出PQ ,即可用面积公式得出结论;探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;拓展:先找出·MN和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】[发现](3)∵P (2,0),∴OP=2.∵OA=3,∴AP=3,∴·MN 的长度为6011803ππ⨯=.故答案为3π; (2)设⊙P 半径为r ,则有r=2﹣3=3,当t=2时,如图3,点N 与点A 重合,∴PA=r=3,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB=30°,∠MPN=60°.∵∠PQA=90°,∴PQ 12=PA 12=,∴AQ=AP×cos30°32=,∴S 重叠部分=S △APQ 12=PQ×AQ 38=. 即重叠部分的面积为38. [探究] ①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC=r=3.∵∠OAB=30°,∴AP=2,∴OP=OA ﹣AP=3﹣2=3;∴点P 的坐标为(3,0);②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD=r=3,∴PD ∥AB ,∴∠OPD=∠OAB=30°,∴cos ∠OPD PD OP =,∴OP 123303cos ==︒,∴点P 的坐标为(233,0); ③如图2,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 233=; ∴点P 的坐标为(23-,0);[拓展]t 的取值范围是2<t≤3,2≤t <4,理由:如图4,当点N 运动到与点A 重合时,·MN与Rt △ABO 的边有一个公共点,此时t=2; 当t >2,直到⊙P 运动到与AB 相切时,由探究①得:OP=3,∴t 411-==3,·MN 与Rt △ABO 的边有两个公共点,∴2<t≤3.如图6,当⊙P 运动到PM 与OB 重合时,·MN与Rt △ABO 的边有两个公共点,此时t=2; 直到⊙P 运动到点N 与点O 重合时,·MN与Rt △ABO 的边有一个公共点,此时t=4; ∴2≤t <4,即:t 的取值范围是2<t≤3,2≤t <4.【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.21.23-【解析】【分析】先根据分式混合运算的法则把原式进行化简,再计算x 和y 的值并代入进行计算即可【详解】原式()()22,2x y x x y x x y y x y ⎡⎤--=-⋅⎢⎥--⎢⎥⎣⎦112,2x y x y x y y ⎛⎫-=-⋅ ⎪--⎝⎭()()()()22,22x y x y x y x y x y x y x y y ⎡⎤---=-⋅⎢⎥----⎢⎥⎣⎦()()22,2x y x y x y x y x y y--+-=⋅-- ()()2,2y x y x y x y y --=⋅-- 1,x y=-- 33sin60tan3023x y =︒==︒=Q ∴原式23333===--. 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.22【解析】【分析】先代入三角函数值、化简二次根式、计算零指数幂、取绝对值符号,再计算乘法,最后计算加减可得.【详解】原式=411-=11=【点睛】本题主要考查实数的混合运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及零指数幂、绝对值和二次根式的性质.23.详见解析.【解析】【分析】(1)根据全等三角形判定中的“SSS”可得出△ADC ≌△CBA ,由全等的性质得∠DAC=∠BCA ,可证AD ∥BC ,根据平行线的性质得出∠1=∠1;(1)(3)和(1)的证法完全一样.先证△ADC ≌△CBA 得到∠DAC=∠BCA ,则DA ∥BC ,从而∠1=∠1.【详解】证明:∠1与∠1相等.在△ADC 与△CBA 中,AD BC CD AB AC CA =⎧⎪=⎨⎪=⎩,∴△ADC ≌△CBA .(SSS )∴∠DAC=∠BCA .∴DA ∥BC .∴∠1=∠1.②③图形同理可证,△ADC ≌△CBA 得到∠DAC=∠BCA ,则DA ∥BC ,∠1=∠1.24. (1)点A 在直线l 上,理由见解析;(2)43≤t≤4. 【解析】【分析】(1)由题意得点B、A坐标,把点A的横坐标x=-1代入解析式y=2x+4得出y的值,即可得出点A 在直线l上;(2)当直线l经过点D时,设l的解析式代入数值解出即可【详解】(1)此时点A在直线l上.∵BC=AB=2,点O为BC中点,∴点B(-1,0),A(-1,2).把点A的横坐标x=-1代入解析式y=2x+4,得y=2,等于点A的纵坐标2,∴此时点A在直线l上.(2)由题意可得,点D(1,2),及点M(-2,0),当直线l经过点D时,设l的解析式为y=kx+t(k≠0),∴解得由(1)知,当直线l经过点A时,t=4.∴当直线l与AD边有公共点时,t的取值范围是≤t≤4.【点睛】本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.25.(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.【解析】【分析】(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.【详解】(1)设甲服装的成本为x 元,则乙服装的成本为(500-x )元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x )-500=67,解得:x=300,500-x=1.答:甲服装的成本为300元、乙服装的成本为1元.(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y ,则 22001y 242()+=, 解得:1y =0.1=10%,2y =-2.1(不合题意,舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调∴再次上调价格为:242×(1+10%)=266.2(元)∵商场仍按9折出售,设定价为a 元时0.9a-266.2>0解得:a >2662295.89≈ 故定价至少为296元时,乙服装才可获得利润.考点:一元二次方程的应用,不等式的应用,打折销售问题26.(1)32(2)1(3)①②③ 【解析】【分析】(1)由抛物线与x 轴只有一个交点,可知△=0;(2)由抛物线与x 轴有两个交点且AB=2,可知A 、B 坐标,代入解析式,可得k 值;(3)通过解析式求出对称轴,与y 轴交点,并根据系数的关系得出判断.【详解】(1)∵二次函数y =kx 2﹣4kx+3与x 轴只有一个公共点,∴关于x 的方程kx 2﹣4kx+3=0有两个相等的实数根,∴△=(﹣4k )2﹣4×3k =16k 2﹣12k =0,解得:k 1=0,k 2=32, k≠0,∴k =32; (2)∵AB =2,抛物线对称轴为x =2,∴A 、B 点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k =1,(3)①∵当x =0时,y =3,∴二次函数图象与y 轴的交点为(0,3),①正确;②∵抛物线的对称轴为x =2,∴抛物线的对称轴不变,②正确;③二次函数y =kx 2﹣4kx+3=k (x 2﹣4x )+3,将其看成y 关于k 的一次函数,令k 的系数为0,即x 2﹣4x =0,解得:x 1=0,x 2=4,∴抛物线一定经过两个定点(0,3)和(4,3),③正确.综上可知:正确的结论有①②③.【点睛】本题考查了二次函数的性质,与x 、y 轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.27.当x=-1时,原式=1=11+2-; 当x=1时,原式=11=1+23【解析】【分析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.【详解】 原式=22(2)4(2)x x x x x--÷- =()2(2)•(2)2(2)x x x x x x --+- =12x +∵x x 为整数,∴若使分式有意义,x 只能取-1和11 3.或:当x=-1时,原式=1当x=1时,原式=。

四川省眉山市2019-2020学年中考第二次模拟数学试题含解析

四川省眉山市2019-2020学年中考第二次模拟数学试题含解析

四川省眉山市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a <1;④abc>1.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③2.下列图形是中心对称图形的是()A.B.C.D.3.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时B.3.136×106立方米/时C.3.636×106立方米/时D.36.36×105立方米/时4.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(﹣3,﹣3)D.(﹣4,﹣4)5.如图是反比例函数kyx=(k为常数,k≠0)的图象,则一次函数y kx k=-的图象大致是()A.B.C.D.6.如图图形中,是中心对称图形的是()A.B.C.D.7.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A.68°B.20°C.28°D.22°8.-3的相反数是()A.13B.3 C.13-D.-39.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=kx(k≠0)的图象恰好经过点C和点D,则k的值为()A.813B.81316C.813D.813410.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,3011.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm12.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.14.2018年3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a(a>10),则应付票价总额为_____元.(用含a的式子表示)15.抛物线221y mx mx =++(m 为非零实数)的顶点坐标为_____________.16.已知AB=AC,tanA=2,BC=5,则△ABC 的面积为_______________.17.在平面直角坐标系中,已知线段AB 的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB 平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为________.18.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy 中,直线y =x+b 与双曲线y =k x 相交于A ,B 两点, 已知A (2,5).求:b 和k 的值;△OAB 的面积.20.(6分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题: (1)该商场服装营业员的人数为 ,图①中m 的值为 ;(2)求统计的这组销售额数据的平均数、众数和中位数.21.(6分)如图,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于点A 、B ,与y 轴交于点C ,直线y=x+4经过点A 、C ,点P 为抛物线上位于直线AC 上方的一个动点.(1)求抛物线的表达式;(2)如图,当CP//AO 时,求∠PAC 的正切值;(3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标. 22.(8分)如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.23.(8分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得∠ACF=45°,再向前走300米到点D处,测得∠BDF=60°.若直线AB与EF 之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)24.(10分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.25.(10分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=12∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=35,AK=10,求CN的长.26.(12分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.求证:DE是⊙O的切线;当⊙O半径为3,CE=2时,求BD长.27.(12分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=1.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.2.B【解析】【分析】根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.考点:中心对称图形.【详解】请在此输入详解!3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1010×360×24=3.636×106立方米/时,故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.A【解析】【分析】延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.【详解】如图,点P的坐标为(-4,-3).故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.5.B【解析】根据图示知,反比例函数kyx的图象位于第一、三象限,∴k>0,∴一次函数y=kx−k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,∴一次函数y=kx−k的图象经过第一、三、四象限;故选:B.6.D【解析】【分析】根据中心对称图形的概念和识别.【详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.故选D.【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.7.D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.8.B【解析】【分析】根据相反数的定义与方法解答.【详解】--=.解:-3的相反数为()33故选:B.【点睛】本题考查相反数的定义与求法,熟练掌握方法是关键.9.A【解析】试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.设BD=a,则OC=3a.∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=32a,CE=22OC OE-=33a,∴点C(32a,33a).同理,可求出点D的坐标为(1﹣12a,32a).∵反比例函数kyx=(k≠0)的图象恰好经过点C和点D,∴k=32a×332a=(1﹣12a)×32a,∴a=65,k=813.故选A.10.C【解析】【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C.【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.11.B【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【详解】∵原正方形的周长为acm,∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a+8(cm ),因此需要增加的长度为a+8﹣a=8cm , 故选B .【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式. 12.A 【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a 的取值范围即可.【详解】∵不等式组324x a x a <+⎧⎨>-⎩无解,∴a ﹣4≥3a+2, 解得:a≤﹣3, 故选A .【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.15π 【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π. 故答案为15π. 考点:圆锥的计算. 14.24a 【解析】 【分析】根据题意列出代数式即可. 【详解】根据题意得:30a×0.8=24a , 则应付票价总额为24a 元, 故答案为24a.【点睛】考查了列代数式,弄清题意是解本题的关键. 15.()1,1m -- 【解析】【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标. 【详解】y=mx 2+2mx+1=m(x 2+2x)+1 =m(x 2+2x+1-1)+1 =m(x+1)2 +1-m ,所以抛物线的顶点坐标为(-1,1-m ), 故答案为(-1,1-m ).【点睛】本题考查了抛物线的顶点坐标,把抛物线的解析式转化为顶点式是解题的关键.16258【解析】 【分析】作CD ⊥AB ,由tanA=2,设AD=x,CD=2x,根据勾股定理,则BD=x ),然后在Rt △CBD 中BC 2=BD 2+CD 2,即52=4x 2+2x ⎡⎤⎣⎦),解得x 2=8,则S △ABC =12AB CD ⨯=2122x ⨯=258【详解】如图作CD ⊥AB ,∵tanA=2,设AD=x,CD=2x,∴,∴BD=x ), 在Rt △CBD 中BC 2=BD 2+CD 2,即52=4x 2+2x ⎡⎤⎣⎦),x 2=8,∴S △ABC =12AB CD ⨯=2122x ⨯=258【点睛】此题主要考查三角函数的应用,解题的关键是根据题意作出辅助线进行求解. 17. (-5,4) 【解析】试题解析:由于图形平移过程中,对应点的平移规律相同, 由点A 到点A'可知,点的横坐标减6,纵坐标加3, 故点B'的坐标为()16,13,-+ 即()5,4.- 故答案为: ()5,4.- 18.1 【解析】 试题解析:如图,∵菱形ABCD 中,BD=8,AB=5, ∴AC ⊥BD ,OB=12BD=4, ∴22AB OB -,∴AC=2OA=6, ∴这个菱形的面积为:12AC•BD=12×6×8=1. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)b=3,k=10;(2)S △AOB =212. 【解析】(1)由直线y=x+b 与双曲线y=kx相交于A 、B 两点,A (2,5),即可得到结论; (2)过A 作AD ⊥x 轴于D ,BE ⊥x 轴于E ,根据y=x+3,y=10x,得到(-5,-2),C (-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.解:(1)把()2,5A 代入y x b =+.∴52b =+∴3b =.把()2,5A 代入k y x =,∴52k =, ∴10k =. (2)∵10y x=,3y x =+. ∴103x x=+时,2103x x =+, ∴12x =,25x =-.∴()5,2B --. 又∵()3,0C -,∴AOB AOC BOC S S S =+V V V 353222⨯⨯=+ 10.5=. 20.(1)25;28;(2)平均数:1.2;众数:3;中位数:1. 【解析】 【分析】(1)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;(2)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案. 【详解】解:(1)根据条形图2+5+7+8+3=25(人), m=100-20-32-12-8=28; 故答案为:25;28; (2)观察条形统计图, ∵12215518721824318.6.25x ⨯+⨯+⨯+⨯+⨯==∴这组数据的平均数是1.2.∵在这组数据中,3 出现了8次,出现的次数最多, ∴这组数据的众数是3.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是1, ∴这组数据的中位数是1. 【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.21.(1)抛物线的表达式为2142y x x =--+;(2)1tan 3∠PAC =;(3)P 点的坐标是5(3,)2-.【解析】【分析】 分析:(1)由题意易得点A 、C 的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线212y x bx c =-++列出方程组,解得b 、c 的值即可求得抛物线的解析式;(2)如下图,作PH ⊥AC 于H ,连接OP ,由已知条件先求得PC=2,AC=S △APC ,可求得OA=OC 得到∠CAO=15°,结合CP ∥OA 可得∠PCA=15°,即可得到,由此可得AH=Rt △APH 中由tan ∠PAC=PHAH即可求得所求答案了; (3)如图,当四边形AOPQ 为符合要求的平行四边形时,则此时PQ=AO=1,且点P 、Q 关于抛物线的对称轴x=-1对称,由此可得点P 的横坐标为-3,代入抛物线解析即可求得此时的点P 的坐标. 详解:(1)∵直线y=x+1经过点A 、C ,点A 在x 轴上,点C 在y 轴上 ∴A 点坐标是(﹣1,0),点C 坐标是(0,1), 又∵抛物线过A ,C 两点,∴()21440,2 4.b c c ⎧-⨯--+=⎪⎨⎪=⎩解得14b c =-⎧⎨=⎩,∴抛物线的表达式为2142y x x =--+; (2)作PH ⊥AC 于H ,∵点C 、P 在抛物线上,CP//AO , C (0,1),A (-1,0) ∴P (-2,1),AC= ∴PC=2,AC PH PC CO ⋅=⋅, ∴∵A (﹣1,0),C (0,1), ∴∠CAO=15°. ∵CP//AO ,∴∠ACP=∠CAO=15°, ∵PH ⊥AC , ∴,∴AH ==.∴PH 1tan PAC AH 3∠==;(3)∵221114(1)4222y x x x =--+=-++, ∴抛物线的对称轴为直线1x =-,∵以AP ,AO 为邻边的平行四边形的第四个顶点Q 恰好也在抛物线上, ∴PQ ∥AO ,且PQ=AO=1. ∵P ,Q 都在抛物线上, ∴P ,Q 关于直线1x =-对称, ∴P 点的横坐标是﹣3, ∵当x=﹣3时,()()215y 33422=-⋅---+=, ∴P 点的坐标是53,2⎛⎫- ⎪⎝⎭.点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出Rt △APH ,并结合题中的已知条件求出PH 和AH 的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQ ∥AO ,PQ=AO 及P 、Q 关于抛物线的对称轴对称得到点P 的横坐标. 【详解】 请在此输入详解! 22.23 【解析】试题分析:可证明△ACD ∽△ABC ,则AD ACAC AB=,即得出AC 2=AD•AB ,从而得出AC 的长. 试题解析:∵∠ACD=∠ABC ,∠A=∠A , ∴△ACD ∽△ABC . ∴AD ACAC AB=,∵AD=2,AB=6,∴26AC AC=.∴212AC =.∴AC=23.考点:相似三角形的判定与性质. 23.215.6米. 【解析】 【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离. 【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点在Rt △ACM 中,∵45ACF ∠=︒, ∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米, 在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60BNDN =≈o米,∴215.6MN MD DN AB =+=≈米 即A ,B 两点之间的距离约为215.6米. 【点睛】本题主要考查三角函数,正确做辅助线是解题的关键. 24.16【解析】分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率. 详解:列表如下: 红 红 白 黑 红 ﹣﹣﹣ (红,红) (白,红) (黑,红) 红 (红,红) ﹣﹣﹣ (白,红) (黑,红) 白 (红,白) (红,白) ﹣﹣﹣ (黑,白) 黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P (两次摸到红球)==.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 25.(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(3)201013. 【解析】 试题分析:(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=12∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=43CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AHHK=,AK=10a ,结合AK=10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH ,在Rt △APN 中,由tan ∠CAH=43PN AP =,可设PN=12b ,AP=9b ,由tan ∠ACG=PNCP=tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN的长. 试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G , ∴OG ⊥EF ,∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H ,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)设∠FGB=α,∵AB是直径,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=12∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=35AHAC=,设AH=3a,AC=5a,则224AC CH a-=,tan∠CAH=43 CHAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH=AHHK=3,2210AH HK a+=,∵10,1010a=∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=43PNAP=,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN=PNCP=3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=5 13,∴CN=22PN CP+=410b⋅=2010 13.26.(1)证明见解析;(2)BD=3【解析】【分析】(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出CE CDBD AB=,从而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入数据即可得到结果.【详解】(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切线;(2)∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴CE CD BD AB=,∴BD•CD=AB•CE,∵BD=CD,∴BD2=AB•CE,∵⊙O半径为3,CE=2,∴BD62⨯=3【点睛】本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.27.(1)CF=32;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由见解析;②△PFM的周长满足:2<(2)y<2.【解析】【分析】(1)由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1﹣x,在Rt△CFM中,根据FM2=CF2+CM2,构建方程即可解决问题;(2)①△PFM的形状是等腰直角三角形,想办法证明△POF∽△MOC,可得∠PFO=∠MCO=15°,延长即可解决问题;②设FM=y,由勾股定理可知:PF=PM=2y,可得△PFM的周长=()y,由2<y<1,可得结论.【详解】(1)∵M为AC的中点,∴CM=12AC=12BC=2,由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1﹣x,在Rt△CFM中,FM2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=32,即CF=32;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由如下:由折叠的性质可知,∠PMF=∠B=15°,∵CD是中垂线,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴POPM=OMMC,∴MCPM=OMPO,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=15°,∴△MPC∽△OFC,∴MP MC OF OC=,∴MC OC PM OF=,∴OM OC PO OF=,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=15°,∴△PFM是等腰直角三角形;②∵△PFM是等腰直角三角形,设FM=y,y,由勾股定理可知:PF=PM=2∴△PFM的周长=()y,∵2<y<1,∴△PFM的周长满足:<()y<.【点睛】本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学二诊试卷一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的实数是()A. -5B. 3C. 0D.2.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为()A. 0.86×104B. 8.6×102C. 8.6×103D. 86×1023.下列计算正确的是()A. a+2a=3a2B. 3a-2a=aC. a2•a3=a6D. 6a2÷2a2=3a24.由两块大小不同的正方体搭成如图所示的几何体,它的主视图是()A. B. C. D.5.如图,AB∥CD,点EF平分∠BED,若∠1=30°,∠2=40°,则∠BEF的度数是()A. 70°B. 60°C. 50°D. 35°6.如图,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是()A. 24πB. 30πC. 48πD. 60π7.甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如表,则这四人中水平发挥最稳定的是()甲乙丙丁8.方程kx2-2x-1=0有实数根,则k的取值范围是()A. k≠0且k≥-1B. k≥-1C. k≠0且k≤-1D. k≠0或k≥-19.下列条件中,能判定四边形是平行四边形的条件是()A. 一组对边平行,另一组对边相等B. 一组对边平行,一组对角相等C. 一组对边平行,一组邻角互补D. 一组对边相等,一组邻角相等10.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A. 438(1+x)2=389B. 389(1+x)2=438C. 389(1+2x)=438D. 438(1+2x)=38911.如果不等式的解集是x<2,那么m的取值范围是()A. m=2B. m>2C. m<2D. m≥212.如图①,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P、Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图②所示,以下结论:①BC=10;②cos∠ABE=;③当0≤t≤10时,y=t2;④当t=12时,△BPQ是等腰三角形;⑤当14≤t≤20时,y=110-5t,其中正确的有()A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共6小题,共18.0分)13.因式分解:4a3-12a2+9a=______.14.如图,已知函数y=2x+b和y=ax-3的图象交于点P(-2,-5),根据图象可得方程2x+b=ax-3的解是______.15.若关于x的方程产生增根,则m=______.16.如图,已知四边形ABCD内接于半径为4的⊙O中,且∠C=2∠A,则BD=______.17.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan B的值为________.18.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2-OB2的值为______.三、计算题(本大题共2小题,共14.0分)19.解方程:-=1.20.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?四、解答题(本大题共6小题,共52.0分)21.计算:(-1)2018+(-)-2-|2-|+4sin60°;22.如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2.(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)23.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为______,并把条形统计图补充完整;(2)扇形统计图中m=______,n=______,表示“足球”的扇形的圆心角是______度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.24.我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A 型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)在(2)的条件下,该商店如何进货才能获得最大利润?此时最大利润是多少元?25.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC 于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.26.在平面直角坐标系XOY中,抛物线y=-x2+bx+c经过点A(-2,0),B(8,0).(1)求抛物线的解析式;(2)点C是抛物线与y轴的交点,连接BC,设点P是抛物线上在第一象限内的点,PD⊥BC,垂足为点D.①是否存在点P,使线段PD的长度最大?若存在,请求出点P的坐标;若不存在,请说明理由;②当△PDC与△COA相似时,直接写出点P的坐标.答案和解析1.【答案】A【解析】解:因为正数都大于0,负数都小于0,所以一切负数小于一切正数.A、-5<0,比0小;B、3>0,比负数大;C、0=0,比负数大;D、,比负数大.综上所述,-5最小.故选:A.由于正数都大于0,负数都小于0,由此即可判定最小的数.此题主要考查了实数的大小的比较,实数大小比较法则:正数大于0,0大于负数,正数大于负数.2.【答案】C【解析】解:数据8600用科学记数法表示为8.6×103.故选C.科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).3.【答案】B【解析】解:A、应为a+2a=3a,故本选项错误;B、3a-2a=a,正确;C、应为a2•a3=a5,故本选项错误;D、应为6a2÷2a2=3,故本选项错误.故选:B.根据合并同类项的法则,同底数幂的乘法,单项式的除法运算法则,进行计算即可判断.本题考查合并同类项法则,同底数幂的乘法,单项式除以单项式,熟练掌握运算性质和法则是解题的关键.4.【答案】C【解析】【分析】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.找到从正面看所得到的图形即可.【解答】解:从正面看可得到一个正方形右上角有一个正方形,故选C.5.【答案】D【解析】解:∵AB∥CD,∴∠1=∠D,∴∠BED=∠2+∠D=30°+40°=70°,∵EF是∠BED的平分线,∴∠BEF=∠BEF=35°,故选:D.直接利用平行线的性质得出∠D的度数,再利用三角形外角的性质以及角平分线的性质得出答案.此题主要考查了平行线的性质,得出∠BEF=∠BEF是解题关键.6.【答案】D【解析】【解答】解:底面圆的直径为12则半径为6,∵圆锥的高为8根据勾股定理可知:圆锥的母线长为10.根据周长公式可知:圆锥的底面周长=12π,∵扇形面积=10×12π÷2=60π故选:D.【分析】圆锥的侧面积是一个扇形,根据扇形公式计算即可.本题主要考查了圆锥的侧面积的计算方法.7.【答案】B【解析】解:由于乙的方差最小,故根据方差的意义知,方差越小数据越稳定,所以最稳定的是乙.故选:B.根据方差的定义,方差越小数据越稳定,方差最小的为乙,所以这四人中水平发挥最稳定的是乙.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.【答案】B【解析】解:根据题意得当k=0时,-2x-1=0,解得x=-;当k≠0时,△=(-2)2-4k×(-1)≥0,解得k≥-1,即k≥-1且k≠0,方程有两个实数解,所以k的范围为k≥-1.故选:B.分类讨论:当k=0时,-2x-1=0,一元一次方程有解;当k≠0时,△=(-2)2-4k×(-1)≥0,得到k≥-1且k≠0,方程有两个实数解,然后综合两种情况即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.【答案】B【解析】解:A、一组对边相等,另一组对边平行,也有可能是等腰梯形;B、一组对边平行,一组对角相等,可得到两组对角分别相等,所以是平行四边形,故本选项正确;C、一组对边平行,一组邻角互补,不一定的平行四边形,也有可能是等腰梯形;D、一组对边相等,一组邻角相等,也有可能是等腰梯形,不一定是平行四边形.故选:B.平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐一验证.本题考查平行四边形的判定,注意间接条件的应用.在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.10.【答案】B【解析】解:设每半年发放的资助金额的平均增长率为x,则去年下半年发放给每个经济困难学生389(1+x)元,今年上半年发放给每个经济困难学生389(1+x)2元,由题意,得:389(1+x)2=438.故选:B.先用含x的代数式表示去年下半年发放给每个经济困难学生的钱数,再表示出今年上半年发放的钱数,令其等于438即可列出方程.本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.11.【答案】D【解析】解:,由①得,x<2,由②得,x<m根据已知条件,不等式组解集是x<2,则m的取值范围是m≥2.故选:D.先用含有m的代数式把原不等式组的解集表示出来,然后和已知的解集比对,得到关于m的不等式,从而解答即可.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.【答案】B【解析】解:由图象可知,当10≤t≤14时,y值不变,则此时,Q点到C,P从E到D.∴BE=BC=10,ED=4故①正确.∴AE=6Rt△ABE中,AB=∴cos∠ABE=;故②错误当0≤t≤10时,△BPQ的面积为∴③正确;t=12时,P在点E右侧2单位,此时BP>BE=BCPC=∴△BPQ不是等腰三角形.④错误;当14≤t≤20时,点P由D向C运动,Q在C点,△BPQ的面积为则⑤正确故选:B.根据题意,确定10≤t≤14,PQ的运动状态,得到BE、BC、ED问题可解.本题为双动点问题,解答时既要注意两个动点相对位置变化又要注意函数图象的变化与动点位置变化之间的关联.13.【答案】a(2a-3)2【解析】解:4a3-12a2+9a,=a(4a2-12a+9),=a(2a-3)2.故答案为:a(2a-3)2.先提取公因式a,再根据完全平方公式进行二次分解.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.14.【答案】x=-2【解析】解:方程2x+b=ax-3的解也就是求直线y=2x+b和直线y=ax-3的交点,观察图象可知,两直线的交点为(-2,-5),因此方程2x+b=ax-3的解是x=-2.故答案是:x=-2.方程2x+b=ax-3的解也就是求直线y=2x+b和直线y=ax-3的交点,观察图象可知,两直线的交点为(-2,-5),据此解答.本题考查了一次函数与一元一次方程.解答此题的关键是利用函数图象上点的坐标的特征(函数图象上的点一定在函数的图象上)求得a、b的值.15.【答案】2【解析】解:方程两边都乘(x-1),得x+2=m+1∵原方程有增根,∴最简公分母x-1=0,即增根是x=1,把x=1代入整式方程,得m=2.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出m的值.增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.【答案】4【解析】【分析】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.连接OD、OB,过点O作OF⊥BD,垂足为F,由垂径定理可知DF=BF,∠DOF=∠BOF,再由圆内接四边形的性质求出∠A的度数,故可得出∠BOD的度数,再由锐角三角函数的定义求出BF的长,进而可得出结论.【解答】解:连接OD、OB,过点O作OF⊥BD,垂足为F,∵OF⊥BD,∴DF=BF,∠DOF=∠BOF.∵四边形ABCD内接于⊙O,∴∠A+∠C=180°.∵∠C=2∠A,∴∠A=60°,∴∠BOD=120°,∴∠BOF=60°.∵OB=4,∴BF=OB•sin∠BOF=4×sin60°=2,∴BD=2BF=4.故答案为:4.17.【答案】【解析】【分析】根据在直角三角形中,正切为对边比邻边,可得答案.本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.【解答】解:如图,过点A作AD⊥BC的延长线于点D:,tan B==.故答案是:.18.【答案】10【解析】解:∵平移后解析式是y=x-b,代入y=得:x-b=,即x2-bx=5,y=x-b与x轴交点B的坐标是(b,0),设A的坐标是(x,y),∴OA2-OB2=x2+y2-b2=x2+(x-b)2-b2=2x2-2xb=2(x2-xb)=2×5=10,故答案为:10.平移后解析式是y=x-b,代入y=求出x2-bx=5,y=x-b与x轴交点B的坐标是(b,0),设A的坐标是(x,y),求出OA2-OB2=x2+(x-b)2-b2=2(x2-xb),代入求出即可.本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的计算能力的能力.19.【答案】解:去分母得:x(x+2)+2=x2-4,解得:x=-3,经检验x=-3是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD=,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.【解析】(1)作BD⊥AE于D,构造两个直角三角形并用解直角三角形用BD表示出CD和AD,利用DA和DC之间的关系列出方程求解.(2)分别求得两船看见灯塔的时间,然后比较即可.此题考查的知识点是勾股定理的应用,解答此类题目的关键是构造出直角三角形,利用解直角三角形的相关知识解答.21.【答案】解:原式=1+4-(2-2)+4×,=1+4-2+2+2,=7.【解析】本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.22.【答案】解:(1)如图所示,△A′B′C′即为所求作的三角形;(2)根据勾股定理,AC==2,A′C′==,所以,四边形AA′C′C的周长为:1++2+2=3+3.【解析】(1)取OA的中点A′,OB的中点B′,OC的中点C′,然后顺次连接即可;(2)根据勾股定理列式求出AC、A′C′的长,再根据周长公式列式进行计算即可得解.本题考查了利用位似变换作图,根据网格结构,准确找出对应点的位置是解题的关键.23.【答案】解:(1)九(1)班的学生人数为:12÷30%=40(人),喜欢足球的人数为:40-4-12-16=40-32=8(人),补全统计图如图所示;(2)∵×100%=10%,×100%=20%,∴m=10,n=20,表示“足球”的扇形的圆心角是20%×360°=72°;故答案为:(1)40;(2)10,20,72;(3)根据题意画出树状图如下:一共有12种情况,恰好是1男1女的情况有6种,∴P(恰好是1男1女)==.【解析】(1)根据喜欢篮球的人数与所占的百分比列式计算即可求出学生的总人数,再求出喜欢足球的人数,然后补全统计图即可;(2)分别求出喜欢排球、喜欢足球的百分比即可得到m、n的值,用喜欢足球的人数所占的百分比乘以360°即可;(3)画出树状图,然后根据概率公式列式计算即可得解.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】解:(1)设A、B两种型号电动自行车的进货单价分别为x元(x+500)元.由题意:=,解得x=2500,经检验:x=2500是分式方程的解.答:A、B两种型号电动自行车的进货单价分别为2500元3000元.(2)y=300m+500(30-m)=-200m+15000;(3)设购进A型电动自行车m辆,∵最多投入8万元购进A、B两种型号的电动自行车共30辆,A、B两种型号电动自行车的进货单价分别为2500元、3000元,∴2500m+3000(30-m)≤80000,解得:m≥20,∴m的取值范围是:20≤m≤30,∵y=300m+500(30-m)=-200m+15000,∵-200<0,∴m=20时,y有最大值,最大值为11000元.【解析】(1)设A、B两种型号电动自行车的进货单价分别为x元(x+500)元,构建分式方程即可解决问题;(2)根据总利润=A型的利润+B型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题;本题考查一次函数的应用、分式方程的应用等知识,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题,属于中考常考题型.25.【答案】解:(1)解法一:过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;解法二:易证:△ADP∽△PCB,∴=,由于AD=CB,∴AD2=DP•PC;(2)∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB-∠PAM=∠APB-∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;(3)由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG•GB,∴4=1•GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴==,∴,又易证:△PCE∽△MAE,AM=AB=∴===∴,∴EF=AF-AE=AC-=AC,∴==【解析】(1)过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG•GB,即AD2=DP•PC;(2)DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB-∠PAM=∠APB-∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;(3)由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,从而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得∴,,从而可求出EF=AF-AE=AC-=AC,从而可得==.本题考查相似三角形的综合问题,涉及相似三角形的性质与判定,菱形的判定,直角三角形斜边上的中线的性质等知识,综合程度较高,需要学生灵活运用所学知识.26.【答案】解:(1)把A(-2,0),B(8,0)代入抛物线y=-x2+bx+c,,解得:,∴抛物线的解析式为:y=-x2+x+4;(2)由(1)知C(0,4),∵B(8,0),将点B、C的坐标代入一次函数表达式并解得:直线BC的解析式为:y=-x+4,①如图1,过P作PG⊥x轴于G,PG交BC于E,Rt△BOC中,OC=4,OB=8,∴BC=4,在Rt△PDE中,PD=PE•sin∠PED=PE•sin∠OCB=PE,∴当线段PE最长时,PD的长最大,设P(t,-t2+t+4),则E(t,-t+4),∴PE=PG-EG=-t2+t+4+t-4=-(t-4)2+4,(0<t<8),当t=4时,PE有最大值是4,此时P(4,6),∴PD═,即当P(4,6)时,PD的长度最大,最大值是;②∵A(-2,0),B(8,0),C(0,4),∴OA=2,OB=8,OC=4,∴AC2=22+42=20,AB2=(2+8)2=100,BC2=42+82=80,∴AC2+BC2=AB2,∴∠ACB=90°,∴△COA∽△BOC,当△PDC与△COA相似时,就有△PDC与△BOC相似,∵相似三角形的对应角相等,∴∠PCD=∠CBO或∠PCD=∠BCO,(I)若∠PCD=∠CBO时,即Rt△PDC∽Rt△COB,此时CP∥OB,∵C(0,4),∴y P=4,∴-t2+t+4=4,解得:x1=6,x2=0(舍),即Rt△PDC∽Rt△COB时,P(6,4);(II)若∠PCD=∠BCO时,即Rt△PDC∽Rt△BOC,如图2,过P作x轴的垂线PG,交直线BC于F,∴PF∥OC,∴∠PFC=∠BCO,∴∠PCD=∠PFC,∴PC=PF,设P(n,-n2+n+4),则PF=-n2+2n,过P作PN⊥y轴于N,Rt△PNC中,PC2=PN2+CN2=PF2,∴n2+(-n2+n+4-4)2=(-n2+2n)2,解得:n=3,即Rt△PDC∽Rt△BOC时,P(3,);综上所述,当△PDC与△COA相似时,点P的坐标为(6,4)或(3,).【解析】(1)把A(-2,0),B(8,0)代入抛物线y=-x2+bx+c,即可求解;(2)①在Rt△PDE中,PD=PE•sin∠PED=PE•sin∠OCB=PE,即可求解;②分∠PCD=∠CBO、∠PCD=∠BCO两种情况,分别求解.本题考查的是二次函数综合应用,涉及到一次函数、三角形相似、勾股定理运用等知识点,其中(2)②,要注意分类求解,避免遗漏.。

相关文档
最新文档