《反比例函数的应用》公开课获奖课件ppt

合集下载

反比例函数的应用PPT课件

反比例函数的应用PPT课件

学习目标
1、能根据实际问题中的条件确定反比例函数 的解析式。 2、能综合利用反比例函数的知识分析和解决 一些简单的实际问题。 3、经历分析实际问题中变量之间的关系,建立 反比例函数模型,进而解决问题的过程。 4、认识数学与生活的密切联系,激发学习数学 的兴趣,增强数学应用意识。
面积中的反比例函数
(1)此蓄电池的电压是 36V , 这一函数的
表达式为
.
(2)当电流为18A时,用电器的电阻为 2Ω ; 当电流为10A时,用电器的电阻为 3.6Ω.
(3)如果以此蓄电池为电源的用电器电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?
答:可变电阻应不小于3.6Ω.
课堂检测,细心的你一定行!
(3)当空气中每立方米的含药量低于1.6mg时,学 生方可进教室,那么从消毒开始, 经过多长时间学生 才能回到教室?
1y 3 x
4
y(mg)
A 6
2y 48
x
O8
x(min)
深层思考,综合应用
1、为了预防“传染病”,某学校订教室采用药熏消 毒法进行消毒, 已知在药物燃烧时段内,室内每立方米 空气中的含药量y(mg)与时间x(min)成正比例.药物燃 后,y与x成反比例,如图所示。 (4)当空气中每立方米的含药量不低于3mg且持 续时间不低于10分钟时,才能有效杀灭空气中病 菌,那么此次消毒是否有效?为什么?
1.一个矩形的面积为20cm2 ,相邻两边的
长分别为xcm和ycm,则y与x之间的函数
关系式为
.
行程中的反比例函数
2.A、B两地间的高速公路长为300km,
一辆汽车行完全程所需的时间t(h)与
行驶的平均速度v(km/h)之间的函数关

新湘教版九年级数学上册《反比例函数的应用》精品课件(共19张PPT)

新湘教版九年级数学上册《反比例函数的应用》精品课件(共19张PPT)

(2)踩气球时,气球的体积会发生什么变 化?
根据第(1)小题的结果,此时气球内 气体
的压强会发生什么变化?这是根据反
体压积强比变增小大,.例函数这 当的是k >哪根0且据条x反性>比0质时例?,函函数数y 值= kx随,
自变量取值的减小而增大.
(3) 当气球内气体的压强大到一定程度时, 气球会爆炸吗?
•7、is a progressive discovery of our ignorance.教育是一个逐步发现自己无知的过程。2021/11/262021/11/26November 26, 2021
•8、is a admirable thing, but it is well to remember from time to time that nothing worth knowing can be taught.教育 是令人羡慕的东西,但是要不时地记住:凡是值得知道的,没有一个是能够教会的。2021/11/262021/11/262021/11/262021/11/26
定时, p 是S 的反比例函数吗?
函数的定义可知, p 是S的反比例函数.
(2) 若人对地面的压
力F = 450 N,
完因为成F =下450表N,:所以当S = 0.005 m2时
由 p F ,得
S
450 p=
= 90000(Pa).
0 .0 0 5
受力面积 S(m2) 0.005 0.01 0.02 0.04
S
略不计)通过湿由时地图,的象地的面道性所理质受可.压知强,p当会受越力来面越积小S.
增大 因此,
该科技小组通过铺垫木板的方法来增大
受力面积,以减小地面所受压强,从而

1.3.1反比例函数的应用(1)(共17张PPT)

1.3.1反比例函数的应用(1)(共17张PPT)

(1)药物燃烧时,y与x的关系

y=
3 4
x
(0<x≤8);
(2)药物燃烧完后,y与x的关系

y=
48 x
(x≥8)

(3)研究表明,当空气中每立方米的含药量低于1.6
mg时学生方可进入教室,那么从消毒开始,至少经过
多少min后,学生才能回到教室;
分析:当空气中每立方米的含药量低于1.6 mg时, 即函数值y=1.6,于是过y=1.6作x轴的平行线,与反 比例函数图象相交,求出交点的横坐标即可。
上式通常称为波义耳定律.
(1)在温度不变的情况下,气球内气体的压强p 是它的体积V的反比例函数吗?写出它的解析式.
p=
k V
(k为常数,k>0).
(2)踩气球时,气球的体积会发生什么变化? 根据第(1)小题的结果,此时气球内气体的压强 会发生什么变化?这是根据反比例函数的哪条 性质?
当气球内气体的压强大到一定程度时, 气球就会爆炸。
多长时间可将满池水全部排空? 解5h:可当将Q满=1池2(水m全3)时部,排t空= .4182 =4(h).所以最少需
(6)画出函数图象,根据图象请对问题(4)和(5)作
出直观解释,并和同伴交流.
2、你吃过拉面吗?实际上在做拉面 y
100
的过程中,就渗透着数学知识,一 80
60
定体积的面团做成拉面,面条的总 40
解:把y=1.6代入反比例函数解析式:
48 x
=Байду номын сангаас.6
解得:x=30

30 min后,学生才能回到教室;
(30,1.6)
(4)研究表明,当空气中每立方米的含药量不低于 3mg且持续时间不低于10 min时,才能有效杀灭空气 中的病菌,那么此次消毒是否有效?请说明理由。

反比例函数应用ppt课件ppt

反比例函数应用ppt课件ppt

经济中的应用
供需关系
在经济学中,反比例函数被用来描述供需关系,即当价格上涨时,需求量会相应 减少。
投资回报
在投资中,投资回报与投资风险之间存在反比例关系,即投资风险越高,投资回 报越低。
04
CATALOGUE
反比例函数与其他函数的关联
与线性函数的关联
总结词
反比例函数与线性函数具有密切关联,它们在某些条件下可以互相转化。
在物理学、工程学、经济学等各个领域,反 比例函数都有广泛的应用,如电阻、电容、 电感的关系,液体混合物的浓度,投资回报 与风险等问题的解决都离不开反比例函数。
对未来研究和应用的展望
随着科学技术的不断发展,反比例函 数的应用前景将更加广泛,如在物理 学中的量子力学、天体运动等领域, 反比例函数可能会发挥更加重要的作 用。
反比例函数应用 ppt课件
目录
• 反比例函数概述 • 反比例函数的基本性质 • 反比例函数的应用场景 • 反比例函数与其他函数的关联 • 反比例函数的应用案例分析 • 总结与展望
01
CATALOGUE
反比例函数概述
反比例函数的定义
定义
形如 y=k/x(k为常数,k≠0) 的函 数称为反比例函数。
详细描述
反比例函数y=f(x)=1/x的形式与指数函数y=a^x的形式在结构上具有相似性,两者都涉及到自变量和 因变量的变换。此外,当a为1时,指数函数退化为一个常数函数,与反比例函数在x=0处相交。
与对数函数的关联
总结词
反比例函数与对数函数之间存在一定的 关联,它们在形式上具有相似性。
VS
详细描述
反比例函数y=f(x)=1/x的形式与对数函数 y=log_a(x)的形式在结构上具有相似性, 两者都涉及到自变量和因变量的变换。此 外,当a为1时,对数函数退化为一个常 数函数,与反比例函数在x=0处相交。

反比例函数的应用PPT

反比例函数的应用PPT
载完毕,那么平均每天至少要卸载多少吨?
解:把 t =5
240
代入 v
t
240
48.
,得 v
t
从结果可以看出,如果全部货物恰好用 5 天卸载完,
则平均每天卸载 48 吨. 而观察求得的反比例函数
的解析式可知,t 越小,v 越大. 这样若货物不超
过 5 天卸载完,则平均每天至少要卸载 48 吨.
过程
确数学问题
实际问题
中的反比
例函数
实际问题中的两个变量往往都只能取非
注意 负值;
作实际问题中的函数图象时,横、纵坐
标的单位长度不一定相同
随堂练习

1.近视眼镜的度数y(度)与镜片焦距x(m)成反比例(即y= ,

k≠0),已知400度近视眼镜的镜片焦距为0.25 m,则y与x之间的
100
y=
函数关系式是____________.

2.一个水池装水12 m3,如果从水管每小时流出x(m3)的水,经
12
y=
过y(h)可以把水放完,那么y与x之间的函数关系式是________,
塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所
产生的压强,如下表:
体积x/ml
100
80
60
40
20
压强y/kPa
60
75
100
150
300
则可以反映y与x之间的关系的式子是 ( D )A.y=3000x
6000
3000
B.y=6000x C.y=
D.y=


5.如图,在直角坐标系xOy中,直线 y=mx与双曲线
解:(1)由题意设函数表达式为I= ,

反比例函数的应用ppt课件

反比例函数的应用ppt课件
如图,一辆汽车匀速通过某段公路,所需时间


解 t(h)与行驶速度 v(km/h)的图象为双曲线的一段,若这
读 段公路行驶速度不得超过80 km/h,则该汽车通过这段公路
最少需要 _____ h.
6.2 反比例函数的图象与性质
[解题思路]





设双曲线的解析式为t= ,∴k=1×4=40,即 t=
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]


∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内

混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2

析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
[易错] B
[错因] 忽略了点(x1,y1),(x3,y3)与(x2,y2
成的一元二次方程
即 k1 和 k2 的符号
的根的判别式 Δ
6.2 反比例函数的图象与性质






k1k2>0 ⟹ 两图象有两
交点 个交点
情况
k1k2<0 ⟹ 两图象没有
交点
启示
Δ>0⟹ 两图象有两个交点
Δ=0⟹ 两图象有一个交点
Δ<0⟹ 两图象没有交点
两 图 象 有 交 点 时 , 两 将 =k2x+b 转化为一元二
6.2 反比例函数的图象与性质

解题通法

解决此类问题需要读懂题目,准确分析出各个量之间的


突 关系,将需要求的量根据等量关系表示出来.

反比例函数应用课件ppt课件ppt课件

反比例函数应用课件ppt课件ppt课件
• 举例说明如何利用已知条件求反比例函数的解析 式。
例题一:求反比例函数的解析式
例题与实战演练
1. 已知某地电话费每分钟0.5元,求通话时间t(分)与电话费y(元)之间的函数关系式。
2. 如果某地有甲、乙两个车站,相距400km,甲站到乙站的距离为s(km),求甲车到乙站所 需时间t(h)与速度v(km/h)之间的函数关系式。
VS
详细描述
在解决一些实际应用问题时,常常需要将 不等式与反比例函数的知识结合起来,例 如在研究某些物理量之间的关系时,利用 反比例函数和不等式可以更好地描述它们 之间的关系。
与对数函数的结合
总结词
反比例函数与对数函数的结合,可以解决一 类实际应用问题。
详细描述
在解决一些实际应用问题时,常常需要将反 比例函数和对数函数的知识结合起来,例如 在研究某些传染病传播问题时,利用反比例 函数和对数函数可以更好地描述其传播速度 和时间的关系。
02
反比例函数通常表示为y=k/x或 x=k/y,其中k是常数且不为零。
反比例函数的基本形式
反比例函数的基本形式是y=k/x,其 中k是常数且不为零。
在这个函数中,x和y都是变量,而k是 一个常数。
反比例函数的图像特征
反比例函数的图像是一个双曲 线。
双曲线有两条曲线,一条在第 一象限,另一条在第三象限。
力学中的反比关系
在力学中,有些量之间存在反比关系,例如重力与距离的平方成反比,可以利用 反比例函数进行描述。
化学中的应用
化学反应速率
在化学反应中,反应速率与反应物的浓度成正比,与反应时 间成反比。利用反比例函数可以描述反应速率、反应物浓度 和反应时间之间的关系。
酸碱度与氢离子浓度
在酸碱度与氢离子浓度的关系中,氢离子浓度与酸碱度成反 比,可以利用反比例函数进行描述。

《反比例函数的应用》示范公开课教学PPT课件【九年级数学上册北师大】

《反比例函数的应用》示范公开课教学PPT课件【九年级数学上册北师大】
所以I与R之间的函数解析式为 I 10 .
R
(2)当电流I=0.5 A时,I 10 0.5, R
所以R=20(Ω),即电阻R的值为20 Ω.
课堂小结
1.一般地,建立反比例函数的解析式有以下两种方法:
(1)待定系数法:若题目提供的信息中明确此函数为反比例函 数,则可设反比例函数的解析式为 y k (k 0) ,然后求出k的值即
探究新知
解:(1)p
600 (S>0) S
,p是S的反比例函数,因为
p
600 S
符合反比例函数的概念.
(2)p=3 000 Pa. (3)至少0.1 m2. (4)如图所示.
探究新知
(5)问题(2)是已知图象上某点的横坐标是0.2,求 该点的纵坐标;问题(3)是已知图象上点的纵坐标不大 于6 000,求这些点横坐标的取值范围.
h
课堂小结
(3)在物理知识中:
①当功W一定时,力F与物体在力F的作用下移动的距离s成反比
例,即 F W ;
s
②当压力F一定时,压强p与受力面积S成反比例,即
p F

S
③在电路中,当电压U一定时,电流I与电阻R成反比例,
即 I U . R
④杠杆原理为:阻力×阻力臂=动力×动力臂.
敬请各 位老 师提 出宝 贵意见 !
探究新知
做一做 蓄电池的电压为定值.使用此电源时,用电器的电流I(A)
与电阻R(Ω)之间的函数关系如图所示. (1)蓄电池的电压是多少?你能
写出这一函数的表达式吗? (2)如果以此蓄电池为电源的用
电器限制电流不得超过10 A,那么用电 器的可变电阻应控制在什么范围内?
I/A 36 33 30 27 24 21 18 15 12 9 6 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档