实际问题与一元一次方程教案
人教版七年级上册3.4实际问题与一元一次方程-产品配套问题和工程问题(教案)

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
6.总结回顾环节,学生对本节课的知识点掌握情况较好。但在课后,我还需要关注学生的复习情况,及时解答他们在学习过程中遇到的疑问。
(2)工程问题:
-难点:如何根据题目中的条件找出工程总量、工作效率和时间之间的关系。
-举例:在上述例子中,需要引导学生理解甲、乙两个部分的工作效率以及合作完成工程的时间,进而得出方程。
Байду номын сангаас(3)一元一次方程的解:
-难点:理解方程解的实际意义,如何将解代入原问题检验。
-举例:在解决问题过程中,引导学生将方程解代入原问题,验证解的正确性和实际意义。
1.数学抽象:通过分析实际问题,培养学生将现实问题转化为数学模型的能力,提高数学抽象思维。
2.逻辑推理:在解决产品配套和工程问题的过程中,引导学生运用逻辑推理,分析问题,找到解决问题的方法。
3.数学建模:使学生掌握一元一次方程在实际问题中的应用,培养数学建模能力。
4.数学运算:培养学生准确、熟练地进行一元一次方程运算,提高数学运算能力。
人教版七年级上册3.4实际问题与一元一次方程-产品配套问题和工程问题(教案)
一、教学内容
人教版七年级上册3.4节“实际问题与一元一次方程”中的产品配套问题和工程问题是本节课程的核心内容。主要包括以下两部分:
1.产品配套问题:结合实际生活中的例子,引导学生理解什么是产品配套问题,掌握运用一元一次方程解决此类问题的方法。例如,某工厂生产两种产品,要求确定两种产品的生产数量,以满足市场需求。
5.3 实际问题与一元一次方程(第三课时)-教案

分课时教学设计
教师活动3:
探究:球赛积分表问题
某次篮球联赛积分
提问:你能从表格中了解到哪些信息?
预设:前进队在比赛中胜了10场
雄鹰队在比赛中一共得了21分
钢铁队在比赛中一场也没胜
……
想一想:积分与哪些量有关呢?
预设:积分与胜、负场数有关
(1)胜一场和负一场各积多少分?
(2)用代数式表示一支球队的总积分与胜、负场数之间的数量关系.
(3)某队的胜场总积分能等于它的负场总积分吗?
分析:(1)观察表,从最下面一行数据可以看出,负一场积1分。
教师活动4:
问题:本节课你都学习到了哪些知识?教师通过学生的回答,进行归纳
活动意图说明:。
实际问题中的一元一次方程教案

一、教学目标1.了解一元一次方程的定义、性质和解法;2.掌握化解一元一次方程的步骤和方法;3.能够运用一元一次方程解决实际问题。
二、教学重点1.化解一元一次方程的步骤和方法;2.运用一元一次方程解决实际问题。
三、教学难点1.如何利用实际问题建立一元一次方程;2.如何确定解的合理性。
四、教学方法1.讲授法:通过讲解理论知识,帮助学生掌握一元一次方程的基本概念、性质和解法;2.实例法:通过实际问题,帮助学生理解一元一次方程的应用方法;3.课堂讨论法:通过与学生的互动,激发学生的思维能力,提高学生的问题解决能力。
五、教学内容一一元一次方程的定义和性质1.定义一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程,通常写成ax+b=0的形式。
2.性质(1)一元一次方程只有一个解或者无解;(2)当a≠0时,一元一次方程的解为x=-b/a。
二、化解一元一次方程的步骤和方法1.化解一元一次方程的步骤(1)将含未知数的项移到等号左边,常数项移到等号右边;(2)将同类项合并;(3)整理方程,将未知数系数化为1。
2.化解一元一次方程的方法(1)加减法法:将两边加减同一个数;(2)乘除法法:将两边乘除同一个数。
三、运用一元一次方程解决实际问题1.实际问题与一元一次方程的联系实际问题可以通过建立一元一次方程来求解。
比如:小明买了两本书,共花费22元,其中一本书比另一本书贵2元,请问这两本书的价格各是多少元?2.解决实际问题的步骤(1)建立一元一次方程;(2)化解方程,求得未知数的值;(3)判断解的合理性。
3.实际问题的举例问题:小明买了两本书,共花费22元,其中一本书比另一本书贵2元,请问这两本书的价格各是多少元?解题步骤:(1)设两本书的价格分别为x元和(x+2)元;(2)根据题目,列出方程:x+(x+2)=22;(3)化解方程,得到x=10,所以两本书的价格分别为10元和12元。
(4)判断解的合理性:可以验证10+12=22,所以答案正确。
3.4实际问题与一元一次方程销售、球赛积分问题(教案)

在本次教学活动中,我尝试将实际问题与一元一次方程紧密结合,让学生在实践中感受数学的魅力。从教学过程来看,有几个方面值得我反思和总结。
首先,我发现学生们在从实际问题中抽象出一元一次方程的过程中存在一定难度。他们往往难以把握问题的关键信息,从而建立错误的方程。针对这个问题,我意识到在教学中需要更加注重引导学生如何从复杂情境中提炼出关键信息,这是提高他们解决问题能力的重要一环。
3.重点难点解析:在讲授过程中,我会特别强调如程。对于难点部分,我会通过实际案例和对比分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与销售、球赛积分相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如模拟购物场景,计算打折后的价格,或设定球赛积分规则,计算球队总积分。
1.培养学生的逻辑推理能力:通过实际问题与一元一次方程的结合,让学生掌握从具体情境中抽象出数学问题的方法,运用逻辑推理能力分析问题,建立方程模型。
2.提升学生的数学建模素养:使学生能够将现实生活中的问题转化为数学方程,培养他们在实际问题中发现数学关系,建立数学模型的能力。
3.增强学生的数学运算与数据分析能力:在解决销售、球赛积分等问题时,培养学生熟练运用一元一次方程进行数学运算,对结果进行分析和解释的能力。
-销售问题:假设一件商品原价为x元,打8折后的售价为0.8x元。教学重点是使学生理解打折实际上是乘以一个小于1的数,并能够建立0.8x =售价的方程。
-球赛积分问题:如果一支球队赢一场得3分,平一场得1分,输一场不得分。教学重点是让学生能够根据比赛结果m(赢的场数)和n(比赛总场数)建立方程,如3m + 1*(n-m) =总积分。
实际问题与一元一次方程教案

实际问题与一元一次方程教案一、教学目标1. 理解一元一次方程的概念和解法。
2. 学会将实际问题转化成一元一次方程,并解决问题。
3. 培养学生分析问题、解决问题的能力。
二、教学重难点1. 一元一次方程的转化及解法。
2. 如何将实际问题转换成一元一次方程的形式。
三、教学过程Step 1 引入新知教师可以通过一则数学小故事来引入学生。
例如:小明每天从家里到学校的路程是固定的,他发现每天都需要花费30分钟的时间。
请问他每分钟走多少米?让学生思考一下这个问题,有同学可以用口算解出答案,但也有些同学可能会有困惑。
Step 2 学习新知1. 讲解一元一次方程的概念和基本形式,即ax + b = 0。
2. 给学生举一些简单的例子来解释一元一次方程的求解方法。
3. 引导学生分析实际问题,寻找与一元一次方程相关的关系。
4. 以实例的方式,提供一些实际问题,让学生试着将其转换成一元一次方程,并解答问题。
Step 3 拓展应用1. 让学生自主寻找实际生活中能够转换成一元一次方程的问题,并互相交流解决方案。
2. 分组讨论并展示各组的问题及解决方法。
四、教学评价1. 课堂练习:在教学过程中穿插一些练习题,检查学生的理解和掌握程度。
2. 课后作业:留一些基础练习题和拓展题供学生巩固和拓展。
五、教学反思本节课采用了引入实际问题的方式来学习一元一次方程,帮助学生更好地理解和应用所学知识。
同时,通过拓展应用环节,学生在合作探究中培养了解决问题的能力,提高了学生的综合素养。
但是,在教学过程中,需要注意引导学生合理思考和分析问题,避免套公式的机械运算。
求解一元一次方程数学教案(精选6篇)

求解一元一次方程数学教案(精选6篇)解一元一次方程的教案篇一一、教学目标知识与技能1、会根据实际问题中的数量关系列方程解决问题。
2、熟练掌握一元一次方程的解法。
过程与方法培养学生的数学建模能力,以及分析问题解、决问题的能力。
情感态度与价值观1、通过问题的解决,培养学生解决问题的能力。
2、通过开放性问题的设计,培养学生的创新能力和挑战自我的意识,增强学生的学习兴趣。
二、重点难点重点根据题意,分析各类问题中的等量关系,熟练的列方程解应用题。
难点弄清题意,用列方程解决实际问题。
三、学情分析学生在上一节课已经学习了一元一次方程的解法,对于学生来说解方程已不是问题了,本节课是以上一节课为基础,用方程来解决实际问题,只要学生读懂题意,建立数学模型,用一元一次方程会解决就行了。
四、教学过程设计教学环节问题设计师生活动备注情境创设讨论交流:按怎样的解题步骤解方程才最简便?由此你能得到怎样的启发。
创设问题情境,引起学生学习的兴趣。
学生动手解方程自主探究问题一:一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。
问题二:某项工作,甲单独做需要4小时,乙单独做需要6小时,如果甲先做30分钟,然后甲、乙合作,问甲、乙合作还需要多久才能完成全部工作?问题三:整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同。
解一元一次方程的教案篇二一、目标:知识目标:能熟练地求解数字系数的一元一次方程(不含去括号、去分母)。
过程方法目标:经历和体会解一元一次方程中“转化”的思想方法。
情感态度目标:在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。
二、重难点:重点:学会解一元一次方程难点:移项三、学情分析:知识背景:学生已学过用等式的性质来解一元一次方程。
能力背景:能比较熟练地用等式的性质来解一元一次方程。
利用一元一次方程解决实际问题的教案

一元一次方程是中学数学中比较基础的概念之一,它不仅是许多高级数学的基础,也广泛应用于实际生活中。
本文将阐述如何利用一元一次方程解决实际问题的教案。
一、教学目标1、了解一元一次方程的定义和基本概念。
2、学会利用一元一次方程解决实际问题。
3、培养学生的逻辑思维能力和计算能力。
二、教学重点与难点1、要求学生正确理解一元一次方程的定义和相关概念。
2、帮助学生理解如何应用一元一次方程解决实际生活中的问题。
三、教学过程1、引入本节课将要学习的是如何利用一元一次方程解决实际问题。
在我们的日常生活中,我们经常需要使用一元一次方程来计算一些问题,例如购物时的折扣、人均消费、速度、时间等等。
学习如何应用一元一次方程解决实际问题是非常必要的。
2、讲解(1)一元一次方程的基本概念在学习一元一次方程之前,我们需要先了解它的基本概念。
一元一次方程又称作线性方程,它的一般形式为ax+b=0,其中a和b为已知数(常数),x为未知数。
解一元一次方程即为求出x的值。
(2)解决实际问题的步骤为了能够应用一元一次方程去解决实际问题,我们需要掌握以下步骤:a)明确未知量我们需要阅读问题并弄清楚需要求解的未知量是什么。
例如:小明骑自行车走了多少时间到学校?b)设定代数式设定辅助量和方程式。
可以用x表示未知量,根据问题中的关系式列出代数式。
例如:设小明骑自行车t小时,自行车速度为s,自行车行驶的距离为d,学校距离小明距离为m。
可设代数式为:d=s×t,m=d。
c)列出方程根据代数式,列出方程。
例如:因为小明在学校那里,距离为0,即m=0。
:d=s×t=0,解得t=0。
(3)应用一元一次方程解决实际问题我们来看几个例子,来帮助理解如何应用一元一次方程解决实际问题。
例1:一幅画原价800元,现在正在打7折的促销活动,问现在需要花多少钱才能买到这幅画?解:设现在打折后的价格为x元,则800元的7折价格为:800×0.7 = 560(元)我们可以得出方程:x = 560因为x即为现在打折后的价格,现在需要花560元才能购买这幅画。
求解一元一次方程数学教案(优秀7篇)

求解一元一次方程数学教案(优秀7篇)解一元一次方程的教案篇一教学目标知识技能:1.用一元一次方程解决“数字型”问题;2.能熟练的通过合并,移项解一元一次方程;3.进一步学习、体会用一元一次方程解决实际问题。
过程方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想。
情感态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义。
重点建立一元一次方程解决实际问题的模型。
难点探索并发现实际问题中的等量关系,并列出方程。
环节教学问题设计教学活动设计情境引入牵线搭桥,解下列方程:(1)-5x+5=-6x;(2);(3)0.5x+0.7=1.9x;总结解“ax+b=cx+d”类型的一元一次方程的步骤方法。
引出问题即课本例3问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求。
学生:独立完成,根据讲评核对、自我评价,了解掌握情况。
探究一:数字问题例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?1.引导学生观察这列数有什么规律?①数值变化规律?②符号变化规律?结论:后面一个数是前一个数的-3倍。
2.怎样求出这三个数?①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?②列出方程:根据三个数的和是-1701列出方程。
③解略变式:你能设其它的数列方程解出吗?试一试。
比比较哪种设法简单。
探究二:百分比问题(习题3.2第8题)某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元。
这个乡去年农民人均收入是多少元?①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;②因为今年的人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示为_________元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与一元一次方程教案
教学目标:
一、知识和技能:
㈠知识目标:
1、通过对典型实际问题的分析,学生体验从算术方法到代数方法是一种进步.
2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.
3、使学生在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.
㈡能力目标:
数学思考:能结合实际问题背景发现和提出数学问题。
解决问题:能利用一元一次方程解决商品销售中的一些实际问题
二、过程与方法:.
经历“探究”的活动,激发学生的学习潜能,•促使他们在自主探究与合作交流的过程中,理解和掌握基本的数学知识、技能,数学模型思想.
三、情感态度与价值观目标:
1、引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,但很有利于培养学生的发散思维.
2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。
刻画事物间的相等关系.日常生活中的许多问题得以用数学方法解决,体验到实际问题“数学化”的过程.
教学重点:在学生自主分析题意的过程中能够使已设未知数参与其中.
教学难点:找到问题中的数量关系,将未知数参与其中的代数式用“=”连接起来,使之构成方程.
教学关键:明确问题中的数量关系,找出等量关系.
教学课型:新授课
课时安排:一课时
教学方法:启发式讲授,与学生探索相结合,情境教学法。
教学准备:幻灯片出示探究题目,三四个可供标价的纸板
教学过程:
一、引入新课
做一个游戏:可以让同学自己当一回老板:进一次货(例如:1000元)→→→→→→做一标价→→→→→→根据实际做出调整(没人买怎么办?抢购一空补货又应怎么办?) →→→→→→调整后进行销售→→→→→→能算出是亏还是赢吗,进而得出利润率等数量之间的计算方法。
(1)商品利润=商品售价-商品进价.
(2)商品利润率= .
(3)打x折的售价=原售价×.
二、新授
第一大部分
探究1:销售中的盈亏.
某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
①由学生借以往经验解决(极有可能使用四则运算),作出判断.
②要求应用方程
再读题过程中引导学生发现待用数量: 某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,•另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
③由“盈利25%”和“亏损25%”找到合适的未知数.并作出解设
④学生自主修整完成该方程,进而解决问题.
解:设……………………
————————=——---
……………………
……………………
答:…………………….
另外:求出方程的解后,一定要检验解的合理性.
题后点拨:不要认为一件盈利25%,一件亏损25%,结果不盈不亏,因为盈亏要看这两件的进价.
第一大部分附题
随堂练习1:
刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?
分析:——————由学生自主找到合适的未知数并能阐述设此未知数的原因,以及方程形成的过程。
“刘伶以八折优惠价购买了一件衣服,省了15元,那么她购买这件衣服实际用了多少钱?”适当的可以提示:什么的八折?省了15元是什么意思?
解:设……………………
————————=——---
……………………
……………………
答:…………………….
求出方程的解后,一定要检验解的合理性.
随堂练习2:较难的一道利润问题
某商品去年提价25%,今年要恢复原价,应下调几个百分点?
分析:Ⅰ由题中的“提价25%”翻译为————提高原价的25%,并由此可设原价为x.——————表示为(1+25%)x翻译为:今年的执行价格如此表示.
Ⅱ由题中的“恢复原价”翻译为————方程中的等量关系出现了,即————﹌﹌﹌﹌﹌﹌=x
Ⅲ问题随之出现,下调的百分点又是一个新的未知量,故可设下调
m个百分点.
Ⅳ[(1+25%)x](1-m%)=x
Ⅴ将Ⅳ中可简化为(1+25%)x(1-m%)=x
Ⅵ由学生努力解决这种含有两个未知数的方程,
并做演示讲解
Ⅶ老师分析两个未知数之一在该题中起一个解释说明的作用
并且能够借助等式的性质2.消去x
Ⅷ方程简单变形为(1+25%)(1-m%)=1
问题得以解决
第三大部分
探究2:油菜种植的计算.
某村去年种植的油菜籽亩产量达160千克,含油率为40%。
今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。
今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20%,今年油菜种植面积是多少亩?
分析完成[重点是翻译]过程
①亩产量达160千克,含油率为40%。
————160×40%
亩产量提高了20千克————﹙160+20﹚
提高了10个百分点————40%+10%
…………
②可设今年油菜种植面积是x亩.
③让x能够参与其中,开始第二遍审题
去年:(x+44)亩今年:x亩
160(x+44) ﹙160+20﹚
160(x+44)×40% ﹙40%+10%﹚×﹙160+20﹚x
由“本村所产油菜籽的产油量提高20%”
得到
160(x+44)×40%×(1+20%)=﹙40%+10%﹚×﹙160+20﹚x
………………………………
………………………………
答:________________________________.
第四大部分
课堂小结:
一、归纳:
用一元一次方程分析和解决实际问题的基本过程.
学生:________________________________________
二、小结:
这节课你学会了什么?
学生们:_______________________________________
三、作业:
课本第108页习题3.4第3、4题.
选用课时作业设计
第一课时作业设计
一、填空题.
⒈某商品原标价为165元,降价10%后,售价为_____元,若成本为110元,则利润为______元.
⒉新华书店一天内销售甲种书籍共卖得1560元,其利润率为25%,•则这一天售出甲种书的总成本为_______元.
二、选择题.
⒊下面四个关系中,错误的是( ).
A.商品利润率= ;
B.商品利润率=
C.商品售价=商品进价×(1+利润率)
D.商品利润=商品利润率×商品进价
⒋一件商品标价a元,打九折后售出为a元,如果再打一次九折,•那么现在的售价
是( )元.
A.(1+ )a
B. a
三、解答题.
⒌甲种商品每件的进价是400元,现按标价560元的8折出售,•乙种商品每件的进价是600元,现按标价1100元的六折出售,相比较哪种商品的利润率高一些?
答案:
一、 1. 148.5 38.5 2.1248
二、⒊B ⒋B •
三、⒌甲商品利润率为12%,•乙商品的利润率为10%,甲商品比乙商品利润率高.。