线性电压频率转换器
基于LM331频率电压转换器电路设计

基于LM331频率电压转换器电路设计LM331基本上是从国家半导体精密电压频率转换器。
该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。
宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。
电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的IC(阈值)。
在PIN6负由此产生的脉冲序列的边缘,使得内建说明LM331基本上是从国家半导体精密电压频率转换器。
该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。
宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。
电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的IC(阈值)。
在PIN6负由此产生的脉冲序列的边缘,使得内建的比较器电路,触发定时器电路。
在任何时刻,电流流过的电流输出引脚(引脚6)将输入频)的值成正比。
因此,输入频率(FIN)成正比的电压(VOUT)率和定时元件(R1和C1将可在负载电阻R4 。
电路图注意事项该电路可组装在一个VERO板上。
我用15V直流电源电压(+ VS),同时测试电路。
LM331可从5至30V DC之间的任何操作。
R3的值取决于电源电压和方程是R3 =(VS - 2V)/(2毫安)。
根据公式,VS = 15V,R3 = 68K。
输出电压取决于方程,VOUT =((R4)/(R5 + R6))* R1C1 * 2.09V *翅。
壶R6可用于校准电路。
集成VF、FV变换器

集成V/F、F/V变换器V/F变换即电压到频率的变换,表示输出信号频率f0与输入电压VI成正比。
F/V变换即频率到电压的变换,表示输出电压V0与输入频率fI成正比。
目前实现V/F变换和F/V的变换方法很多,有由分离元件组成的变换电路,也有各种集成电路,这类集成电路使用简单,调试方便,转换精度也比较高,是目前首选器件。
下面将重点介绍LMx31系列V/F、F/V 变换器。
LMx31系列V/F、F/V变换器介绍LMx31系列包括LM131A/LM131、LM231A/LM231、LM331A/LM331,该系列的器件是一种性能价格比较高的集成电路,很适合用作精密频率电压转换器、长时间积分器、线性频率调制或解调等功能电路。
其主要特点有:•双电源或单电源供电(单电源在4~40V范围内均能工作)。
•高的线性度(0.01%)。
•脉冲输出与所有逻辑形式兼容。
•稳定性好,温度系数≤50×10-6/℃。
•功耗低,当电源为5V时,功耗为15mW。
•动态范围宽(10kHz满量程频率下最小值为100dB)。
•满量程频率范围(1Hz~100kHz)。
•成本低。
LMx31系列V/F、F/V变换器的应用实例组成V/F变换器是LMx31组成的简单的V/F变换器。
图中RIN、CIN组成输入滤波环节,RW1为调零电位器,RW2为转换增益调节,RW2要选用多圈电位器。
在CL上串联RB产生一个附加的滞后效应,改善线性度。
RIN取100kW,使7脚的偏流能抵消6脚的偏流影响,以减小频率失调。
CIN取0.01~0.1mF,当输入信号纹波较大时,也可取1mF,但无论如何不应使CIN<<CL,以防止VIN 微小的变化会导致fOUT的瞬时停顿。
按照电路所示的元件值,该电路的指标:输入电压0~+10 V,输出频率为0~10kHz,非线性误差为0.03%。
LM2917电压转换器的原理及性能参数(精)

LM2917电压转换器的原理及性能参数1. 概述LM2917为单片集成频率-电压转换器,芯片中包含了一个高增益的运算放大器/比较器,当输入频率达到或超过某一给定值时,输出可用于驱动开关、指示灯或其它负载。
内含的转速计使用充电泵技术,对低纹波具有频率倍增功能。
另外LM2917还带有完全的输入保护电路。
在零频率输入时,LM2917的输出逻辑摆幅为零。
1.1 主要特点LM2917具有以下特点:进行频率倍增时只需使用一个RC网络;芯片上具有齐纳二极管调整电路,能够进行准确的频率-电压(电流)转换;以地为参考的转速计输入可直接与可变磁阻拾音器接口;运算放大器/比较器采用浮动晶体管输出;50mA输出陷流或驱动能力,可驱动开关、螺线管、测量计、发光二极管等;对低纹波有频率倍增功能;转速计具有滞后、差分输入或以地为参考的单端输入;线性度典型值为±0.3%;以地为参考的转速计具有完全的保护电路,不会受高于VCC 值或低于地参考输入的损伤。
1.2 应用领域LM2917可应用于以下领域:∙超速/低速检测;∙频率电压转换(转速计);∙测速表;∙手持式转速计;∙速度监测器;∙巡回控制;∙车门锁定控制;∙离合控制;∙喇叭控制;∙触摸或声音开关。
1.3 电性能参数LM2917的主要电性能参数如表1所列。
2. 工作原理图1所示为LM2917的原理框图,各引脚功能如下:∙1脚和11脚为运算放大器/比较器的输入端;∙2脚接充电泵的定时电容;∙3脚连接充电泵的输出电阻和积分电容;∙4脚和10脚为运算放大器的输入端;∙5脚为输出,取自输出晶体管的发射极;∙6,7,13,14脚未用;8脚为输出晶体管的集电极,一般接电源;∙9脚为正电源端;∙12脚为负电源端,一般接地。
运算放大器/比较器完全与转速计兼容,以一个浮动的晶体管作为输出端,具有强的输出驱动能力,能够以50mA电流驱动以地为参考或以电源为参考的负载。
输出晶体管的集电极电位可高于VCC,允许的最大电压VCE为28V。
电压频率转换器

MT-028指南电压频率转换器作者:Walt Kester和James Bryant简介电压频率转换器(VFC)是一种振荡器,其频率与控制电压成线性比例关系。
VFC/计数器ADC采用单芯片,无失码,可对噪声积分,功耗极低。
该器件很适合遥测应用,因为VFC小巧、便宜且功耗低,可以安装在实验对象(患者、野生动物、炮弹等等)上,并通过遥测链路与计数器通信,如图1所示。
CIRCUIT IS IDEAL FOR TELEMETRY图1:用电压频率转换器(VFC)和频率计数器实现低成本、多功能、高分辨率ADC常见的VFC架构有两种:电流导引多谐振荡器VFC和电荷平衡VFC(参考文献1)。
电荷平衡VFC可采用异步或同步(时钟控制)形式。
VFO(可变频率振荡器)架构种类更多,包括无处不在的555计时器,但VFC的主要特性是线性度——而极少VFO具有高线性度。
电流导引多谐振荡器VFC其实是电流频率转换器而非VFC,但如图2所示,实际电路的输入端总是包含电压电流转换器。
工作原理很简单:电流使电容放电,直至到达阈值,当电容引脚翻转时,半周期重复进行。
电容两端的波形是线性三角波,但相对于地的任一引脚上的波形都是更复杂的波形,如图所示。
图2:电流导引VFC此类型的实际VFC具有约14位的线性度和同等的稳定性,当然也可用于具有更高分辨率而无失码的ADC中。
性能限制由比较器阈值噪声、阈值温度系数、电容(一般是分立元件)稳定性和电介质吸收(DA)决定。
图中所示的比较器/基准电压源结构比使用的实际电路更能代表所执行的功能,后者更多地与开关电路集成,相应也更难分析。
此类VFC简单、便宜且功耗低,大多数采用广泛电源电压运行,因此非常适合低成本中等精度ADC和数据遥测应用。
图3所示的电荷平衡VFC更复杂,对电源电压和电流的要求更高,也更精确。
它能提供16至18位线性度。
图3:电荷平衡电压频率转换器(VFC)积分器电容通过信号充电,如图3所示。
IC资料-精密压_频转换器 LM331_331A

0.15
0.50
V
0.10
0.40
V
±0.05
1.0
uA
3.0
6.0
mA
4.0
8.0
mA
注 1:表中按达到的精度和温度稳定性的不同,分别有 LM331 和 LM331A 两种型号 注 2:表一和表二中所有特性均是按图 5 电路,及 4.0V≤VS≤40V 的条件下测得。(除非另 有说明)
LM331/331A
额定满量程频率
VIN=-10V
10.0
长期增益稳定性 (1000小时)
TMIN≤TA≤TMAX
超限频率(相对于标 准频率范围)
VIN=-11V
10
输入比较器
失调电压
TMIN≤TA≤TMAX
LM331 LM331A
偏置电流Βιβλιοθήκη 失效电流共模范围TMIN≤TA≤TMAX
-0.2
计时器
计时器阈值电压 (第5脚)
1.10 ±150 ±50
kHz/V ppm/℃
0.01
0.1
%/V
0.006 0.06 %/V
kHz
±0.02
%量程
%
±3
±10
±4
±14
mV
±3
±10
-80
-300
nA
±8 ±100 nA
VCC-2.0
V
0.667
±10 200 200 0.22
0.70
±100 1000 500 0.5
* VS nA V
LM331/331A
电参数(二)
Ta=25℃,除其它特殊说明外
参数
测试条件
电流源(第1脚) 输出电流 电压变化引起的变化
电压频率转换器

辽宁工业大学模拟电子技术基础课程设计(论文)题目:电压/频率转换器院(系):电子与信息工程学院专业班级:通信111学号: 110405003学生姓名:阚旋指导教师:(签字)起止时间:2013.7.1—2013.7.12课程设计(论文)任务及评语院(系):电子与信息工程学院教研室:电子信息与工程f0的矩形脉冲,且。
(2)Vi变化范围:0~10。
(3)f0变化范围:0~10kHz。
(4)转换精度<1%。
设计要求:1 .分析设计要求,明确性能指标。
必须仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。
2 .确定合理的总体方案。
对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。
3 .设计各单元电路。
总体方案化整为零,分解成若干子系统或单元电路,逐个设计。
4.组成系统。
在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。
指导教师评语及成绩平时:论文质量:答辩:总成绩:指导教师签字:年月日注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要电压/频率变换器实质上是一种振荡频率随外加控制变换器。
其主要是通过输入电压控制输出频率,电压/频率变换电路的输出信号频率与输入电压成正比,所以在调频,锁扣,和模/数变换等许多领域中,得到了非常广泛的应用,电压/频率变换电路中的主要部分已经能集成在一块硅片上,这就为它的广泛应用创造了有利条件。
压控振荡器的应用十分广泛,若用方波作为控制电压,压控振荡器就是双频振荡器,能交替输出两种频率的波型,若用正弦交流电压作为控制电压,压控振荡器就成了调频振荡器,能输出抗干扰能力很强的调频波,上述各类信号波形以应用于各种智能测试设备和自动控制系统中。
电压/频率变换器还具有精度高,线性度高,温度系数低,功耗低,动态范围宽的一系列优点。
信号转换电路IV-频率电压转换电路资料

(2)ui >0,uC负向增加, uC≤U2时,比较器输出uo由负向限幅电压突变为正向限
幅电压,V导通,电容C通过R3放电,积分器输出迅速回升。 uo通过正反馈电路使比 较器同相端电压up突变为U1。
(3)当积分器输出回升到uC≥U1时,比较器输出又由正向限幅电压突变为负向限幅 电压,V又处于截止状态,同时up恢复为U2,积分器重新开始积分。
约 10mV t
t
2020/9/24
u单i >稳u态6,定输时入器比输较出器端输Q出为高高电电平平,,
V精导密通电,流u源o=输Uo出L≈电0V流,is开对关CLS充闭电合,,
u内电6逐放,渐电Ct电上管压升截上。止升与,。引电脚源5U相经连Rt的对芯Ct充片
u时s=器u输Ct出≥2端UQ/3为时低,电单平稳,态V定截 止, uo = UoH = +E,电流 开关S断开, CL通过RL放电, 使u6下降。 Ct通过芯片内放 电管快速放电到零。 当冲周u6期≤,ui时如,此又循开环始,第输二出个端脉便 输出脉冲信号。
8
集成V/F转换器——LM131
+U 8
1 整个周期内,RL 在消耗电荷 2 恒流源提供电荷 (充电)的时间由 CL 单稳触发器的暂态 决定 3 电荷平衡(电源 提供的电荷量等于 电阻消耗的电荷量)
精密 电流源
电流 输出 1
电流 开关
RL
2
基准
电压
1.9V
- 基准 比较
+器
iS
uo
频率 3 驱动 V RS 输出
5
二、电荷平衡型
在一个周期T=t0+t1中,积分电容 充电电荷量与放电的电荷量相等,
即i×T= Is×t0
VFC320压频变换器的原理和应用

R1 和 C1 直接影响转换关系, 它们的制造公差可进
行补偿( 图 5 和图 6 中的 R3) , 但温度系数要小。可用陶 瓷萘基苯唑电容器, 同时要尽量缩短连线, 减小杂散电容
的影响, 或者在上式中扣除一个杂散电容修正量。
C2 的容 量对转换关系没有 直接影响, 但其漏电 流
会增 大转换误差, 陶瓷 电容器对多 数应用都 能满足 要
1 电路结构和特点
图1
图2 V FC320 的 结 构 如 图 1 所 示, 由 运 算 放 大 器 A M P 、电 压比较 器 A 和 B、触 发器 F F 、集电极 开路 晶 体 管 T 0 、- 7. 5V 的基 准电 压和 1m A 电 流源 IA 和 IB 组成。工作时只要接很少几个外部元件就可方便 调节 输入和输出的工作范围, 并容易保证转换精度。输入运
系统特别 适用于工业 干扰环境 中控制信 号的检测、传 递和处理。图 9 中, 脉冲信号是通过双扭线传送到目的 地, 再整形计数后送计算机处理。图 10 中则是利用光 纤传导, 实现了电隔离。脉冲信号到达目的 地后, 一路 经 V FC320 进行频率-电压 变换作模拟输出, 一路经时 钟闸门后计数, 实现数字显示。
图 7 中, R EF101 中的 精密电阻和 基准电压, 把加 在它 1 脚的- 10V 至+ 10V 的电压变换为 8 脚的 0 至 + 10V 的电压后, 再由 V F C320 去变换, 实现了双极性 的电压-频率变换。
图 8 是由 V F C320 构成 的数字 电压 表。 它把模拟 输入电 压变换 为频率 输出脉冲 后, 通过时钟 闸门去 计数, 最后以 数字形 式显示 出来。V FC320 的精度可 使其数字 分辨率达 到 14 位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图一电压频率转换器原理图
图二电压频率转换器PCB图
3.3.5元器件清单
不同阻值电阻、电容、LM747、12V直流电源。
4.实验数据分析
本次设计所需要达到的目的总结起来主要有三个,第一个是实现电压—频率的转换;第二个是要呈线性状态;第三个是精度要求要高。第一点,比较容易实现,电路装好后,只要前面所讲的起振条件即可。对于第二、三点,通过测得的实验数据分析来看,基本已达到预定要求。为保证实验数据的有效,我们对每组数据均采样10次,数据结果如表4所示。
表5 不同温度下的测试结果
TA=10OC
TA=30OC
TA=50OC
输入电压
输出频率
输入电压
输出频率
输入电压
输出频率
2
0.11
1.99
0.10
2.02
0.11
19.98
0.9
19.88
0.82
20.1
0.82
40.1
2.08
41.1
2.16
39.97
2.16
60.08
3.03
60.28
3.18
60.08
总结
通过这次的课程设计,加强了我的动手能力,提高了我的运用知识解决问题的能力。在本次课程设计中我做的题目是:电压/频率转换电路的设计。在整个方案设计中,我运用了模拟电子的相关知识,包括:积分器、迟滞比较器等模块电路。在选择元件方面,我使用了两个NJM系列的集成芯片、稳压管以及具有单向导通性的晶体二极管,从中我学到了挑选元件的方法和元件的合理构架等书本上没有的知识。
Keywords:LM747; Voltage frequency conversion
第
电压频率转换器VFC(Voltage Frequency Converter)是一种实现模数转换功能的器件,将模拟电压量变换为脉冲信号,该输出脉冲信号的频率与输入电压的大小成正比。电压频率转换器也称为电压控制振荡电路(VCO),简称压控振荡电路。随电压—频率转换实际上是一种模拟量和数字量之间的转换技术。当模拟信号(电压或电流)转换为数字信号时,转换器的输出是一串频率正比于模拟信号幅值的矩形波,显然数据是串行的。这与目前通用的模数转换器并行输出不同,然而其分辨率却可以很高。串行输出的模数转换在数字控制系统中很有用,它可以把模拟量误差信号变成与之成正比的脉冲信号,以驱动步进式伺服机构用来精密控制。
电压/频率转换器跟双斜率A/D转换器一样,具有真正的积分输入特性。逐次近似A/D转换器定期进行“抽样“,因此易受噪声峰值点的影响,而电压频率转换器的输入端一直在进行积分,因此能对噪声或变化的输入信号进行平滑的处理。
2.
2.1实现电压频率转换的方法
实现电压/频率的转换的方法很多,电压/频率转换电路实际上是一种振荡电路,它的振荡频率随外加控制电压变化而变化。对它的基本要求是输出频率应与输入控制电压成线性关系,且动态范围要大,加上本设计的要求既高精度。一般我们设计电压频率转换的方法大致分为以下几种:
用输入电压的大小改变电容的充电速度,从而改变振荡电路的振荡频率,故可以采用积分器作为输入电路。积分器的输入信号去控制电压比较器,从电压比较器的输出引脚输出为矩形脉冲信号,从积分器的输出引脚输出为三角波信号,两者频率相同。将输出信号的电平通过回路,反馈到积分器,控制积分电容放电,同时运用二极管的单向导电性,做成电子开关,当积分器的电容放电到一点数值时,开关二极管作用,电源给电容充电。这样就构成了一个电容反复充电、放电的过程,电路震荡产生波形,并且输入电压的大小决定了电容的充放电的速度,从而进行输出波形频率的改变,达到设计目的。
着现代电子技术渐渐的向着大规模的数字集成电路发展,面对大量的连续变化模拟量例如幅度的变化。难以对其直接分析,但可以先将模拟量转换成数字量,再在研究中都对数字信号(0和1)的直接处理分析的方法,这就需要将信号由模拟到数字进行变换。而本设计‘高精度电压转换器’既:电压—频率转换。其过程即实现了由模拟量到数字量的转换。
2.95
80.3
4.09
80.13
4.09
80.7
3.86
100.02
4.77
100.02
4.92
100.32
4.77
121.12
6.07
121.12
6.07
121.02
6.07
140.5
7.17
140.7
7.09
140.0
6.86
160
7.98
160.2
8.06
159.91
7.91
181
9.08
182
如图2.6所示,为振荡器频率于温度关系图。当参考电压VR分别取(0.833V+0ppm/℃)(B1、C1)和(0.833V+230ppm/℃)(B2、C2),输入电压取1V和100mV。可以看出,适当选取正温度系数的参考电压VR,可使振荡器在0-70℃的范围内频率温度系数处于100ppm/℃以下。
图2.6振荡器频率与温度关系图
200.01mV
10KHZ
图5.4 实验结果曲线
以上所测数据是在温度为25OC时所测得的数据,大家可以从表4或者曲线图5.4上看到,随这输入电压的线性增加,输出频率也是呈线性增加的,这说明了在温度恒定的情况下,输入电压和输出电压之间是呈线性关系的。因为本电路的温漂要求是 ,因此我们还测量了在不同的温度下,输入电压和输出频率的关系,总共测了3组数据如表5所示。(电压单位均为mV,频率单位均为KHZ)
3.3.2电压/频率转换器原理框图如下,图1、2:
图1电压/频率变换电路的原理框图
图2频率/电压变换电路原理图
3.3.3各模块方案设计
1.积分器的设计方案
基本设计方案如下方截图3
图3积分电路
积分电路是实现波形变换、滤波等信号处理功能的基本电路,它可以将周期性的方波电压变换为三角波电压。
当T导通时,积分电路的等效电路如图4所示,集成运放A同相输出端的电位为
4.低通滤波器
基本设计方案如下方图9
图9低通滤波器电路图
对于不同滤波器而言,每个频率的信号的减弱程度不同。当使用在音频应用时,它有时被称为高频剪切滤波器,或高音消除滤波器。低通滤波器概念有许多不同的形式,其中包括电子线路(如音频设备中使用的hiss滤波器、平滑数据的数字算法、音障(acoustic barriers)、图像模糊处理等等,这两个工具都通过剔除短期波动、保留长期发展趋势提供了信号的平滑形式。低通滤波器在信号处理中的作用等同于其它领域如金融领域中移动平均数(moving average)所起的作用;低通滤波器有很多种,其中,最通用的就是巴特沃斯滤波器和切比雪夫滤波器。
有关电压频率转换的应用:
电压频率转换器在无线电技术中,用作频率调制(FM);在信号源电路中,用作压控振荡等。
其用在A/D转换器时拥有的独特特点,良好的精度、线性和积分输入特性,常能提供其他类型转换器无法提供的性能和效果。
因为用频率表示的模拟量本身就属于一种串行数据流,所以在大型多通道系统中很容易传输处理,因为频率信号可以使用廉价的数字传输线发送器和接收器通过长线来进行传输,抗干扰能力强,并避免了使用昂贵的模拟多路转换电路。
A2构成的是反相输入的滞回比较器,其输出电压Uo决定于由R7和稳压管Dz组成的限幅电路,输出高电平 ,输出低电平 ,阈值电压 为 ,当Rw的滑动端在最左端时, ;当滑动端在左右端时, 。
过零比较器,图7
图7过零比较器电路图
过零比较器的工作原理是将输入信号与0V地电压进比较来判定输出是高电平还是低电平,例如反相输入端输入的过零比较器在输入正弦信号时,在正弦波的正半周时输出为低电平,而在正弦波的负半周时输出为高电平。这样就把正弦波变成矩形波了,当然它还可以将三角波等波形变换为矩形波。
b)对电压频率转换器的线性度和动态范围的仿真分析:
如图2.7显见从0.1mV变化到1V,振荡器频率线性增加。由图2.8可知线性误差小于0.1%,动态范围>80dB。
图2.7 输入电压与振荡器频率关系 图2.8 振荡器非线性误差
模拟结果显示:设计的电压频率转换器具有小于0.1%线性度,动态范围大于80dB,频率温度漂移小于100ppm/K。
图4 积分电路等效电路图
反相输入端电位 。积分电路的输出电压为
当T截止时,积分电路的等效电路如图5所示,Up1、Un1不变,仍为 。积分电路的输出电压为
图5积分电路等效电路图
2.比较器的设计方案
电压比较器基本设计方案如下方图6
图6电压比较器电路图
比较器的输出电压通过反馈网络加到同相输入端,形成正反馈,待比电压V1较加在反相输入端。比较器虽然有闭合环路,但由于该环路引入的是正反馈,电路增益更高,运放依然属于开环工作。在实际运用中,利用迟滞特性可以有效地克服噪声和干扰的影响。例如,在过零检测器中,若是如正弦电压上叠加噪声和干扰,则由于零值附近多次过零,输出就会出现错误阶跃。采用迟滞比较器,只要噪声和干扰的大小在迟滞宽度内,就不会引起错误的阶跃。
8.93
180.1
8.78
200.01
10
200.00
10.08
199.89
9.93
从上面的表可以看出来,随着温度的上升,其输出端的频率变化并不明显,完全满足设计要求。
从以上的数据来看,不管时在温度恒定,还是在温度变化的情况下,该电路均能保持高精度、高线性的电压/频率转换。
。5.模拟结果:
a)对振荡器电路做温度特性分析:
(1) 通过多谐振荡器实现电压频率转换;
(2) 通过集成化电路实现电压频率的转换。
鉴于我们要求输出频率应与输入控制电压成线性关系,且动态范围要大,加上本设计的要求高精度。所以我们选择第二种方法。
3系统设计原理及内容
3.3.1设计思想