几何图形中的综合探究问题
立体几何综合问题探究PPT课件

认识到解答过程书写的重要性,关键步骤,重要
结果复查的必要性.
.
11
.
12
.
13
2.利用向量方法解决空间平行、垂直关系等的 探究性问题时,各种空间位置关系的向量表达。
.பைடு நூலகம்
8
近5年高考考查:
14 年理 17 证线线平行,求线面成角,确定
(四棱锥) 线面相交的交点位置
15 年理 17 证线线垂直,求二面角,当线面
(四棱锥) 垂直时,求未知线段长度
16 年理 17 证线面垂直,求线面角,线面平
(四棱锥) 行的探究性问题
17 年理 16 线面平行的性质应用,求二面角,
(四棱锥) 求线面角
18 年理 16 证线面垂直,求二面角,证线面
. (三棱柱)相交
9
.
10
课堂总结:
运用立体几何中的定理、结论,空间向量等解决 了有关立体几何的综合问题,空间想象能力得到 了提高;
体会到了数学符号表达的简洁性,严谨的逻辑推 理过程,空间向量的应用;
立体几何综合问题例析
.
1
.
2
.
3
.
4
小结:
线上一点、面内一点的向量表达:
点 M 是棱 PC 上一点:
设 PM PC ,再由其他条件求
点 M 是平面 AEF 内一点:
设点 M x, y, z,则 AM 与平面的法向量数量积
为. 0,再结合其他条件确定点 M
5
.
6
.
7
小结:
1.探究性问题的解决过程中,几何方法与向量 方法的合理恰当选用;
浙教版四年级数学几何图形探索题

浙教版四年级数学几何图形探索题在数学课程中,学习几何图形是一个重要的内容。
通过几何图形的学习,我们可以培养学生的观察力、逻辑思维和空间想象能力。
本文将针对浙教版四年级数学课本中的几何图形探索题进行分析和解答。
1.正方形与长方形的探究在四年级的数学课本中,我们首先学习了正方形和长方形这两种常见的几何图形。
请考虑以下问题:问题一:能否找到一种方法,将一个正方形切割成两个相等的长方形?为什么?答案:不能。
由于正方形的四条边相等,因此无法找到一条切割线,使得切割后的两个图形完全相等。
一个直观的推理是,如果切割一次,会产生一个长方形和一个不完整的长方形,无法满足两个图形完全相等的条件。
问题二:能否找到一种方法,将一个长方形切割成两个相等的正方形?为什么?答案:可以。
将长方形切割成两个相等的正方形是可能的。
我们可以在长方形的一条边上找到一个中点,然后从该点处作垂直于该边的切割线,将长方形分割成两个相等的正方形。
2.三角形的探究在数学课本中,我们还学习了三角形这一几何图形。
请思考以下问题:问题一:三角形的内角和是多少度?答案:三角形的内角和是180度。
这是由于三角形的三个内角相加等于一条直线上的直角,而一条直线上的角度为180度。
问题二:如何判断一个角是否是直角?答案:一个角是直角的判断方法是判断这个角的度数是否等于90度。
我们可以使用量角器或直尺等工具进行测量,也可以将该角与已知的直角进行比较。
3.圆形的探究圆形是数学中的一个重要几何图形。
请思考以下问题:问题一:如何计算圆的面积?答案:圆的面积可以用公式A = πr²来计算,其中A表示面积,π表示圆周率,r表示半径。
半径是从圆心到圆的任何一点的距离。
通过将圆的半径代入公式中,我们可以计算出圆的面积。
问题二:如何计算圆的周长?答案:圆的周长可以用公式C = 2πr来计算,其中C表示周长,π表示圆周率,r表示半径。
通过将圆的半径代入公式中,我们可以计算出圆的周长。
专题12 立体几何中探索性问题(解析版)

专题12 立体几何中探索性问题专题概述立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.典型例题【例1】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ;(2)设D 是11AC 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值.【分析】(1)推导出1AA AB ⊥,1A A AC ⊥,从而1AC ⊥平面1ABC ,由此能证明平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,取1A A 的中点F ,连接EF ,FD ,设点E 到平面1ABC的距离为d ,由11E ABC C ABE V V --=,求出d A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1E AC B --的余弦值.【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,ABBC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥.又1A A AC =,11AC AC ∴⊥.又11BC AC ⊥,111BC A C C =,1AC ∴⊥平面1ABC , 又1AC ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC .解:(2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD ,//EF AB ,1//DF AC ,又EFDF F =,1ABA C A =,∴平面//EFD 平面1ABC ,则有//DE 平面1ABC .设点E 到平面1ABC 的距离为d ,AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥,∴1122BAC S=⨯= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB ,11//AC AC ,11AC ∴⊥平面11ABB ,∴11111182243323C ABE ABE V S AC -∆=⨯⨯=⨯⨯⨯⨯=, 由1183E ABC C ABE V V --==,解得188333ABC d S=⨯==以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系, (0A ,0,0),(2B ,0,0),1(0C ,4,4),(2E ,0,2),1(0AC =,4,4),(2AB =,0,0),(2AE =,0,2), 设平面1AC E 的法向量(n x =,y ,)z ,则1440220n AC y z n AE x z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,1,1)-, 设平面1AC B 的法向量(m x =,y ,)z ,则144020m AC y z m AB x ⎧=+=⎪⎨==⎪⎩,取1y =,得(0m =,1,1)-, 设二面角的平面角为θ, 则6cos ||||32m n m n θ===.∴二面角1E AC B --【例2】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且1BC BB =1160A AB A AD ∠=∠=︒. (1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB .【分析】(1)连接1A B ,1A D ,AC ,则△1A AB 和△1A AD 均为正三角形,设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥,由四边形ABCD 是正方形,得AC BD ⊥,从而BD ⊥平面1A AC .进而1BD AA ⊥,由此能证明1BD CC ⊥.(2)推导出11A B A D ⊥,1AO AO ⊥,1AO BD ⊥,从而1AO ⊥底面ABCD ,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -,利用向量法能求出当E 为11D C 的中点时,直线DE 与平面1BDB . 【解答】解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以△1A AB 和△1A AD 均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1AO A C O =,所以BD ⊥平面1A AC .又1AA ⊂平面1A AC ,所以1BD AA ⊥,又11//CC AA ,所以1BD CC ⊥.(2)由11A B A D ==2BD ==,知11A B A D ⊥,于是1112AO A O BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,1A A C O =,得1AO ⊥底面ABCD , 所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1A ,0,0),(0B ,1,0),(0D ,1-,0),1(0A ,0,1),(1C -,0,0),(0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)D C DC ==-, 由11(1,0,1)DD AA ==-,得1(1D -,1-,1).设111([0,1])D E D C λλ=∈,则(1E x +,1E y +,1)(1E z λ-=-,1,0),即(1E λ--,1λ-,1), 所以(1,,1)DE λλ=--.设平面1B BD 的一个法向量为(,,)n x y z =, 由100n DB n BB ⎧=⎪⎨=⎪⎩得00y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =,设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|2DE n θ=<>=⨯, 解得12λ=或13λ=-(舍去), 所以当E 为11D C 的中点时,直线DE 与平面1BDB .【变式训练】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥ (1)求证:平面1ABC ⊥平面11A ACC(2)设D 是11AC 的中点,判断并证明在线段1BB 上是否存在点E ,使//DE 平面1ABC ,若存在,求点E 到平面1ABC 的距离.【分析】(1)在三棱柱111ABC A B C -中,由侧面11ABB A 是矩形,可得1AA AB ⊥,又1AA BC ⊥,可得1AA ⊥平面ABC ,得到1AA AC ⊥,进一步有11AC AC ⊥,结合11BC AC ⊥,可得1AC ⊥平面1ABC ,由面面垂直的判定得平面1ABC ⊥平面11A ACC ;(2)当E 为1BB 的中点时,连接AE ,1EC ,DE ,取1AA 的中点F ,连接EF ,FD ,由面面平行的判定和性质可得//DE 平面1ABC ,咋爱优等体积法可求点E 到平面1ABC 的距离为. 【解答】(1)证明:在三棱柱111ABC A B C -中,侧面11ABB A 是矩形, 1AA AB ∴⊥,又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1AA AC ∴⊥,又1AA AC =,11AC AC ∴⊥, 又11BC AC ⊥,111BC A C C =,1AC ∴⊥平面1ABC ,又1AC ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC ;(2)解:当E 为1BB 的中点时,连接AE ,1EC ,DE , 如图,取1AA 的中点F ,连接EF ,FD ,//EF AB ,1//DF AC ,又EF DF F =,1ABA C A =,∴平面//EFD 平面1ABC ,又DE ⊂平面EFD ,//DE ∴平面1ABC ,又11E ABC C ABE V V --=,11C A ⊥平面ABE ,设点E 到平面1ABC 的距离为d ,∴111122243232d ⨯⨯⨯=⨯⨯⨯⨯,得d =∴点E 到平面1ABC专题强化1.(2020•3月份模拟)如图.在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面三角形ABC 是等边三角形)中,1BC CC =,M 、N 、P 分别是1CC ,AB ,1BB 的中点. (1)求证:平面//NPC 平面1AB M ;(2)在线段1BB 上是否存在一点Q 使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.【分析】(1)由M 、N 、P 分别是1CC ,AB ,1BB 的中点.利用平行四边形、三角形中位线定理即可得出1//NP AB ,1//CP MB ,再利用线面面面平行的判定定理即可得出结论.(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ .四边形11ABB A 是正方形,因此点Q 为B 点.不妨取2BC =.判断10AB MQ =是否成立即可得出结论.【解答】(1)证明:M 、N 、P 分别是1CC ,AB ,1BB 的中点. 1//NP AB ∴,四边形1MCPB 为平行四边形,可得1//CP MB ,NP ⊂/平面1AB M ;1AB ⊂平面1AB M ;//NP ∴平面1AB M ;同理可得//CP 平面1AB M ;又CP NP P =,∴平面//NPC 平面1AB M .(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ . 四边形11ABB A 是正方形,因此点Q 为线段1BB 的中点. 不妨取2BC =.(0M ,1-,1),(0Q ,1,0),A 0,0),1(0B ,1,2),1(AB =-1,2),(0MQ =,2,1)-, 10AB MQ =.∴在线段1BB 上存在一点Q ,使1AB ⊥平面1A MQ ,其中点Q 为线段1BB 的中点2.(2020•湖南模拟)如图,AB 为圆O 的直径,点E 、F 在圆O 上,//AB EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2AB =,1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ; (Ⅰ)求直线AB 与平面CBF 所成角的大小;(Ⅰ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60︒?【分析】()I 利用面面垂直的性质,可得CB ⊥平面ABEF ,再利用线面垂直的判定,证明AF ⊥平面CBF ,从而利用面面垂直的判定可得平面DAF⊥平面CBF;()II确定ABF∠为直线AB与平面CBF所成的角,过点F作FH AB⊥,交AB于H,计算出AF,即可求得直线AB与平面CBF所成角的大小;(Ⅰ)建立空间直角坐标系,求出平面DCF的法向量1(0,2n t=,平面CBF的一个法向量21(,0)2n AF==-,利用向量的夹角公式,即可求得AD的长.【解答】()I证明:平面ABCD⊥平面ABEF,CB AB⊥,平面ABCD⋂平面ABEF AB=,CB∴⊥平面ABEF.AF ⊂平面ABEF,AF CB∴⊥,⋯(2分)又AB为圆O的直径,AF BF∴⊥,AF∴⊥平面CBF.⋯(3分)AF ⊂平面ADF,∴平面DAF⊥平面CBF.⋯(4分)()II解:根据(Ⅰ)的证明,有AF⊥平面CBF,FB∴为AB在平面CBF内的射影,因此,ABF∠为直线AB与平面CBF所成的角⋯(6分)//AB EF,∴四边形ABEF为等腰梯形,过点F作FH AB⊥,交AB于H.2AB=,1EF=,则122AB EFAH-==.在Rt AFB∆中,根据射影定理2AF AH AB=,得1AF=.⋯(8分)∴1sin2AFABFAB∠==,30ABF∴∠=︒.∴直线AB与平面CBF所成角的大小为30︒.⋯(9分)(Ⅰ)解:设EF中点为G,以O为坐标原点,OA、OG、AD方向分别为x轴、y轴、z轴方向建立空间直角坐标系(如图).设(0)AD t t=>,则点D的坐标为(1,0,)t,则(1C-,0,)t,1(1,0,0),(1,0,0),(2A B F-∴1(2,0,0),(,)2CD FD t==⋯(10分)设平面DCF的法向量为1(,,)n x y z=,则1n CD =,1n FD =,即200.xy tz=⎧⎪⎨+=⎪⎩令z=,解得0x=,2y t=,∴1(0,2n t=⋯(12分)由()I 可知AF ⊥平面CFB ,取平面CBF 的一个法向量为21(,0)2n AF ==-,依题意1n 与2n 的夹角为60︒,∴1212cos60||||n n n n ︒=,即12=,解得t =因此,当AD DFC 平面FCB 所成的锐二面角的大小为60︒.⋯(14分)3.(2019•全国二模)如图,直三棱柱111ABC A B C -中,点D 是棱11B C 的中点. (Ⅰ)求证:1//AC 平面1A BD ;(Ⅰ)若AB AC ==12BC BB ==,在棱AC 上是否存在点M ,使二面角1B A D M --的大小为45︒,若存在,求出AMAC的值;若不存在,说明理由.【分析】(Ⅰ)先连接1AB ,交1A B 于点O ,再由线面平行的判定定理,即可证明1//AC 平面1A BD ; (Ⅰ)先由题意得AB ,AC ,1AA 两两垂直,以A 为原点,建立空间直角坐标系A xyz -,设(0M ,a ,0),(02)a ,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出a ,进而可得出结果.【解答】证明:(Ⅰ)连接1AB ,交1A B 于点O ,则O 为1AB 中点, 连接OD ,又D 是棱11B C 的中点,1//OD AC ∴,OD ⊂平面1A BD ,1AC ⊂/平面1A BD ,1//AC ∴平面1A BD .解:(Ⅰ)由已知AB AC ⊥,则AB ,AC ,1AA 两两垂直, 以A 为原点,如图建立空间直角坐标系A xyz -,则B ,1(0A ,0,2),D ,2),(0C0), 设(0M ,a ,0),(02)a,则1(BA =-,12(A D =0),1(0A M =,a ,2)-, 设平面1BA D 的法向量为(n x =,y ,)z ,则11220202n BA z n A D x y ⎧=-+=⎪⎨==⎪⎩,取1z =,得(2,n =-1). 设平面1A DM 的法向量为(m x =,y ,)z ,则1120202m A M ay z m A D y ⎧=-=⎪⎨=+=⎪⎩,2x =-,得(2m =-,2,)a . 二面角1BA D M --的大小为45︒, 2|||2222cos 45|cos ,|||||58m na m n m n a --+∴︒=<>===+,23240a ∴+-=,解得a =-a =, 02a a ∴=, ∴存在点M ,此时23AM AC =,使二面角1B A D M --的大小为45︒.4.(2019•3月份模拟)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为BC 边上一点,BD =122AA AB AD ===.(1)证明:平面1ADB ⊥平面11BB C C .(2)若BD CD =,试问:1A C 是否与平面1ADB 平行?若平行,求三棱锥11A A B D -的体积;若不平行,请说明理由.【分析】(1)先证AD 与BC ,1BB 垂直,进而得线面垂直,面面垂直;(2)连接1A B 得中点E ,利用中位线得线线平行,进而得线面平行,再利用等分三棱柱的方法求得三棱锥的体积.【解答】解:(1)证明:2AB =,1AD =,BD =AD BD ∴⊥,1AA ⊥平面ABC ,1BB ∴⊥平面ABC , 1BB AD ∴⊥,AD ∴⊥平面11BB C C ,∴平面1ADB ⊥平面11BB C C ;(2)1A C 与平面1ADB 平行,证明如下:连接1A B 交1AB 于E ,连接DE ,则E 为1AB 中点,BD CD =,1//AC DE ∴, 又1AC ⊂/平面1ADB ,DE ⊂平面1ADB , 1//AC ∴平面1ADB , 利用三等分三棱柱的知识可知, 1111116A A B D A B C ABC V V --=116ABC S AA ∆=⨯ 11162BC AD AA =⨯⨯⨯ 111262=⨯⨯⨯=故三棱锥11A A B D - 5.(2018秋•全国期末)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是菱形,111112AA A B AB ===,60ABC ∠=︒,1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:1//C M 平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.【分析】(1)连接1B A ,推导出四边形11AB C M 是平行四边形,从而11//C M B A ,由此能证明1//C M 平面11AA B B .(2)取BC 中点Q ,连接AQ ,推导出AQ BC ⊥,AQ AD ⊥,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】证明:(1)连接1B A ,由已知得,11////B C BC AD ,且1112B C AM BC ==所以四边形11AB C M 是平行四边形,即11//C M B A ⋯(2分)又1C M ⊂/平面11AA B B ,1B A ⊂平面11AA B B , 所以1//C M 平面11AA B B ⋯(4分)解:(2)取BC 中点Q ,连接AQ ,因为ABCD 是菱形,且60ABC ∠=︒, 所以ABC ∆是正三角形,所以AQ BC ⊥,即AQ AD ⊥, 由于1AA ⊥平面ABCD ⋯(6分)所以,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系, 如图(0A ,0,0),1(0A ,0,1),1(0D ,1,1),Q 假设点E 存在,设点E的坐标为,0)λ,11λ-,(3,0)AE λ=,1(0,1,1)AD =⋯(7分) 设平面1AD E 的法向量(,,)n x y z =则100n AE n AD ⎧=⎪⎨=⎪⎩,即00y y z λ+=+=⎪⎩,可取(,3,n λ=-⋯(9分)平面1ADD 的法向量为(3,0,0)AQ =⋯(10分) 所以,31|cos ,|33AQ n λ<>==,解得:λ=(11分) 又由于二面角1E AD D --大小为锐角,由图可知,点E 在线段QC 上, 所以λ=,即1CE =(12分)6.(2019•山东模拟)如图所示的矩形ABCD 中,122AB AD ==,点E 为AD 边上异于A ,D 两点的动点,且//EF AB ,G为线段ED 的中点,现沿EF 将四边形CDEF 折起,使得AE 与CF 的夹角为60︒,连接BD ,FD .(1)探究:在线段EF 上是否存在一点M ,使得//GM 平面BDF ,若存在,说明点M 的位置,若不存在,请说明理由;(2)求三棱锥G BDF -的体积的最大值,并计算此时DE 的长度.【分析】(1)取线段EF 的中点M ,由G 为线段ED 的中点,M 为线段EF 的中点,可得//GM DF ,再由线面平行的判定可得//GM 平面BDF ;(2)由//CF DE ,且AE 与CF 的夹角为60︒,可得AE 与DE 的夹角为60︒,过D 作DP 垂直于AE 交AE 于P ,由已知可得DP 为点D 到平面ABFE 的距离,设DE x =,则4AE BF x ==-,然后利用等积法写出三棱锥G BDF -的体积,再由基本不等式求最值,并求出DE 的长度. 【解答】(1)解:取线段EF 的中点M ,有//GM 平面BDF . 证明如下:如图所示,取线段EF 的中点M ,G 为线段ED 的中点,M 为线段EF 的中点, GM ∴为EDF ∆的中位线,故//GM DF ,又GM ⊂/平面BDF ,DF ⊂平面BDF ,故//GM 平面BDF ; (2)解://CF DE ,且AE 与CF 的夹角为60︒, 故AE 与DE 的夹角为60︒, 过D 作DP 垂直于AE 交AE 于P ,由已知得DE EF ⊥,AE EF ⊥,EF ∴⊥平面AED , 则DP 为点D 到平面ABFE 的距离, 设DE x =,则4AE BF x ==-, 由(1)知//GM DF , 故111333[1(4)](4)332G BDF M BDF D MBF MBF V V V S DP x x x x ---∆====⨯⨯⨯-⨯=-, 当且仅当4x x -=时等号成立,此时2x DE ==.故三棱锥G BDF-,此时DE的长度为2.7.(2018•全国模拟)如图,在四棱锥P ABCD-中,90ABC BAD∠=∠=︒,112AD AB BC===,PD⊥平面ABCD,PD=M为PC上的动点.(Ⅰ)当M为PC的中点时,在棱PB上是否存在点N,使得//MN平面PDA?说明理由;(Ⅰ)BDM∆的面积最小时,求三棱锥M BCD-的体积.【分析】(Ⅰ)当N为PB中点时,//MN平面PDA.取PB的中点N,连接MN,由M,N分别为PC,PB中点,可得//MN BC,又//BC AD,得//MN AD,再由直线与平面平行的判定对立即可证明//MN平面PDA;(Ⅰ)由PD⊥平面ABCD,DB⊂平面ABCD,知PD BD⊥,又BD CD⊥,CD PD D=,得BD⊥平面PCD,又M D⊂平面PDC,可得BD M D⊥,进一步得到DBM∆为直角三角形,当MD PC⊥时BDM∆的面积最小,然后利用等积法即可求出三棱锥M BCD-的体积.【解答】解:(Ⅰ)当N为PB中点时,//MN平面PDA.证明如下:取PB的中点N,连接MN,M,N分别为PC,PB中点,//MN BC∴,又//BC AD,//MN AD∴,又DA⊂平面PDA,MN⊂/平面PDA,//MN∴平面PDA;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥, 又BD CD ⊥,CDPD D =,BD ∴⊥平面PCD ,又M D ⊂平面PDC ,BD M D ∴⊥,DBM ∴∆为直角三角形.当MD PC ⊥时BDM ∆的面积最小. 在底面直角梯形ABCD 中,由90ABC BAD ∠=∠=︒,112AD AB BC ===,得CD =BD ∴=在Rt PDC ∆中,由PD =CD =可得PC =MD =则CM =12MCD S ∆∴==.∴1133M BCD B MCD MCD V V S BD --∆===⨯8.(2018•全国二模)直三棱柱111ABC A B C -中,14AC AA ==,AC BC ⊥. (Ⅰ)证明:11AC A B ⊥;(Ⅰ)当BC 的长为多少时,直线1A B 与平面1ABC 所成角的正弦值为13.【分析】(Ⅰ)由BC AC ⊥,1BC AA ⊥,得BC ⊥平面11AA C C ,从而1AC BC ⊥,连结1A C ,四边形11AA C C 是正方形,则11AC AC ⊥,由此能证明1AC ⊥平面1A BC ,从而11AC A B ⊥. (Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -,利用向量法能求出a . 【解答】证明:(Ⅰ)BC AC ⊥,1BC AA ⊥,1ACAA A =,BC ∴⊥平面11AA C C ,又1AC ⊂平面11AA C C ,1AC BC ∴⊥,连结1A C ,四边形11AA C C 是正方形,11AC AC ∴⊥, 且1BCAC C =, 1AC ∴⊥平面1A BC ,又1A B ⊂平面1A BC ,11AC A B ∴⊥.解:(Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -, 设BC a =,则(0C ,0,0),(4A ,0,0),(0B ,a ,0),1(0C ,0,4),1(4A ,0,4),1(4A B =-,a ,4)-,(4AB =-,a ,0),1(4AC =-,0,4), 设平面1ABC 的法向量为(n x =,y ,)z ,则140440AB n x ay AC n x z ⎧=-+=⎪⎨=-+=⎪⎩,取x a =,得(n a =,4,)a ,直线1A B 与平面1ABC 所成角的正弦值为13.1|cos A B ∴<,221|||332216n a ==++. 解得4a =.9.(2018•新课标Ⅰ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得//MC平面PBD?说明理由.【分析】(1)通过证明CD AD⊥,证明CM⊥平面AMD,然后证明平面AMD⊥平面BMC;⊥,CD DM(2)存在P是AM的中点,利用直线与平面平行的判断定理说明即可.【解答】(1)证明:矩形ABCD所在平面与半圆弦CD所在平面垂直,所以AD⊥半圆弦CD所在平面,CM⊂半圆弦CD所在平面,∴⊥,CM ADM是CD上异于C,D的点.CM DM∴⊥,DM AD D∴⊥平面AMD,CM⊂平面CMB,=,CM∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得//MC OP,MC⊂/平面BDP,OP⊂平面BDP,所以//MC平面PBD.。
几何图形的关联性与科学探索与实验的拓展的综合题

几何图形的基本性质
定义:几何图形是点、线、面等基本元素的集合 分类:分为平面图形和立体图形两大类 性质:具有形状、大小、方向和位置等基本属性 关联性:几何图形之间存在一定的关联性和相互转化关系
几何图形的关联性表现
相似性:几何图形之间存在形状、大小、方向等方面的相似特征,这些相似性可以用于描述和比较不同图形之间的 关系。
几何图形的关联性与科学探索与实验 的拓展的综合应用在各个领域的应用 越来越广泛,如物理学、化学、生物 学等。
未来,几何图形的关联性与科学探索 与实验的拓展的综合应用将更加注重 跨学科的交叉融合,以推动科学研究 的进步。
添加标题
添加标题
添加标题
添加标题
随着科技的发展,几何图形的关联性 与科学探索与实验的拓展的综合应用 将更加深入,能够解决更加复杂的问 题。
几何图形的关联 性与科学探索与 实验的拓展的综 合应用
几何图形在科学探索与实验中的应用
物理实验:几何图形在物理实验中常常被用来模拟和解释物理现象,例如光的干涉和衍射实验。
化学反应:在化学反应中,几何图形可以用来描述分子的结构和化学键的排列,对于理解化学反应 的本质非常重要。
生物学研究:在生物学研究中,几何图形也被广泛用于描述细胞结构和组织排列,例如DNA的双螺 旋结构。
天文学观测:在天文学中,几何图形被用来描述天体的运动轨迹和星系的形状,对于宇宙的探索和 观测具有重要意义。
科学探索与实验在几何图形关联性中的应用
综合应用案例分析
几何图形在建筑设计中的 应用
几何图形在物理学实验中 的应用
几何图形在化学实验中的 应用
几何图形在生物学实验中 的应用
综合应用的发展趋势与展望
相交性:几何图形之间可能存在相交、相切、相离等关系,这些关系可以用于确定不同图形之间的空间位置和运动 状态。
七年级数学几何图形探索题目

七年级数学几何图形探索题目【正文开始】在七年级的数学学习中,几何图形是一个重要的内容。
通过探索几何图形,不仅可以提高学生的观察和思维能力,还可以培养他们的逻辑思维和问题解决能力。
下面,我们将一起来解答一些关于七年级数学几何图形的探索题目。
1. 问题一:给定一个直角三角形,已知斜边的长度为10cm,其中一个直角边的长度为6cm,求另一个直角边的长度。
解析:根据勾股定理,直角三角形中的斜边的平方等于两个直角边的平方和。
设另一个直角边的长度为x,则有:x² + 6² = 10²x² + 36 = 100x² = 64x = 8所以,另一个直角边的长度为8cm。
2. 问题二:画一个正方形ABCD,边长为5cm。
在边AB上找一点E,使得AE的长度为3cm。
连接DE,求角ADE的度数。
解析:正方形的每个内角都是90度,所以角ADE是一个直角。
根据正方形的性质,AE和DE相等,且均等于半边长。
因此,AE = DE = 2.5cm。
3. 问题三:在一个等边三角形ABC中,点D是AB边上的一点,角ACD的度数为30度。
连接DC和BC,求角BDC的度数。
解析:由等边三角形的性质可知,三个内角均为60度。
角ACD为30度,所以角BCD为60度。
因此,角BDC的度数为60度。
4. 问题四:画一个矩形EFGH,已知EF的长度为4cm,EH的长度为3cm。
连接FG和GH,求角GHE的度数。
解析:我们先计算矩形的两个对角线的长度。
根据勾股定理,对角线的长度为:FG = √(EF² + (2*EH)²) = √(4² + (2*3)²) = √(16 + 36) = √52 = 2√13 cm GH = √(((2*EF)²) + EH²) = √(((2*4)²) + 3²) = √(64+9) = √73 cm根据余弦定理,角GHE的度数可以通过以下公式求解:cos GHE = (FG² + GH² - FH²) / (2 * FG * GH)cos GHE = ((2√13)² + (√73)² - 3²) / (2 * 2√13 * √73)cos GHE = (52 + 73 - 9) / (4√13 * √73)cos GHE = 116 / (4√949)cos GHE = 29 / √949通过查表或计算器,我们可以得到cos GHE的值为 0.993536。
专题六 几何图形综合问题

类型一
类比、迁移与拓展类几何综合问题
(1)该类问题常常是先根据特殊的条件结合图形猜想出结论,然后在一般条件下论证结论,最后运用
结论解决问题;或者是在特殊条件下得出结论,改变条件的特殊性(如点的位置发生改变,图形的形状
发生改变等)判断结论是否仍然成立.
(2)解答该类问题注意类比,几问之间层层递进,但是原理相同,图形结构类似或方法类似,或在此基
∵四边形ABCD和四边形AEGF是正方形,∴∠DAB=∠AFG=90°,AE=AF,AD=AB=FH,∠EAG=∠AGF,
∴∠EAD=∠EAG+∠DAB=∠AFG+∠AGF=∠AFG+∠HFG=∠AFH,
∴△EAD≌△AFH(SAS),∴DE=AH.
又∵AM=MH,∴DE=AM+MH=2AM.
∵△EAD≌△AFH,∴∠ADE=∠FHA.
边形ABCD中这对互余的角可类比(1)中思路进行拼合,先作∠CDF=
∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量
关系是
.
(1)解:∠DCA′
(2)解:AD2+DE2=AE2
①
②
方法运用
(3)如图③所示,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平
∵△AMB≌△HMF,∴∠FHA=∠BAM,∴∠ADE=∠BAM.
又∵∠BAM+∠DAM=∠DAB=90°,∴∠ADE+∠DAM=90°,
∴∠AND=180°-(∠ADE+∠DAM)=90°,即DE⊥AM.
故DE=2AM,DE⊥AM.
类型三 几何多结论判断问题
几何多结论判断问题考查的知识点较多,主要以圆和四边形为核心,解决问题的主要手段是利用三
几何综合探究

解答题突破
返回目录
(2)类比探究
如图 2,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=
∠OCD=30°,连接 AC 交 BD 的延长线于点 M.请判断
AC BD
的值及
∠AMB 的度数,并说明理由.
图2
备用图
解答题突破
返回目录
(3)拓展延伸 在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线 交于点M,若OD=1,OB= 7 ,请直接写出当点C与点M重合时AC的 长.
返回目录
解答题突破
返回目录
(3)①证明:∵∠MAN=∠NDF=45°,∠ANM=∠DNF, ∴△AMN∽△DFN.∴DANN=MFNN,即MANN=DFNN. 又∠AND=∠MNF,∴△ADN∽△MFN. ∴∠MFN=∠ADN=45°.∵∠MAF=∠MFA=45°, ∴△AMF为等腰直角三角形.
几何作图
返回目录
解答题突破
返回目录
1.如图1,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°, AB=AC,AD=AE,△ADE绕点A在平面内旋转,连接BD,CE.
(1)在△ADE旋转过程中,当AD⊥BD时,请画出相应的图形;
(2)若AB=13,AD=5,直线BD,CE交于点O,则在(1)的条件下, OB的长为__1_7_或__7___.
1.条件:如图9、图10,∠AOB=60°,∠DCE=120°,OC平分 ∠AOB.
图9
图10
解答题突破
结论:如图9,①CD=CE;②OE+OD= 3OC; ③S△COE+S△CDO= 43OC2. 如图10,①CD=CE;②OE-OD= 3OC; ③S△COE-S△CDO= 43OC2.
立体几何中的探索性问题

立体几何中的探索性问题一、探索平行关系1.[2016·枣强中学模拟]如图所示,在正四棱柱A1C中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________,就有MN∥平面B1BDD1.(注:请填上一个你认为正确的条件,不必考虑全部可能的情况)答案:M位于线段FH上(答案不唯一)[解析]连接HN,FH,FN,则FH∥DD1,HN∥BD,FH∩HN=H,DD1∩BD=D,∴平面FHN∥平面B1BDD1,故只要M∈FH,则MN?平面FHN,且MN∥平面B1BDD1.2.如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成的角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.解:(1)如图所示,取AA1的中点M,连接EM,BM.因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.(2分),ABB1A1上的射影,∠EBM为BE和平面ABB1A1所成的角.(4分(2)在棱C1D1上存在点F,使B1F∥平面A1BE.事实上,如图(b)所示,分别取C1D1和CD的中点因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1是平行四边形,因此D1C∥A1B.又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B.这说明A1,B,G,E四点共面.所以BG?平面A1BE.(8分)因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四边形B1BGF是平行四边形,所以B1F∥BG,(10分)而B1F?平面A1BE,BG?平面A1BE,故B1F∥平面A1BE.(12分)3.如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.(1)求三棱锥A-PDE的体积;(2)AC边上是否存在一点M,使得P A∥平面EDM?若存在,求出AM的长;若不存在,请说明理由.解析:(1)∵PD⊥平面ABCD,∴PD⊥AD.又∵ABCD是矩形,又AD=2,∴V A-PDE=AD·S△PDE=×2×4=.(2)取AC中点M,连接EM,DM,∵E为PC又∵EM?平面EDM,P A?平面EDM,∴P A∥平面EDM.∴AM=AC=.即在AC边上存在一点M,使得P A∥平面EDM,AM的长为.4.如图所示,在三棱锥P-ABC中,点D,E分别为PB,BC的中点.在线段AC上是否存在点F,使得AD∥平面PEF?若存在,求出的值;若不存在,请说明理由.解:假设在AC上存在点F,使得AD∥平面PEF,连接DC交PE于G,连接FG,如图所示.∵AD∥平面PEF,平面ADC∩平面PEF=FG,∴AD∥FG.又∵点D,E分别为PB,BC的中点,∴G为△PBC的重心,∴==.故在线段AC上存在点F,使得AD∥平面PEF,且=.5.[2016·北京卷]如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面P AC.(2)求证:平面P AB⊥平面P AC.(3)设点E为AB的中点,在棱PB上是否存在点F,使得P A∥平面CEF?说明理由.解:(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,所以DC⊥平面P AC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB,所以AB⊥平面P AC,所以平面P AB⊥平面P AC.(3)棱PB上存在点F,使得P A∥平面CEF.证明如下:取6(1)(2)所以四边形AMCB是平行四边形,从而CM∥AB.又AB?平面P AB,CM?平面P AB,所以CM∥平面P AB.(说明:取棱PD的中点N,则所找的点可以是直线(2)证明:由已知,P A⊥AB,P A⊥CD.因为AD∥BC,BC=AD,所以直线AB与CD相交,所以P A⊥平面ABCD,从而P A⊥BD.因为AD∥BC,BC=AD,所以BC∥MD,且BC=MD,所以四边形BCDM是平行四边形,所以BM=CD=AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面P AB.又BD?平面PBD,所以平面P AB⊥平面PBD.7.[2016·阳泉模拟]如图7-41-10,在四棱锥P-ABCD中,BC∥AD,BC=1,AD=3,AC⊥CD,且平面PCD⊥平面ABCD.(1)求证:AC⊥PD.(2)在线段P A上是否存在点E,使BE∥平面PCD?若存在,求出的值;若不存在,请说明理由.解:(1)证明:∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AC⊥CD,AC?平面ABCD,∴AC⊥平面PCD,∵PD?平面PCD,∴AC⊥PD.(2)在线段P A上存在点E,使BE∥平面PCD,且=.下面给出证明:∵AD=3,BC=1,∴在△P AD中,分别取P A,PD靠近点P的三等分点E,F,连接EF,BE,CF.∵==,∴EF∥AD,且EF=AD=1.又∵BC∥AD,∴BC∥EF,且BC=EF,∴四边形BCFE是平行四边形,∴BE∥CF,又∵BE?平面PCD,CF?平面PCD,∴BE∥平面PCD.8.(10分)[2016·河南中原名校联考]如图所示,在四棱锥S-ABCD中,平面SAD⊥平面ABCD,AB∥DC,△SAD 是等边三角形,且SD=2,BD=2,AB=2CD=4.(1)证明:平面SBD⊥平面SAD.(2)若E是SC上的一点,当E点位于线段SC上什么位置时,SA∥平面EBD?请证明你的结论.(3)求四棱锥S-ABCD的体积.解:(1)证明:∵△SAD是等边三角形,∴AD=SD=2,又BD=2,AB=4,=AD.∴V四棱锥S-ABCD=S梯形ABCD·SO.∵S梯形ABCD=×(2+4)×=3,∴V四棱锥S-ABCD=3.二、探索垂直关系1.如图所示,在三棱锥P-ABC中,已知P A⊥底面列说法错误的是()A.当AE⊥PB时,△AEF一定为直角三角形B.当AF⊥PC时,△AEF一定为直角三角形C.当EF∥平面ABC时,△AEF一定为直角三角形D.当PC⊥平面AEF时,△AEF一定为直角三角形答案:B[解析]已知P A⊥底面ABC,则P A⊥BC,又AB⊥BC,P A∩AB=A,则BC⊥平面P AB,BC⊥AE.当AE⊥PB时,又PB∩BC=B,则AE⊥平面PBC,则AE⊥EF,A正确.当EF∥平面ABC时,又EF?平面PBC,平面PBC∩平面ABC=BC,则EF∥BC,故EF⊥平面P AB,则AE⊥EF,故C正确.当PC⊥平面AEF时,PC⊥AE,又BC⊥AE,PC∩BC=C,则AE⊥平面PBC,则AE⊥EF,故D正确.用排除法可知选B.2.如图所示,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC =2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.答案:a或2a[解析]由题意易知,B1D⊥平面ACC1A1,所以B1D⊥CF.要使CF⊥平面B1DF,只需CF⊥DF 即可.当CF⊥DF时,设AF=x,则A1F=3a-x.由Rt△CAF∽Rt△F A1D,得=,即=,整理得x2-3ax+2a2=0,解得x=a或x=2a.3.如图所示,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.答案:①②③[解析]由题意知P A⊥平面ABC,∴P A⊥BC.又AC⊥BC,P A∩AC=A,∴BC⊥平面P AC,∴BC⊥AF.∵AF⊥PC,BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.4.如图所示,已知长方体ABCD-A1B1C1D1的底面ABCD为正方形,E为线段AD1的中点,F为线段BD1的中点.(1)求证:EF∥平面ABCD;(2)设M为线段C1C的中点,当的比值为多少时,DF⊥平面D1MB?并说明理由.解析:(1)证明:∵E为线段AD1的中点,F为线段BD1的中点,∴EF∥AB.∵EF?平面ABCD,AB?平面ABCD,∴EF∥平面ABCD.(2)当=时,DF⊥平面D1MB.∴FM∥AC.∴DF⊥FM.∵D1D=AD,∴D1D=BD.∴矩形D1DBB1为正方形.∵F为BD1的中点,∴DF⊥BD1.∵FM∩BD1=F,∴DF⊥平面D1MB.5.如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)(2)(1)求证:DE∥平面A1CB.(2)求证:A1F⊥BE.(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)∵D,E分别为AC,AB的中点,∴DE∥BC.(2分)又∵DE?平面A1CB,∴DE∥平面A1CB.(4分)(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∴DE⊥A1D,DE⊥CD.如图,分别取A1C,A1B的中点P,Q,则PQ∥BC又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DP∩DE=D,∴A1C⊥平面DEP.(12分)从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.(14分)6.如图,在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1的中点.(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP?若存在,确定点P的位置,若不存在,说明理由.解析:(1)证明:连接A1B,则AB1⊥A1B,又∵AB1⊥A1F,且A1B∩A1F=A1,∴AB1⊥平面A1BF.又BF?平面A1BF,∴AB1⊥BF.(2)证明:取AD中点G,连接FG,BG,则FG⊥AE,又∵△BAG≌△ADE,∴EP∥AB1.由(1)知AB1⊥BF,∴BF⊥EP.又由(2)知AE⊥BF,且AE∩EP=E,∴BF⊥平面AEP.7.如图(1)所示,在Rt△ABC中,∠ABC=90°,D为AC的中点,AE⊥BD于点E(不同于点D),延长AE交BC 于点F,将△ABD沿BD折起,得到三棱锥A1-BCD,如图(2)所示.(1)若M是FC的中点,求证:直线DM∥平面A1EF.(2)求证:BD⊥A1F.(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.解:(1)证明:在题图(1)中,因为D,M分别为AC,FC的中点,所以DM是△ACF的中位线,所以DM∥EF,则在题图(2)中,DM∥EF,又EF?平面A1EF,DM?平面A1EF,所以DM∥平面A1EF.(2)证明:因为A1E⊥BD,EF⊥BD,且A1E∩EF=E,所以BD⊥平面A1EF.又A1F?平面A1EF,所以BD⊥A1F.(3)直线A1B与直线CD不能垂直.理由如下:因为平面A1BD⊥平面BCD,平面A1BD∩平面BCD=BD,EF⊥BD,EF?平面BCD,所以EF⊥平面A1BD.因为A1B?平面A1BD,所以A1B⊥EF,又EF∥DM,所以A1B⊥DM.假设A1B⊥CD,因为A1B⊥DM,CD∩DM=D,所以A1B⊥平面BCD,所以A1B⊥BD,这与∠A1BD为锐角矛盾,所以假设不成立,所以直线A1B与直线CD不能垂直.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题四几何图形综合探究问题命题规律:纵观青海近五年中考,每年必考,而且此类题总是出现在试卷第27题,中考常与函数结合在一起考出现在压轴题,从考查的类型看主要包括从实际操作中探究、从特殊到一般的探究,存在性探究、动态探究,难度中偏上.命题预测:预计2017年青海(西宁)中考仍会考查此类内容,复习时应加强各种类型的强化训练.从特殊到一般的探究性问题【例1】(2015临沂中考)如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE.(1)请判断:AF与BE的数量关系是________,位置关系是________;(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD =FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论能成立吗?请直接写出你的判断.【解析】根据正方形和等边三角形的性质,可以判定AF、BE所在的两个钝角三角形全等,利用全等三角形的性质可得AF和BE的数量关系和位置关系;(2)问的思路同(1)相似,只是增加了证明向外做的这两个等腰三角形全等的过程;(3)问思路同(2)问一样.【学生解答】解:(1)AF=BE,AF⊥BE;(2)第(1)问中的判断仍然成立,证明:由EA=ED=FD=FC和AD =CD,可知△ADE≌△DCF,∴∠DAE=∠CDF,∵∠BAE=∠BAD+∠DAE=∠DAE+90°,∠ADF=∠ADC+∠CDF=∠CDF+90°,∴∠BAE=∠ADF.在△BAE和△ADF中,AB=AD,AE=DF,∠BAE=∠ADF,∴△BAE≌△ADF,∴AF=BE,由于△BAE≌△ADF,∴∠FAD=∠EBA,又∵∠FAD+∠BAF=∠BAD=90°,∴∠EBA+∠BAF=90°,∴AF⊥BE;(3)第(1)问中结论都成立.如图所示,∵AE=DF,ED=FC,AD=CD.∴△ADE≌△DCF,其余证明和(2)一样.【点拨】这类稍微改变条件,问同一结论是否仍然成立的问题,几个问题之间的思路往往一脉相承,其中体现了从特殊到一般的思维方法.1.(2016青海中考)如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F,请你认真阅读下面关于这个图形的探究片段,完成所提出的问题.,) ,图1),图2) ,图3)(1)探究1:小强看到图后,很快发现AE =EF ,这需要证明AE 和EF 所在的两个三角形全等,但△ABE 和△ECF 显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E 是边BC 的中点,因此可以选取AB 的中点M ,连接EM 后尝试着去证△AEM ≌△EFC 就行了,随着小强写出了如下的证明过程:证明:如图1,取AB 的中点M ,连接EM.∵∠AEF =90°,∴∠FEC +∠AEB =90°,又∵∠EAM +∠AEB =90°,∴∠EAM =∠FEC ,点E 、M 分别是正方形BC 和AB 的中点,∴AM =EC ,又∵△BME 为等腰Rt △,∴∠AME =135°,又∵CF 是正方形外角的平分线,∴∠ECF =135°,∴△AEM ≌△EFC(ASA ),∴AE =EF.(2)探究2:小强继续探索:如图2,若把条件“点E 是BC 的中点”改为“点E 是BC 上的任意一点”,其余条件不变,发现AE =EF 仍然成立,请你证明这一结论.(3)探究3:小强进一步还想试试,如图3,若把条件“点E 是边BC 的中点”改为“点E 是边BC 的延长线上的一点”其余条件仍不变,那么结论AE =EF 是否成立吗?若成立,请你完成证明过程给小强看,若不成立,请你说明理由.证明:(2)在AB 上截取AM =EC ,连接ME ,∵AB =BC ,∴BM =BE ,∴∠BME =45°,∴∠AME =∠ECF =135°,∵∠AEF =90°,∴∠FEC +∠AEB =90°,又∵∠EAM +∠AEB =90°,∴∠EAM =∠FEC ,∴△AEM ≌EFC(ASA ),∴AE =EF ;(3)成立.证明:延长BA 到M ,使AM =CE ,连接ME.∴BM =BE ,∴∠BME =45°,∴∠BME =∠ECF ,又∵AD ∥BE ,∴∠DAE =∠BEA ,又∵∠MAD =∠AEF =90°,∴∠DAE +∠MAD =∠BEA +∠AEF ,即∠MAE =∠CEF ,∴△MAE ≌△CEF(ASA ),∴AE =EF.实践操作型综合探究问题【例2】在图①至图③中,直线MN 与线段AB 相交于点O ,∠1=∠2=45°.(1)如图①,若AO =OB ,请写出AO 与BD 的数量关系和位置关系;(2)将图①中的MN 绕点O 顺时针旋转得到图②,其中AO =OB.求证:AC =BD ,AC ⊥BD ;(3)将图②中的OB 拉长为AO 的k 倍得到图③,求BD AC的值. 【学生解答】解:(1)AO =BD ,AO ⊥BD ;(2)如解图①,过点B 作BE ∥CA 交DO 于点E ,∴∠ACO =∠BEO.又∵AO =OB ,∠AOC =∠BOE ,∴△AOC ≌△BOE ,∴AC =BE.又∵∠1=45°,∴∠ACO =∠BEO =135°.∴∠DEB =45°,∵∠2=45°,∴BE =BD ,∠EBD =90°.∴AC =BD.延长AC 交BD 的延长线于点F ,如解图①,∵BE ∥AC ,∴∠AFD =90°,∴AC ⊥BD ;(3)如解图②,过点B 作BE ∥CA 交DO 于点E ,∴∠BEO =∠ACO.又∵∠BOE =∠AOC ,∴△BOE ∽△AOC.∴BE AC =BO AO .又∵OB =kAO ,由(2)的方法易得BE =BD ,∴BD AC=k. 【方法指导】(1)在探索两线段的数量关系时常以三角形全等或者相似为工具,由对应角的关系得到两线段相等或者成对应比例.有时需先进行等量代换,将两线段放到相似三角形或全等三角形中,若出现直角三角形,则利用直角三角形的性质求解.(2)两线段的位置关系通常为平行或垂直.先观察图形,根据图形先推测两线段的位置关系是平行或垂直.若平行,则常通过以下方法进行证解:①平行线的判定定理;②平行四边形对边平行;③三角形中位线性质等.若垂直,则可考虑以下途径:①证明两线段所在直线夹角为90°;②两线段是矩形的邻边;③两线段是菱形的对角线;④勾股定理的逆定理;⑤利用等腰三角形三线合一的性质等方式证明.2.(2015河南中考)如图1,在Rt △ABC 中,BC =2AB =8,点D ,E 分别是边BC ,AC 的中点,连接DE ,将△EDC 绕点C 按顺时针方向旋转,记旋转角为α.(1)问题发现: ①当α=0°时,AE BD=________; ②当α=180°时,AE BD=________; (2)拓展探究:试判断:当0≤α<360°时,AE BD的大小有无变化,请仅就图2的情况给出证明; (3)问题解决:当△EDC 旋转至A 、D 、E 三点共线时,直线写出线段BD 的长.解:(1)52;52;(2)无变化.∵△EDC 在旋转过程中形状大小不变,∴△EDC ∽△ABC.∴CE CA =CD CB.又∵∠ACE =∠BCD =α,∴△CEA ∽△CDB.∴AE BD =AC BC .在Rt △ABC 中,AC =AB 2+BC 2=42+82=45,∴AC BC =458=52.∴AE BD =52,即AE BD 的大小不变;(3)45或1255.几何图形的动态问题【例3】(2015青岛中考)已知:如图1,在▱ABCD 中,AB =3 cm ,BC =5 cm ,AC ⊥AB.△ACD 沿AC 的方向匀速平移得到△PNM ,速度为1 cm /s ;同时,点Q 从点C 出发,沿CB 方向匀速动,速度为1 cm /s ,当△PNM 停止平移时,点Q 也停止运动.如图2,设运动时间为t(s )(0<t <4),解答下列问题:(1)当t 为何值时,PQ ∥MN?(2)设△QMC 的面积为y cm 2,求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S △QMC ∶S 四边形ABQP =1∶4?若存在,求出t 的值;若不存在,请说明理由;(4)是否存在某一时刻t ,使PQ ⊥MQ ?若存在,求出t 的值;若不存在,请说明理由.【解析】(1)当PQ ∥MN 时,PQ ∥AB ,利用平行线分线段成比例表示线段CP 、AC 、CQ 、CB 的比例关系,进而得出t 值;(2)分别过点A ,P 作AE ⊥BC ,PD ⊥BC 分别于点E ,D ,利用相似三角形的性质得到PD 的长,从而表示出S △QPC ,再根据平行线间的距离处处相等得S △QMC =S △QPC ,从而求出的函数关系式;(3)在(2)的基础上,用含t 的式子表示S △QMC 和S四边形ABQP 的式子,假设题中关系式成立,可得关于t 的方程,t 有解则存在;若t 无解,则不存在; (4)假设PQ ⊥MQ ,则易证△MQP ∽△PDQ ,利用相似三角形的对应线段成比例,进而计算得出t 的存在性.【学生解答】(1)在Rt △ABC 中,由勾股定理得AC =BC 2-AB 2=4.由平移性质可得MN ∥AB.∵PQ ∥MN ,∴PQ ∥AB.∴CP CA =CQ CB ,即4-t 4=t 5,解得t =209;(2)作PD ⊥BC 于点D ,AE ⊥BC 于点E.由S △ABC =12AB ×AC =12AE ×BC 可得AE =125.则由勾股定理易求CE =165.∵PD ⊥BC ,AE ⊥BC ,∴AE ∥PD.∴△CPD ∽△CAE.∴CP CA=CD CE =PD AE ,即4-t 4=CD 165=PD 125.∴PD =12-3t 5,CD =16-4t 5.∵PM ∥BC ,∴M 到BC 的距离h =PD =12-3t 5.∴△QCM 是面积y =12CQ ×h =12×t ×12-3t 5=-310t 2+65t ;(3)∵PM ∥BC ,∴S △PQC =S △MQC .若S △QMC ∶S 四边形ABQP =1∶4,则S △QMC ∶S △ABC =1∶5,∴-310t 2+65t =15×6,整理得t 2-4t +4=0,解得t =2.即当t =2时,S △QMC ∶S 四边形ABQP =1∶4;(4)若PQ ⊥MQ ,则∠MQP =∠PDQ =90°.∵MP ∥BC ,∴∠MPQ =∠PQD.∴△MQP ∽△PDQ.∴PM PQ =PQ DQ .∴PQ 2=PM·DQ.即PD 2+DQ 2=PM·DQ ,由CD =16-4t 5,∴DQ =CD -CQ =16-9t 5.∴(12-3t 5)2+(16-9t 5)2=5×16-9t 5,整理得2t 2-3t =0.解得t 1=0(舍),t 2=32.即当t =32时,PQ ⊥MQ. 【点拨】图形的运动变换主要是图形的平移、旋转和翻折这几种基本变换,每一种变换都涉及三角形的全等,而在平移问题中,由平行也可以得到的相似三角形,而全等和相似的性质就是解决这些问题的关键所在.3.如图,在四边形ABCD 中,DC ∥AB ,DA ⊥AB ,AD =4 cm ,DC =5 cm ,AB =8 cm .如果点P 由B 点出发沿BC 方向向点C 匀速运动,同时点Q 由A 点出发沿AB 方向向点B 匀速运动,它们的速度均为1 cm /s .当P 点到达C 点时,两点同时停止运动.连接PQ ,设运动时间为t s .解答下列问题:(1)当t 为何值时,P ,Q 两点同时停止运动?(2)设△PQB 的面积为S ,当t 为何值时,S 取得最大值,并求出最大值;(3)当△PQB 为等腰三角形时,求t 的值.解:(1)过C 作CE ⊥AB 于点E ,易得:BC =5,当t =5时,P 、Q 同时停止运动;(2)作PF ⊥AB 于点F ,根据题意,得AQ =t ,BQ =8-t ,BP =t.∵△BPF ∽△BCE ,∴PF CE =BP BC ,∴PF =45t.∴S △PQB =12BQ ·PF =-25(t -4)2+325.∴当t =4时,△PQB 的面积最大,且S △max =325cm 2;(3)①若BP =BQ ,则t =8-t ,∴t =4 s ;②若QP =QB ,则12t 8-t =35,t =4811 s ;③若PQ =PB ,则12(8-t )t =35,t =4011 s .综上,当t 等于4 s ,4811 s ,4011 s 时,△PQB 为等腰三角形.4.已知在△ABC 中,∠ABC =90°,AB =3,BC =4,点Q 是线段AC 上一个动点,过点Q 作AC 的垂线交线段AB(如图1)或线段AB 的延长线(如图2)于点P.(1)当点P 在线段AB 上时,求证:△APQ ∽△ACB ;(2)当△PQB 为等腰三角形时,求AP 的长.解:(1)在△APQ 与△ACB 中,∵∠ABC =90°,PQ ⊥AC ,∴∠AQP =∠ABC ,∵∠PAQ =∠CAB ,∴△APQ ∽△ACB ;(2)AP =53或6.。