电子秤电路设计与制作
实用电子秤的设计与制作

实用电子秤的设计与制作一、课程设计任务1.设计框图利用传感器与检测技术实验室已有的应变式称重台,将四片应变片采用全桥形式接入测量电路,经过运放OP07组成的仪表放大器放大,再由串行模数转换芯片TLC2543进行A/D转换,转换结果送入单片机STC12C5A60S2,通过74LS244驱动四位数码管显示。
仪表放大器的输出需经采集卡采集,经过虚拟仪器软件分析,得到较好的线性度和灵敏度后,才能再送入AD芯片进行转换。
系统框图如图1所示。
图1 电子秤系统框图2.基本要求(1) 掌握金属箔式应变片的应变效应。
(2) 掌握单臂、半桥和全桥电路的工作原理和性能。
(3) 利用multisim仿真软件,确定仪表放大器设计方案;应用运放OP07设计三运放仪表放大器,确定电路元器件具体参数;在通用板上制作电路板。
(4) 仪表放大器增益可调,放大倍数自行确定;应变电桥和放大电路应具有调零功能。
(5) 能够利用C51单片机编写正确程序,调试电路板,采集放大器的输出电压,并显示。
(6) 考虑A/D分辨率为20mV,要求灵敏度不低于40mV/20g。
(7) 利用虚拟仪器采集测量电路的输出电压至电脑中,并分析数据。
要求非线性误差小于1.50%。
二、设计总体要求1.认真阅读本设计任务书,了解本设计的任务和要求。
2.认真复习《传感器与检测技术》和《单片机原理与应用》课程中有关应变式传感器和A/D转换、数码管显示的有关内容。
3.适当查阅一些与设计有关的参考资料,鼓励同学创新。
4.利用protues7.1画出系统完整电路图,包括仪表放大器和单片机系统两大部分。
5.特别要注意焊接装配的质量,认真搞好焊接装配工艺,焊接完毕后一定要细心检查有无错误、错焊元件、焊接点与接地点短路等。
在焊接装配完成后,要认真检查部件的焊接情况,在与电路图反复对照确属无误后,方可接上直流电源,特别要注意电源接法。
6.精心调测,尽量得到较高的灵敏度和较低的非线性误差。
电子秤电路原理

电子秤电路原理
电子秤电路原理是基于电阻应变片(strain gauge)的工作原理设计的。
电阻应变片是一种能感知外力作用而改变电阻值的传感器。
当外力作用于电子秤平台上的物体时,电子秤的平台会发生微小的变形,导致电阻应变片产生相应的应变。
电子秤电路中通常采用全桥电路来测量电阻应变片的电阻值变化。
全桥电路由四个电阻组成,其中两个电阻用于电源电压的分压,另外两个电阻连接到电阻应变片上。
当电子秤受力变形时,电阻应变片的电阻值会发生微小的变化,通过全桥电路中的电流流过电子秤电路的各个分支,输出电压的变化即可反映被测物体的重量。
为了提高电子秤的灵敏度和准确度,常常采用放大器来放大输出电压信号。
放大器可以根据需要调节增益,以增强信号强度并提高信噪比。
放大器输出的电压信号经过滤波电路进行滤波处理,以去除干扰信号和杂散信号。
在电子秤电路中,还需要添加一个模数转换器(ADC),将模拟信号转换为数字信号。
数字信号可以通过微处理器或者其他计算设备进行进一步处理和显示。
通过校准、调整和计算等步骤,最终可以得出被测物体的准确重量。
总之,电子秤电路利用电阻应变片的变化来测量物体的重量,通过全桥电路、放大器、滤波电路和模数转换器等组成的电路系统,能够实时地获取并处理被测物体的重量信息。
基于单片机的实用电子秤设计

基于单片机的实用电子秤设计一、硬件设计1、传感器选择电子秤的核心部件之一是称重传感器。
常见的称重传感器有电阻应变式、电容式等。
在本设计中,我们选用电阻应变式传感器,其原理是当物体的重量作用在传感器上时,传感器内部的电阻应变片会发生形变,从而导致电阻值的变化。
通过测量电阻值的变化,就可以计算出物体的重量。
2、信号放大与调理传感器输出的信号通常比较微弱,需要经过放大和调理才能被单片机处理。
我们使用高精度的仪表放大器对传感器输出的信号进行放大,并通过滤波电路去除噪声干扰,以提高测量的准确性。
3、单片机选型单片机是整个电子秤系统的控制核心。
考虑到性能、成本和开发难度等因素,我们选用 STM32 系列单片机。
STM32 系列单片机具有丰富的外设资源、较高的运算速度和良好的稳定性,能够满足电子秤的设计需求。
4、显示模块为了直观地显示测量结果,我们选用液晶显示屏(LCD)作为显示模块。
LCD 显示屏具有功耗低、显示清晰、视角广等优点。
通过单片机的控制,可以在 LCD 显示屏上实时显示物体的重量、单位等信息。
5、按键模块为了实现电子秤的功能设置,如单位切换、去皮、清零等,我们设计了按键模块。
按键模块通过与单片机的连接,将用户的操作指令传递给单片机进行处理。
6、电源模块电源模块为整个电子秤系统提供稳定的电源。
我们使用线性稳压器将输入的电源电压转换为适合各个模块工作的电压,以确保系统的正常运行。
二、软件算法1、重量计算算法根据传感器的特性和放大调理电路的参数,我们可以建立重量与传感器输出信号之间的数学模型。
通过对传感器输出信号的采集和处理,利用数学模型计算出物体的实际重量。
2、滤波算法为了消除测量过程中的噪声干扰,提高测量的稳定性和准确性,我们采用数字滤波算法对采集到的信号进行处理。
常见的数字滤波算法有中值滤波、均值滤波等。
在本设计中,我们选用中值滤波算法,其原理是对连续采集的若干个数据进行排序,取中间值作为滤波后的结果。
电子秤电路设计

电子秤电路设计电子秤是现代社会中广泛应用的一种衡量物品重量的设备,它具有高精度、稳定性强、易于读数等优点。
电子秤的核心部件是压电式传感器,传感器通过受力形变产生电信号,再经过信号处理器处理并转化为显示重量的数字。
因此,电子秤电路设计中压电式传感器与信号处理器是核心考虑因素。
一、压电式传感器的电路设计压电式传感器是通过物理变化产生电压信号,进而检测物体重量的设备。
根据工作原理,压电式传感器可分为电荷式和压力式两种。
电荷式传感器通过物理变化产生电荷,进而产生电压信号。
压力式传感器则是通过物理体积变化,产生电信号。
以下仅讨论压力式传感器的电路设计。
1.电路原理压力传感器主要由桥式电路、信号放大电路和滤波电路三部分组成。
(1)桥式电路:桥式电路分为有源桥式电路和无源桥式电路。
目前多采用无源桥式电路,因为它不需要外部电源,便于实现多点测量等多台组合共同测量。
(2)信号放大电路:传感器产生的电信号相当小,需通过信号放大器放大后才能有效的进行传输和处理。
(3)滤波电路:滤波器用于去除杂波、信号噪声等,保证电路稳定性和准确性。
常用的滤波器有低通滤波器和带通滤波器等。
2.电路参数(1)灵敏度:传感器允许工作范围内,重量变化所引起的电路输出变化量,常用的单位是mv/kg,kg/mv。
(2)非线性度:指传感器输出与实际值之间的误差,一般用±%来表示。
(3)零点漂移:指在重量不变的情况下,电路输出随时间漂移的程度,常用的单位是mV/h或%FS/h。
(4)灵敏度温漂:指在温度变化的情况下,灵敏度相对变化的情况,常用的单位是%RS/℃。
二、信号处理器的电路设计信号处理器是将传感器输出的电信号传输和处理的部分,主要问题是如何提高信号精度和稳定性。
1.放大电路设计放大电路是放大传感器输出信号的重要组成部分,合理的设计可以使信号精度和信噪比大大提高。
在放大电路中,需要考虑的几个问题:(1)增益大小:增益大小是决定信号放大倍数的关键因素,合理选择增益大小可以使信号精确到小数点后几位。
电子秤电路设计课程设计

电子秤电路设计课程设计一、教学目标本课程旨在让学生了解和掌握电子秤电路设计的基本原理和方法,通过学习使学生能够运用电子秤电路知识解决实际问题。
具体的教学目标如下:1.知识目标:(1)了解电子秤的原理和结构;(2)掌握电子秤电路的基本组成部分及工作原理;(3)熟悉常用电子秤电路的设计方法。
2.技能目标:(1)能够分析电子秤电路图,理解各个部分的功能;(2)能够运用所学知识设计简单的电子秤电路;(3)具备调试和优化电子秤电路的能力。
3.情感态度价值观目标:(1)培养学生对科学探究的兴趣和热情;(2)培养学生团队协作、积极进取的精神;(3)培养学生关注社会热点,将所学知识应用于实际生活的意识。
二、教学内容本课程的教学内容主要包括以下几个部分:1.电子秤概述:介绍电子秤的定义、分类和应用领域;2.电子秤电路原理:讲解电子秤电路的基本原理和组成部分,如传感器、放大器、滤波器等;3.电子秤电路设计:介绍电子秤电路的设计方法,包括硬件选型、电路图绘制等;4.电子秤电路调试与优化:讲解如何对电子秤电路进行调试和优化,以提高其性能和稳定性;5.实例分析:分析实际应用中的电子秤电路,让学生更好地理解所学知识。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学:1.讲授法:教师讲解电子秤电路的基本原理、设计方法和注意事项;2.讨论法:学生分组讨论电子秤电路设计中的问题,培养学生的团队协作能力;3.案例分析法:分析实际应用中的电子秤电路,让学生更好地理解所学知识;4.实验法:学生动手搭建和调试电子秤电路,提高学生的实践操作能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用《电子秤电路设计》教材,为学生提供系统性的理论知识;2.参考书:提供电子秤电路设计相关的参考书籍,丰富学生的知识储备;3.多媒体资料:制作课件、视频等多媒体资料,帮助学生更好地理解电子秤电路的设计过程;4.实验设备:准备电子秤电路实验套件,让学生能够动手实践,提高实际操作能力。
电子秤电路设计与制作

电子秤电路设计与制作实验报告姓名:学号:指导老师:通信与信息工程学院电子秤电路设计指导书一、实验目的:本实验要求学生设计并制作一个电子秤电路,要求能测量重量在0~200g 间的物体,输出为电压信号,通过调节电路使电压值为对应的重量值,电压量纲mv改为重量纲g即成为一台原始电子秤。
二、基本原理:基本思路总体设计思路如图1所示,所测重量经过转换元件转换为电阻变化,再经过测量电路转化为电压变化,经过放大电路放大调节后输出显示得到所需信号。
图1 基本设计思路电阻应变式传感器本设计主要通过电阻应变式传感器实现。
电阻应变式传感器是利用电阻应变片将应变转换为电阻的变化,实现电测非电量的传感器。
传感器由在不同的弹性敏感元件上粘贴电阻应变片构成,当被测物理量作用在弹性敏感元件上时,弹性敏感元件产生变形,并使附着其上的电阻应变片一起变形,电阻应变片再将变形转换为电阻值的变化。
应变式电阻传感器是目前在测量力、力矩、压力、加速度、重量等参数中应用最广泛的传感器之一。
1、弹性敏感元件物体在外力作用下而改变原来尺寸或形状的现象称为变形,而当外力去掉后物体又能完全恢复其原来的尺寸和形状,这种变形称为弹性变形。
具有弹性变形特性的物体称为弹性元件。
弹性敏感元件是指元件在感受到力、压力、力矩、振动等被测参量时,能将其转换成应变量或位移量,弹性敏感元件可以把被测参数由一种物理状态转换为另一种所需要的物理状态。
2、电阻应变片对于一段长为L,截面积为S,电阻率为ρ的导体,未受力时电阻为 R = ρ,在外力的作用下,电阻丝将会被拉伸或压缩,导体的长度L、截面积S以及电阻率ρ等均将发生变化,从而导致其电阻值发生变化,这种现象称为“电阻应变效应”。
利用金属或半导体材料电阻丝的应变电阻效应,可以制成测量试件表面应变的敏感元件。
为在较小的尺寸范围内感受应变,并产生较大的电阻变化,通常把应变丝制成栅状的应变敏感元件,即电阻应变片,通常由敏感栅、基底、盖片、引线和黏结剂等组成。
测控电路课程设计之电子称设计

测控电路课程设计之电子秤的设计一、设计任务1、题目:电子秤的设计1.确定结构电子秤由传感器、传感器专用电源、信号放大系统、模数转换系统及显示器等五部分组成,其原理框图如指导书图4所示。
2.设计技术指标如下:1)量程为0~1.999Kg ,2)传感器可采用悬臂梁式的称重传感器(悬臂梁上贴有应变片)。
3) 显示电路采用213为A/D 转换电路、共阴级数码管。
2、设计任务1)选择传感器2)设计传感器测量电路:通常用电桥测量电路。
3)放大电路设计由于传感器测量范围是0~2Kg ,假定选择的某款传感器的灵敏度为1mV/V 、工作电压为10V ,那么其输出信号只有0-10mV 左右;而A/D 转换的输入应为0-1.999Kg ,当量为1mV/g ,因此要求放大倍数约为200倍,一般采用两级放大器。
另外,在电路设计过程,应考虑电路抗干扰环节、稳定性。
选择低失调电压、低漂移、高稳定、经济性的芯片。
最后,电路中还应有调零和调增益的环节,才能保证电子秤没有称重时显示零读数,称重时读数正确反映被秤重量。
4)模数转换及显示系统A/D 转换器可选择MC14433,也可另选。
4)供电电源:设计一个可满足本设计需求的电源。
二、设计方案1、电子秤的主要组成电子秤由传感器、传感器专用电源、信号放大系统、模数转换系统及显示器等五部分组成,其原理框图如图4所示。
图4电子秤组成框图传感器将被测物体的重量转换成电压信号输出,放大系统把来自传感器的微弱信号放大,放大后的信号经过模数转换把模拟数字量,数字量通过数字显示器显示重量。
2、方案的选用方案一:采用应变式电阻称重传感器,将被测物体的重量转换成电压信号输出,然后采用AD620差动电路放大器把来自传感器的微弱信号放大,然后将放大后的信号经过MC14433模数转换器转换成数字量,最后经过动态扫描将数字量通过数码管显示出来,显示出来的数字就是被测物体的重量。
方案二:设计以51系列单片机AT89S52为控制核心,实现电子秤的基本控制功能。
电路板设计与制作 任务三 电子秤设计

(4)放置螺丝孔:使用“放置” →“焊盘”命令,绘制3mm的螺丝孔放在左上角 距离边线3mm处,焊盘设置信息如图5-3-7所示。用同样的方法分别在其他三个角上 放置对应的螺丝孔。结果如图5-3-8所示。
图 5-3-7
图 5-3-8
3.导入原理图信息
(1)在原理图编辑器中:单击“设计” →“update stemaitc in dzc.pcbdoc”,弹出 “工程更改顺序对话框”,在此对话框中单击 “生成更改”,系统将扫描所有的改变,看能否 在PCB上执行所有的改变,弹出如图5-3-9所示的 对话框。如果“检查”栏显示对勾,则表示这些 改变都是合法的,如果有叉号,说明此改变不可 执行,需要回到前面步骤修改,直到执行合法。
(5)保存原理图文件: 在原理图上击“右键” →“保存” →保存在“电子秤”文件夹中。 (6)装载原理图库 “库” →“library……” →“已安装库” →“安装”找到“dzc.schlib” →“确定” (7)原理图图纸设置 “设计” →“文档选项” →选择A4纸,其它默认 (8)将鼠标设为large90 “工具” →“原理图参数” →“schematic” →“graphical editing” →“光标” →“large cursor90”
图 5-3-12
5.布线
(1)布线规则
“设计” “规则” “routing” 单击右键新 建两个规则,分别改为GND 和VCC,设置GND为0.3mm, VCC为0.3mm,其它线为 0.2mm,并设置优先级如下 图5-3-14所示。
图 5-3-14
(2)自动布线:“自动布线” “全部” “route All”。 (3)手动调整布线:调整布线后的结果如图5-3-15所示。
电路板设计与制作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子秤电路设计与制作实验报告姓名:学号:指导老师:通信与信息工程学院电子秤电路设计指导书一、实验目的:本实验要求学生设计并制作一个电子秤电路,要求能测量重量在0~200g间的物体,输出为电压信号,通过调节电路使电压值为对应的重量值,电压量纲mv改为重量纲g即成为一台原始电子秤。
二、基本原理:基本思路总体设计思路如图1所示,所测重量经过转换元件转换为电阻变化,再经过测量电路转化为电压变化,经过放大电路放大调节后输出显示得到所需信号。
图1 基本设计思路电阻应变式传感器本设计主要通过电阻应变式传感器实现。
电阻应变式传感器是利用电阻应变片将应变转换为电阻的变化,实现电测非电量的传感器。
传感器由在不同的弹性敏感元件上粘贴电阻应变片构成,当被测物理量作用在弹性敏感元件上时,弹性敏感元件产生变形,并使附着其上的电阻应变片一起变形,电阻应变片再将变形转换为电阻值的变化。
应变式电阻传感器是目前在测量力、力矩、压力、加速度、重量等参数中应用最广泛的传感器之一。
1、弹性敏感元件物体在外力作用下而改变原来尺寸或形状的现象称为变形,而当外力去掉后物体又能完全恢复其原来的尺寸和形状,这种变形称为弹性变形。
具有弹性变形特性的物体称为弹性元件。
弹性敏感元件是指元件在感受到力、压力、力矩、振动等被测参量时,能将其转换成应变量或位移量,弹性敏感元件可以把被测参数由一种物理状态转换为另一种所需要的物理状态。
2、电阻应变片对于一段长为L,截面积为S,电阻率为ρ的导体,未受力时电阻为 R = ρ,在外力的作用下,电阻丝将会被拉伸或压缩,导体的长度L、截面积S以及电阻率ρ等均将发生变化,从而导致其电阻值发生变化,这种现象称为“电阻应变效应”。
利用金属或半导体材料电阻丝的应变电阻效应,可以制成测量试件表面应变的敏感元件。
为在较小的尺寸范围内感受应变,并产生较大的电阻变化,通常把应变丝制成栅状的应变敏感元件,即电阻应变片,通常由敏感栅、基底、盖片、引线和黏结剂等组成。
测量电路电阻应变片把机械应变信号转换成电阻变化后,由于应变量及其应变电阻变化一般都很微小,既难以直接精确测量,又不便直接处理。
因此,必须采用转换电路,把应变计的电阻变化转换成电压或电流变化,以便于测量。
具有这种转换功能的电路称为测量电路。
电桥电路是目前广泛采用的测量电路,常见的直流电桥电路如图2,图2 直流电桥电桥输出电压为Uo=U (式1)R1、R2、R3、R4为四个桥臂,当一个臂、两个臂或四个臂接入应变片时,就相应构成了单臂、双臂和全臂工作电桥。
下面分别就单臂、半桥和全桥电路进行讨论。
(1)单臂工作电桥图3 单臂工作电桥如图3所示,R1为电阻应变片,R2、R3、R4为固定电阻。
应变片未受力时电桥处于平衡状态,R1R3=R2R4,输出电压U0=0,当承受应变时,R1阻值发生变化,设为R1+ΔR,电桥不平衡,产生输出电压为Uo=(R1+RR)R3−R2R4(R1+RR+R2)(R3+R4)(式2)设R1=R2=R3=R4=R,又ΔR<<R1,则Uo≈R4RRR(式3)(2)双臂工作电桥若在两个桥臂上计入电阻应变片,其他桥臂为固定电阻,则构成双臂工作电桥,如图4,R1、R2为电阻应变片,R3、R4为固定电阻。
当应变片承受应变时,R1电阻增大ΔR,R2电阻减小ΔR ,这种电桥成为差动电桥。
图4 双臂工作电桥此时电桥不再平衡,输出电压为 Uo=R 2RRR(式4) 由式知半桥的输出是线性的没有非线性误差问题,而且灵敏度比单臂提高了一倍。
(3)全臂工作电桥若四个桥臂上全为电阻应变片,则构成全桥工作电路,如图5所示,R1、R2、R3、R4全为电阻应变片。
承受应变时,R1、R3电阻增大ΔR ,R2、R4电阻减小ΔR 。
图5 全臂工作电桥电桥不再平衡,输出电压为Uo=URRR(式5) 由式知,全桥的电压输出是线性的,没有非线性误差问题,而且其灵敏度是单臂的4倍,是半桥的2倍。
电子秤实验采用的是全桥测量电路,我们选取直流电源电压为8V 。
所取的应变片未承受应变时阻值R1=R2=R3=R4=350Ω,当测量满量程200g 物体时,测得应变片阻值变化ΔR 大约在~Ω之间(参见文章最后实验数据记录表1、表2)。
我们取ΔR=Ω,U=8V,则测量电路的输出电压为Uo=URRR≈。
因为在实际电路中,应变片未承受应变时,电桥不一定处于完全的平衡状态,即R1R3--R3R4不为零,输出Uo 不为零,故在测量电路中加入滑动变阻器做调零用,测量电路如图6所示图6 电子秤测量电路差分放大电路测量电路将应变计的电阻变化转换成了电压变化,由于所得的输出信号一般都很微弱,如果在遇到干扰的时候可能会导致测量结果的错误,因此采集到电压信号后,要对电压信号进行放大,滤波,增强系统的抗干扰能力,系统的稳定性会有所提高,让显示的数据也更加准确。
先采用差分放大电路对电压进行放大,我们先讨论简单的差动放大器,如图7所示,Vi1、 Vi2为输入,Vo 为输出。
图7 基本差动放大器输出电压Vo=-R2R1V i1+(1+R2R1) R4R3+R4V i2 (式6)本实验中运算放大器采用OP07芯片, OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。
由于OP07具有非常低的输入失调电压,同时具有输入偏置电流低和开环增益高的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放 大传感器的微弱信号等方面。
OP07管脚图如图9所示。
图8 op07管脚图 OP07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接负电源或接地,5空脚6为输出,7接正电源。
本实验中采用的差分放大电路如图9所示.Vi1Vo图9 差分放大电路该电路由三个运算放大器组成,Vo1、Vo2和Vo 分别为三运放的输出电压。
分析电路知流过R2、R1的电流相等,设为i ,可以计算出理想的输出电压Vo.i=RR1−RR2R1(式7)V o1=V i1+R 2i (式8) V o2=V i2-R 2i (式9) Vo=R4R3(V o1-V o2)=R4R3(1+2R2R1)(V i1-V i2) (式10) 下面就各电阻应取阻值大小进行分析: 前面已经计算过,当承重为满量程200g 时应变片变化ΔR 取Ω,此时测量电路输出电压Uo ≈,即差分放大电路的差模输入V i1-V i2=,而要求的最终输出电压为200mV ,故需将Uo 放大40多倍。
由式(10)知差分放大电路的放大倍数为R4R3(1+2R2R1),主要由R4R3及R2R1的值决定,但R1、R3太小会从集成运放中获取太大的电流,太大的R4、R2会增加电阻产生的噪声,故其放大倍数不宜太大,我们可先通过差分放大电路将电压信号放大至100mV 左右,再通过后续的放大电路将其进一步放大以达到所要求值。
实验中取R2=R3=10k Ω,R4=51k Ω,而将R1用一个2k Ω固定电阻和10k Ω滑动变阻器Rb 串联代替,即放大倍数为(1+20RR +2),可以通过改变Rb 阻值来进行调节。
差分放大电路具有以下优点:1)高输入阻抗。
被提取的信号是不稳定的高内阻源的微弱信号,为了减少信号源内阻的影响,必须提高放大器输入阻抗。
2)高共模抑制比。
电路对共模信号几乎没有放大作用,共模电压增益接近零。
3)低噪声、低漂移。
主要作用是对信号源的影响小,拾取信号的能力强,以及能够使输出稳定。
4)电路的增益可以通过改变电阻R1阻值来调节。
二级放大电路电压信号经过差分放大电路放大后并不能满足预期要求,故需要将其进行进一步放大,后续放大电路如图所示图10 二级放大电路Vin 为输入信号即差分放大电路的输出,Vout 为输出。
RRR −RR R1=RR −RRRRR2(式11)Vout=(R1+R2)RR −R2RRRR1(式12)前面通过差分放大电路将电压信号放大至100mV 左右,故需再将其放大约2倍,取R2=20k Ω,R1=10k Ω,可以通过调节Rb 使输出为200mV 。
电子秤实验的整体电路见附图。
三、需用器件与单元:传感器、实验台、实验元件箱。
四、实验步骤:电路调试与数据记录图1传感器托盘安装示意图1、将托盘安装到传感器上,如图1所示2、测量应变片的阻值:当传感器的托盘上无重物时,分别测量应变片R1、R2、R3、R4的阻值。
在传感器的托盘上放置10只砝码后再分别测量R1、R2、R3、R4的阻值变化,记录于表1-1、1-2中,分析应变片的受力情况(受拉的应变片:阻值变大,受压的应变片:阻值变小)。
3、设计测量电桥中各应变电阻的组合方法,计算出在±4V 供电情况下,测量电桥可能提供的最大电压变化量。
4、电桥电路称重测量:在未供电情况下,搭建测量电桥电路。
在±4V供电情况下,首先调节电桥零点,然后依次加减砝码两次,用电压表测量电桥电路的输出电压并做好实验记录。
实验数据记录于表2-1、2-2中。
5、在未供电情况下,搭建好仪表放大器电路及后面的放大电路。
注意:元件选取,线路连接一定要正确。
特别是电源线更不能接错,以免损坏实验设备。
6、差动放大器调零:不要连接电桥电路,将放大电路的输入端短接(及整体电路图中所标的A B点短接)。
将主机箱上的电压表量程切换开关切换到2V档,检查接线无误后合上主机箱电源开关;调节放大器的增益电位器Rb 至合适位置(先顺时针轻轻转到底,再逆时针回转1圈)后,再调节放大器的调零电位器Rc,使电压表显示为零。
7、系统电路调零:关闭主机箱电源,按整体电路图接线(AB间接线断开),将±2V~±10V可调电源调节到±4V档。
检查接线无误后合上主机箱电源开关,调节实验模板上的桥路平衡电位器Ra,使主机箱电压表显示为零。
8、系统输出增益调节:将10只砝码全部置于传感器的托盘上,调节电位器Rb(见整体电路图)使数显表显示为(2V档测量)。
9、重复7、8步骤的标定过程,一直到精确为止。
10、系统称重实验:将10个20g砝码依次放在托盘上称重,结果记录于表3-1;再将砝码依次取下,结果记录于表4-2。
放上笔、钥匙之类的小东西称一下重量。
实验完毕,关闭电源。
五、实验记录表如下面格式:1、测量应变片的阻值表1-1 第一组测量数值表1-2 第二组测量数值表1-3 第三组测量数值2、电桥电路称重测量(1)表2-1:将10个20g砝码依次放上托盘,记录输出电压数值。
(2)表2-2:将10个砝码依次取下,记录输出电压数值。
绘制实验曲线3、系统称重数据记录(1)表3-1:将10个20g砝码依次放上托盘,记录输出电压数值。
(2)表3-2:将10个砝码依次取下,记录输出电压数值。