发电厂电气部分课设

合集下载

发电厂电气部分课设

发电厂电气部分课设

发电厂电气部分课程设计专业:电气工程及其自动化班级:电姓名:学号: 2指导教师:兰州交通大学自动化与电气工程学院2013年7月12日1 设计原始题目1.1 具体题目某发电厂中发电机—变压器单元接线的升压变压器为三相三绕组自耦变压器,其相关数据如下:额定容量为240/240/120,额定电压为242/121/15.75kV ,额定短路损耗为12400kW p -∆=、13320kW p -∆=、23340kW p -∆=,额定空载损耗为0130kW p ∆=。

(1) 计算各绕组在以下4种运行方式中的负荷(设各侧负荷功率因数相等)① 110kV 侧断开,发电机向220kV 系统输送② 220kV 侧断开,发电机向110kV 系统输送③ 发电机和110kV 系统各向220kV 系统输送④ 发电机和220kV 系统各向110kV 系统输送(2) 用两种方法计算变压器在上述四种运行方式下各自的总损耗。

1.2 要完成的内容了解自耦变压器的组成、运行方式的种类以及熟悉其定量计算的原则和公式,并理解自耦变压器的优缺点。

本次题目就是通过自耦变压器的不同运行方式的定量计算来让我们学生了解其中的不同和变化之处。

2 设计课题的计算与分析2.1 计算的意义自耦变压器的运行方式有联合运行方式、纯自耦运行方式及纯变压运行方式3种。

本次的计算让我更加清楚不同运行的方式下系统中的功率交换的方向、三绕组自耦变压器在联合运行方式下的绕组上电流的分布和流动情况,以及在纯变压运行方式下最大传输功率和额定容量的联系。

2.2 计算中需要的公式推导及注释低、高压侧向中压侧送电,中、低压侧功率因数相同时为:()32b s S S K S += (1)当中、低压侧功率因数相同时为:()c b 233=S K S S S +- (2)低、中压侧向高压侧送电,串联绕组中的负荷为: 12121b 11()U U S U U I S K S U -=-== (3) 纯变压运行方式下的各绕组负荷为:()()s 31c b 3b 1t 3111,b b S K S K S S K S K S S S S ===-=-==, (4) 式中:123S S S 、、——高、中、低压之路的额定短路损耗。

《发电厂电气部分》课程设计任务书

《发电厂电气部分》课程设计任务书

《发电厂电气部分》课程设计任务书一、 设计的目的和要求1 .设计的目的:.设计的目的:.设计的目的: 本课程设计是“电力工程及其自动化”专业的发电厂电气主系统的实践性教学环节。

通过本课程设计的实践达到:(通过本课程设计的实践达到:( 1 1 )巩固)巩固)巩固 " " 发电厂电气部分发电厂电气部分发电厂电气部分 " " 课程的理论知识。

(课程的理论知识。

(课程的理论知识。

( 2 2 )学习和)学习和掌握发电厂变电站电气部分设计的基本方法。

(掌握发电厂变电站电气部分设计的基本方法。

( 3 3 )培养学生独立分析和解决问题的工作能力以及综)培养学生独立分析和解决问题的工作能力以及综合运用所学知识进行实际工程设计的基本技能。

(合运用所学知识进行实际工程设计的基本技能。

( 4 4 )独立工作能力和创造力。

()独立工作能力和创造力。

()独立工作能力和创造力。

( 5 5 ) 查阅图书资料、产品手册和各种工具书的能力。

(料、产品手册和各种工具书的能力。

( 6 6 ) 工程绘图能力。

(工程绘图能力。

( 7 7 )撰写技术报告和编制技术资料的)撰写技术报告和编制技术资料的能力。

能力。

2 .课程设计的要求.课程设计的要求( 1 )电气主接线设计(图纸)电气主接线设计(图纸)电气主接线设计(图纸 1 1 张)张)张) 根据设计任务书,分析原始资料与数据,列出技术上可能实现的多个方案;经过分析比较,留下 1 — 2个较优方案,对较优方案进行详细计算和分析比较(经济计算分析,设备价格、使用综合投资指标),确定最优方案。

确定最优方案。

( 2 )电气设备选择)电气设备选择)电气设备选择 按正常工作条件选择电气设备,按短路状态校验热稳定和动稳定。

应选择的电气设备包括:主变压器、厂用变压器、断路器、隔离开关、电抗器、互感器、避雷器、消弧线圈、导线和电缆等。

( 3 )厂用电部分主接线设计)厂用电部分主接线设计)厂用电部分主接线设计 根据变电站的类型和总容量,确定厂用电压等级、接线形式、厂用变压器的台数及引入方式,选择厂用变压器的容量。

发电厂变电所电气部分课程设计 (2)

发电厂变电所电气部分课程设计 (2)

发电厂变电所电气部分课程设计1. 引言本文档旨在对发电厂变电所电气部分课程设计进行详细介绍和说明。

本课程设计旨在培养学生对发电厂变电所电气部分的了解与掌握,为学生将来的工作打下坚实的基础。

2. 设计目标本课程设计的目标是:通过对发电厂变电所电气系统的详细了解,掌握变电站的运行、维护、故障排除等实际操作技能,培养专业电气工程技术人才。

3. 设计具体内容3.1 课程设置本课程的设置应包括课程开设的时间、地点、方案、教学目标、教学形式、学习方法等方面。

应该考虑到学生的特点和实际需要,制定科学、合理的课程设计方案。

3.2 课程教学计划本课程的教学计划应该明确教学目标和内容,安排教学时间和教学方法,合理安排实验和实践环节。

同时,也应该考虑到学生的学习特点和实际情况,避免过于繁琐和枯燥。

3.3 实践环节的设计本课程设计必须包括实践环节的设计和实践教学计划。

应该安排一定的时间进行实践训练,让学生能够通过实践操作来掌握电气知识和技能。

3.4 课程评估方式本课程的评估方式应该考虑到学生的实际情况,采取多种形式进行评估,如考试、实验报告、作业等方式,以全面了解学生的学习情况。

4. 教学方法通过多种教学方法,如理论教学、案例教学、实验教学、模拟教学等来进行教学。

应着重注重讲解实际应用中的知识和技能,使学生更好的掌握发电厂变电所电气系统的实际运行情况。

5. 课程总结本课程设计旨在培养学生对发电厂变电所电气部分的了解和掌握,为学生将来走向职场的道路打下坚实的基础。

教师要注重理论知识和实际应用的结合,提高学生的综合素质和实际操作技能。

6. 参考文献•《电气工程基础》张广泰等著,电力出版社,2008年版•《模拟与数字电路》朱鹏,电子工业出版社,2004年版•《电气工程基础实验》张广泰等著,电力出版社,2010年版。

发电厂电气部分课程设计-(2)

发电厂电气部分课程设计-(2)

烟台南山学院发电厂电气部分课程设计题目2×600MV火力发电厂电气部分初步设计?姓名:安佰船所在学院:工学院所学专业:电气工程及其自动化班级:电气工程1401学号: 20指导教师:郭东旭|完成时间: 2017-6-2发电厂电气部分课程设计任务书题目:2X600MW火力发电厂电气部分初步设计原始资料:1. 发电厂情况装机两台,容量2X600MW,发电机额定电压20KV,cosφ=,机组年利用小时数6500h,厂用电率% ,发电机主保护时间,后备保护时间,环境条件可不考虑。

2. 接入电力系统情况发电厂除厂用电外,剩余功率送入330kV电力系统,架空线路4回,系统容量6800MW,通过并网断路器的最大短路电流:I′′=31.2II I2I=27.1II I4I= 26.8II3、附近有110kV电源设计内容:1、发电机和变压器的选择(1)发电机型号、容量、台数、参数的选择(2 )主变压器,厂用变压器,启动/备用变压器型号、容量、台数、参数的选择2、电气主接线设计(1 )电气主接线方案比较(2)电气主接线方案确定(3)厂用电主接线设计3、主要电器设备选择与校验(1)断路器的选择与校验(2)隔离开关的选择与校验(3)电压互感器的选择(4)电流互感器的选择(5)高压熔断器的选择(6)避雷器的选择(7)发电机出口导体及封闭母线的选择4、发电厂电气部分主接线图一张摘要电力工业是国民经济的重要行业之一,它既为现代化工业、农业、科学技术和国防提供必不可少的动力,且和广大人民群众的日常生活有着密切的联系,我国具有丰富的能源资源,发电厂是把各种天然能源,如煤炭、水能、核能等转换为电能的工厂,以满足人民生活的需要。

由发电、配电、输电、变电和用电等环节组成的电能生产与消费系统。

它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心。

本设计为 600MW火力发电厂电气部分初步设计,主要分为两部分,设计说明书和设计主接线图。

发电厂电气部分课程设计

发电厂电气部分课程设计

《发电厂电气部分课程设计》说明书学院:电气与自动化工程学院专业:电气工程及其自动化姓名:班级:学号:引言能源是人类赖以生存的基础,从日常生活所必需的电、水、气到人们所利用的交通、通信、娱乐等都与能源息息相关。

人类为了生存除了要吃饭获取能源之外,还要利用诸如石油、煤炭、电能等能源。

电力能源从上世纪开始,在总能源需求中的比重增加较快,从世界的平均水平来看,每20年约增加一倍。

因此随着世界人口的不断增加,能源的需求也在不断地增加,特别是人类进入21世纪高度信息化社会后更是如此。

电能是二次能源,是由煤、油、风力和核能等一次能源转化而来的,又可以方便地转化成其他能源。

它是现代社会中最重要的、最方便的、最清洁的能源,各行各业以及人们的日常生活都离不开它。

如果发生大面积的、长时间的停电,整个社会尤其是大城市中人们的生活将会受到很大的影响,甚至可能影响到社会秩序直至国家的安全。

随着国家经济实力的增强,电力行业的重要性越来越明显了。

电力行业是国民经济发展的基础和关键,电力系统的发展与时俱进。

高质量的电力资源和可靠的供电水平是衡量电力行业发展的指标。

本设计是针对大型火电厂的要求进行配置的,它主要包括了电气主接线的选择、短路电流的计算、电气设备的选择,其中详细描述了短路电流的计算和电气设备的选择,对该设计进行了理论分析,在理论上证实了火电厂的实际可行性,达到了设计要求。

火电厂的电气主接线设计是整个火电厂的核心技术。

它对火电厂内电气设备选择、布置、火电厂总平面布置的设计,都起着决定性的作用。

一、原始资料发电厂情况:凝汽式大型火电厂。

汽轮发电机组600MW×2台,机端电压20kV,200MW×4台,机端电压10.5kV,功率因数cosφ=0.85,厂用电率7%,年运行时间=0.6秒。

T=7000h,年最大负荷利用小时数Tmax=6000h。

故障计算时间Tk 电力系统情况:通过2回500kV架空线与10000MVA的系统1交换功率1000MW~1200MW,cosφ=0.85,Tmax=5500h,系统在500kV母线处的等值短路阻抗为2.0(基值为10000MVA);通过4回220kV架空线与5000MVA的系统2交换功率400MW~600MW,cosφ=0.85,Tmax=5500h,系统在220kV母线处的等值短路阻抗为2.0(基值为7000MVA);出4回110kV线路供负荷,cosφ=0.9,Tmax=5000h。

发电厂电气课程设计

发电厂电气课程设计

发电厂电气 课程设计一、课程目标知识目标:1. 学生能够理解发电厂电气系统的基础知识,掌握发电机、变压器、配电装置等主要设备的结构和工作原理。

2. 学生能够掌握发电厂电气设备的运行维护原则,了解电力系统的高压电气设备安全操作规程。

3. 学生能够解释发电厂电气系统的基本电路原理,并运用相关知识分析简单电路。

技能目标:1. 学生能够运用所学知识,进行发电厂电气设备的常规检查和简单故障排除。

2. 学生通过实验和实践操作,掌握发电厂电气设备的基本操作技能,能够安全地完成模拟操作任务。

3. 学生能够运用电气绘图软件,绘制基本的电气原理图和安装图。

情感态度价值观目标:1. 培养学生对电力工程领域的兴趣,激发他们探索电力科学奥秘的热情。

2. 增强学生的安全意识,培养他们在操作电气设备时的责任感,形成良好的职业操守。

3. 通过团队合作完成任务,培养学生的协作精神和集体荣誉感,提高他们解决问题的能力。

课程性质:本课程属于专业技术课程,以理论教学和实践操作相结合的方式进行。

学生特点:学生应为具备一定物理基础知识和电工基础的年级学生,具有一定的逻辑思维能力和动手能力。

教学要求:课程应结合实际案例,以实物和模型展示电气设备结构,注重培养学生的实际操作技能和问题解决能力。

同时,注重理论与实践相结合,确保学生能够达到课程目标所设定的具体学习成果。

二、教学内容1. 发电厂电气系统概述:包括发电厂电气系统的组成、发展历程以及在我国的应用现状。

教材章节:第一章 发电厂电气系统概述2. 发电机与变压器:讲解发电机的结构、工作原理及类型;变压器的工作原理、分类和主要参数。

教材章节:第二章 发电机与变压器3. 配电装置与保护:介绍配电装置的组成、类型及功能;电力系统保护的基础知识。

教材章节:第三章 配电装置与保护4. 高压电气设备:阐述高压断路器、隔离开关、负荷开关等设备的工作原理、结构及应用。

教材章节:第四章 高压电气设备5. 发电厂电气设备运行维护:讲解发电厂电气设备的运行维护原则、方法以及故障处理。

发电厂电气部分课程设计

发电厂电气部分课程设计

发电厂电气部分课程设计任务书一课程设计目的和要求1 目的发电厂电气部分课程设计是在学生学习《发电厂电气部分》后的一次综合训练,通过这次训练不仅使学生巩固了本课程及其他课程的有关内容,而且增强学生工程观念,培养他们的电气设计能力。

2 要求1)熟悉国家能源开发策略和有关的技术规程,规定,树立供电必须安全,可靠,经济的观念;2)掌握发电厂初步设计的基本方法和主要内容;3)熟悉发电厂初步设计的基本计算;4)学习工程设计说明书的撰写。

二原始资料1 发电厂情况(1)类型:火电厂(2)发电厂容量与台数3×200+1×300MW,发电机电压15.75kv,cosφ=0.85(3)发电厂年利用小时数T max=5500h;(4)发电厂所在地最高温度40 摄氏度,年平均温度20 摄氏度,气象条件一般,所在地海拔高度低于1000m。

2 电力负荷情况1)发电机电压负荷:最大35MW,最小10MW,cosφ=0.85,T max=5300h。

2)110kv 电压负荷:最大45MW,最小20MW,cosφ=0.85,T max=5500h。

3)其余功率送入220kv 系统,系统容量15000MVA。

归算到220kv 母线阻抗为0.02,其中S j=100MVA。

4)自用电10%。

5)供电线路数目。

(1)发电机电压,架空线路6回,每回输送容量5MW,cosφ=0.85 (2)110kv 架空线路6 回,每回输送容量50MW,cosφ=0.85 (3)220kv 架空线路2 回,与系统连接。

三设计成果1 课程设计说明书1 份。

2 发电厂电气主接线图1 张。

3 课程设计计算书1 份。

原始资料分析该电厂为大中型电厂,其容量为3×200+1×300=900MW。

占电力系统容量超过电力系统的检修备用容量8~15%,没有达到事故备用容量10%的限额。

说明该电厂在带那里系统中的作用比较重要,而且年利用小时数5500h>5000h,大于电力系统发电机组的平均最大利用小时数,该电厂为火电厂,在电力系统中将主要承担基荷,从而该电厂的电气主接线可靠性要求比较高。

发电厂电气部分课程设计

发电厂电气部分课程设计

发电厂电气部分课程设计一、设计任务设计一台火力发电厂的电气系统,包括发电机、变电站、输电线路、配电室等。

二、设计要求1.确定发电机额定功率和其对应的电气参数,如电压、电流等。

2.设计变电站,包括选择合适的变压器、开关设备与控制系统等,以提高电气系统功率传输效率。

3.建立适当的输电线路,以提供稳定、高效的电力传输。

4.设计配电室,包括选择合适的组合电器、保护装置与监测系统等,以防止电气系统失效、故障和危险。

三、设计流程1.确定并计算发电机的电气参数,包括额定功率、电压、电流等,以建立发电机模型。

2.选择变电站设备,并建立变电站模型,以确定变压器的变比,开关设备和控制系统。

3.设计输电线路,考虑线路材料、长度、负荷情况等因素,以保证稳定、高效的电力传输。

4.选择组合电器、保护装置与监测系统,并建立配电室模型,以保证电气系统的安全性、可靠性和稳定性。

5.对整个电气系统进行系统集成,并进行仿真和测试,以确保其适应各种工况下的电气负载和波动。

四、设计结果1.确定发电机额定功率为1000MW,额定电压为22kV,额定电流为45A。

2.选择变压器为单相变压器,变比为10:1,开关设备和控制系统采用数字化技术。

3.设计输电线路长度为50km,材料为铜导线,负荷为800MW,考虑了电阻和电感的影响。

4.选择组合电器设备为高压开关、电容器和补偿装置,保护装置采用继电器保护和数字化保护设备,监测系统为远程监控系统。

5.综合整个系统,进行仿真和测试,结果表明电气系统可以满足各种工况下的电气负载和波动。

五、结论通过以上设计,可以有效地提高电气系统的效率和稳定性,保证了火力发电厂的稳定供电。

此外,电气系统的安全性和可靠性都得到了充分考虑和保证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学课程设计说明书学院:机电工程学院专业:电气工程及其自动化课程名称:发电厂电气部分设计题目:火力发电厂电气部分设计:宋丹学号:20101965指导教师:瞿晓东成绩:2013.7.5发电厂电气部分课程设计评分表目录1设计任务书 (4)1.1设计的原始资料 (4)1.2设计的任务与要求 (4)2电气主接线 (6)2.1系统与负荷资料分析 (6)2.2主接线方案的选择 (6)2.2.1方案拟定的依据 (6)2.2.2主接线方案的拟定 (8)2.3 主变压器的选择与计算 (9)2.3.1变压器容量、台数和型式的确定原则 (9)2.3.2变压器的选择与计算 (10)3短路计算 (11)3.1短路计算的一般规则 (11)3.2短路电流的计算 (11)3.2.1各元件电抗的计算 (11)3.2.2 等值网络的化简 (12)4电气设备的选择 (17)4.1电气设备选择的一般原则 (17)4.2电气设备的选择条件 (17)4.2.1按正常工作条件选择电气设备 (17)4.2.2按短路情况校验 (18)4.2.3 断路器和隔离开关的选择 (20)4.2.4 电流互感器的选择 (21)5结束语 (22)6参考文献 (23)1 火力发电厂电气部分设计任务书1.1设计的原始资料凝汽式发电厂:(1)凝汽式发电组3台:3×100MW,出口电压:10.5KV,发电厂次暂态电抗:0.12;额定功率因数:0.8T=5700小时;厂用电率:8%。

发电机主保护动(2)机组年利用小时:m ax作时间0.1秒,环境温度36度,年平均气温为22度。

电力负荷:送入220KV系统容量200MW,剩余容量送入110KV系统。

发电厂出线:220KV出线3回; 110KV出线4回(10KM),无近区负荷。

电力系统情况:220KV系统的容量为无穷大,选基准容量100MVA归算到发电厂220KV 母线短路容量为3400MVA,110KV系统容量为500MVA。

1.2设计的任务与要求(1)发电机和变压器的选择表1-1 汽轮发电机的规格参数注:发电及参数如上表,要求选择发电厂的主变,联络110KV和220KV的联络变压器的型号。

(2) 电气主接线选择注:火力发电厂的发电机-变压器接线方式通常采用单元接线的方式,注意主变容量应与发电机容量相配套。

110KV和220KV电压级用自耦变压器联接,相互交换功率,我们的两电压等级母线选用的接线方式为:220KV采用双母三分段接线,110KV采用双母线接线。

(3) 短路电流的计算在满足工程要求的前提下,为了简化计算,对短路电流进行近似计算法。

结合电气设备选择选择短路电流计算点求出各电源提供的起始次暂态电流''I,冲击电流I,及计算短路电流热效应所需不同时刻的电流。

sh(4) 主要电气设备的选择要求选择:110KV侧出线断路器、隔离开关、电流互感器。

2 电气主接线2.1 系统与负荷资料分析发电厂容量的确定与国家经济发展规划、电力负荷增长速度、系统规模和电网结构以及备用容量等因素有关。

发电厂装机容量标志着发电厂的规模和在电力系统中的地位和作用。

发电厂运行方式及年利用小时数直接影响着主接线设计。

从年利用小时数看,该电厂年利用小时数为5700h/a,远大于我国电力系统发电机组的平均最大负荷利用小时数5000h/年;又为火电厂,所以该发电厂为带基荷的发电厂,在电力系统占比较重要的地位,因此,该厂主接线要求有较高的可靠性;从负荷特点及电压等级可知,该电厂具有110KV和220KV两级电压负荷。

110KV电压等级有4回架空线路,最大年利用小时数为5700h/a,说明对其可靠性有一定要求;220KV电压等级有3回架空线路,最大年利用小时数为5700h/a,其可靠性要求较高。

2.2 主接线方案的选择2.2.1方案拟定的依据电气主接线又称为电气一次接线,它是将电气设备以规定的图形和文字符号,按电能生产、传输、分配顺序及相关要求绘制的单相接线图。

对电气主接线的基本要求,概括的说应该包括可靠性、灵活性和经济性三方面。

(1) 电气主接线设计的基本要求a.可靠性安全可靠是电力生产的首要任务,保证供电可靠是电气主接最基本的要求。

电气主接线的可靠性不是绝对的。

同样形式的主接线对某些发电厂和变电站来说是可靠的,而对另外一些发电厂和变电站则不一定能满足可靠性要求。

所以,在分析电气主接线可靠性时,要考虑发电厂和变电站在系统中的地位和作用、用户的负荷性质和类型、设备制造水平及运行经验等诸多因素。

○1发电厂或变电站在电力系统中的地位和作用。

○2负荷的性质和类型。

○3设备的制造水平。

○4长期运行实践经验。

b.灵活性电气主接线应能适应各种运行状态,并能灵活地进行运行方式的转换。

灵活性包括以下几个方面。

○1操作的方便性。

○2调度的方便性。

○3扩建的方便性。

c.经济性在设计主接线时,主要矛盾往往发生在可靠性与经济性之间。

经济性主要从一下几方面考虑。

○1节约一次投资。

○2占地面积少。

○3电能消耗少。

(2) 电气主接线的设计程序电气主接线设计在各阶段中随着要求、任务的不同,其深度、广度也有所差异,但总的设计原则、方法和步骤基本相同。

其设计步骤及容如下。

a. 对原始资料分析○1工程情况,包括发电机类型(凝气式火电厂、热电厂、或者堤坝式、引水式、混合式水电厂等),设计规定容量(近期、远景),单机容量及台数,最大负荷利用小时数及可能的运行方式等。

○2电力系统情况,包括电气系统近期及远景发展规划(5~10年),发电厂或变电站在电力系统的地位及作用等○3负荷情况,包括负荷的性质和地理位置、输电电压等级、出线回路数及输送容量等。

○4环境条件,包括当地的气温、湿度、覆冰、污秽、风向、水文、地质海拔高度及地震等因素c.主接线方案的拟定与选择根据设计任务书的要求,在原始资料分析的基础上,根据对电源的出线回路数、电压等级、变压器台数、容量以及母线结构等的不同考虑,可以确定主接线方案。

2.2.2主接线方案的拟定表2-1主接线方案电压等级方案110KV 双母线接线220KV 双母三分段接线电气主接线如下图:图2-1 电气主接线图2.3 主变压器的选择与计算2.3.1变压器容量、台数和型式的确定原则(1) 单元接线的主变压器容量的确定原则单元接线时主变压器应按发电机的额定容量扣除本机组的厂用负荷后,留有10%的裕度来确定。

采用扩大单元接线时,应尽可能采用分裂绕组变压器,其容量亦应按单元接线的计算原则算出的两台机容量之和来确定。

(2) 连接两种升高电压母线的联络变压器的确定原则联络变压器容量应能满足两种电压网络在各种运行方式下,网络间的有功功率和无功功率交换,一般不应小于接在两种电压母线上最大一台机组的容量,以保证最大一台机组故障或检修时,通过联络变压器来满足本侧负荷的要求。

根据以上原则知,本电厂3台机组的最大容量为125MW,应根据125MW发电机来选择联络变压器,又为了布线方便,只选一台自耦联络变。

(3) 变压器台数的确定原则发电厂或变电所主变压器的台数与电压等级、接线形式、传输容量以及和系统的联系有密切关系。

通常与系统具有强联系的大、中型发电厂和重要变电所,在一种电压等级下,主变压器应不少于2台;而对弱联系的中、小型发电厂和低压侧电压为6-10KV的变电所或与系统只是备用性质时,可只装一台主变压器;对地区性孤立的一次变电所或大型工业专用变电所,可设3台主变压器。

考虑到本电厂有3台100MW发电机,且电厂和系统有较强联系,故220KV 电压等级接两台主变压器,110KV电压等级接一台主变压器。

(4) 主变压器型式的确定原则选择主变压器型式时,应从相数、绕组数、绕组接线组别、冷却方式、调压方式等方面考虑,通常只考虑相数和绕组数以及绕组接线组别。

在330KV及以下电力系统,一般都应选用三相变压器。

对于大型三相变压器,当受到制造条件和运输条件的限制时,则宜选用两台小容量的三相变压器来取代一台大容量三相变压器,或者选用单相变压器。

一般当最大机组容量为125MW及以下的发电厂多采用三绕组变压器,对于最大机组容量为200MW及以上的发电厂,通常采用双绕组变压器加联络变压器,当采用扩大单元接线时,应优先选用低压分裂绕组变压器,这样可以大大限制短路电流。

2.3.2变压器的选择与计算按照变压器容量、台数和型式的确定原则,该发电厂主接线采用3台三相双绕组主变压器和一台联络变压器。

3台主变压器分别和3台发电机组组成单元接线,联络变压器选用三相三绕组降压自耦变压器。

3 短路电流的计算短路计算在设计发电厂主接线的过程中有着重要作用,它为电气设备的选型、动稳定校正和热稳定校正提供依据。

当短路发生时,对发电厂供电的可靠性可能会产生很大影响,严重时,可能导致电力系统失去稳定,甚至造成系统解列。

因此,对短路事故的计算是非常有必要的,而且是必须进行一项工作。

3.1短路计算的一般规则(1) 验算导体和电气设备动稳定、热稳定以及电气设备开断电流所用的短路电流,应按本工程的设计规划容计算,并考虑电力系统的远景发展规划(一般为本工程建成后5至10年)。

确定短路电流时,应按可能发生最大短路电流的正常接线方式,而不应按仅在切换过程中可能并列运行的接线方式。

(2) 选择导体和电器用的短路电流,在电气连接的网络中,应考虑具体反馈作用对异步电机的影响和电容补偿装置放电电流的影响。

(3) 选择导体和电器时,对不带电抗器回路的计算短路点,应选择在正常接线方式时短路电流最大的点。

对带电抗器的6KV 至10KV 出线与厂用分支回路,除其母线与母线隔离开关之间隔离板前的引线和套管的计算短路点选择在电抗器前外,其余导体和电器的计算短路点选择在电抗器后。

(4) 导体和电器的动稳定、热稳定以及电器的开断电流,一般按三相短路验算。

3.2 短路电流的计算3.2.1各元件电抗的计算选基准容量:Sd=100MVA ,Uav=Ud发电机: '3'2'1S S S ===8.0100=125MVA===''3''2''1X X X =0.12⨯25.56100=0.0768 等值电源:S1:Sd=100MVA ,S1=3400MVAXs1*=*11S =1S Sd =3400100=0.0294S2:S2=500MVA Xs2*=*21S =1S Sd =500100=0.2 变压器: T1,T2:*1T X =*2T X =100(%)Uk ⨯)(N S S T d =10013⨯120100=0.108 T3:*3T X =*2T X =*1T X T4:*4T X =100(%)Uk ⨯)(N S S T d =12010010023⨯=0.19电缆: *L X =0.4⨯10⨯2115100=0.033.2.2 等值网络的化简图2-2 等值网络图图2-3 等值网络化简图1图2-4 等值网络化简图2图2-5 等值网络化简图3图2-6 等值网络化简图4图2-7 等值网络化简图5各电抗值的计算:''1121X X X X T +===0.108+0.0768=0.1848''333X X X T +==0.108+0.0768=0.18481445S T eq T eq X X X X X X ++==0.08175+0.19+0294.019.008175.0⨯=0.8eqT eq T S X X X X X X 4416++==0.0294+0.19+08175.019.00294.0⨯=0.2883G 与2S E 合并后电抗:23237S S X X X X X +==2.01848.02.01848.0+⨯=0.096转移阻抗:61X X X L K •=)1111(765LX X X X +++ =0.03×0.288×)03.01096.01288.018.01(+++ =0.41972X X X L K •=)1111(765L X X X X +++=0.03×0.096)03.01096.01288.018.01(+++ =0.14L K X X X •=53)1111(765L X X X X +++=0.8×0.03)03.01096.01288.018.01(+++ =1.163 计算电抗:ceq X =K X 3•Sd S )2,1(=1.163⨯1002125⨯=2.9075表3-1 短路电流计算结果电流基准值:)2,1(d I =av U Sd 3=11532125⨯⨯=1.26 )1(S d I =1153100⨯=0.502 短路电流: K I =0.513+3.708+1.403=5.6244 电气设备的选择电气设备的选择是发电厂和变电所电气设计的主要容之一。

相关文档
最新文档