小学数学小升初行程问题总结及答案详解
六年级小升初数学行程问题

六年级(小升初)总复习行程问题 行程问题常用的解题方法有⑴公式法 S=V*T ⑵图示法⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;⑷分段法 ⑸方程法模块一、时间相同速度比等于路程比【例 1】 甲、乙二人分别从 A 、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达 A 地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 A 、 B 两地相距多少千米?【解析】 两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为 4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了 3个全程,三个全程中甲走了453177⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以 A 、 B 两地相距2301057÷= (千米). 【例 2】 B 地在A ,C 两地之间.甲从B 地到A 地去送信,甲出发10分后,乙从B 地出发到C 地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B 地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B 地至少要用多少时间。
【解析】 根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:因为丙的速度是甲、乙的3倍,分步讨论如下:(1) 若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的信当丙再回到B 点用5分钟,此时甲已经距B 地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信在给乙送信,此时乙已经距B 地:10+5+5+15+15=50(分钟),此时追及乙需要:50÷(3-1)=25(分钟),返回B 地需要25分钟所以共需要时间为5+5+15+15+25+25=90(分钟)(2) 同理先追及甲需要时间为120分钟【例 3】 (“圆明杯”数学邀请赛) 甲、乙两人同时从A 、B 两点出发,甲每分钟行80米,乙每分钟行60米,出发一段时间后,两人在距中点的C 处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D 处相遇,且中点距C 、D 距离相等,问A 、B 两点相距多少米?【分析】 甲、乙两人速度比为80:604:3=,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的47,乙走了全程的37.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的47,甲行了全程的37.由于甲、乙速度比为4:3,根据时间一定,路程比等于速度之比,所以甲行走期间乙走了3374⨯,所以甲停留期间乙行了43317744-⨯=,所以A 、B 两点的距离为1607=16804⨯÷(米). 【例 4】 甲、乙两车分别从 A 、 B 两地同时出发,相向而行.出发时,甲、乙的速度之比是 5 : 4,相遇后甲的速度减少 20%,乙的速度增加 20%.这样当甲到达 B 地时,乙离 A 地还有 10 千米.那么 A 、B 两地相距多少千米?【解析】 两车相遇时甲走了全程的59,乙走了全程的49,之后甲的速度减少 20%,乙的速度增加 20%,此时甲、乙的速度比为5(120%):4(120%)5:6⨯-⨯+= ,所以甲到达 B 地时,乙又走了4689515⨯=,距离 A 地58191545-=,所以 A 、 B 两地的距离为11045045÷= (千米). 【例 5】 早晨,小张骑车从甲地出发去乙地.下午 1 点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是 15 千米.下午 3 点时,两人之间的距离还是 l5 千米.下午 4 点时小王到达乙地,晚上 7 点小张到达乙地.小张是早晨几点出发?【解析】 从题中可以看出小王的速度比小张块.下午 2 点时两人之间的距离是 l5 千米.下午 3 点时,两人之间的距离还是 l5 千米,所以下午 2 点时小王距小张 15 千米,下午 3 点时小王超过小张 15千米,可知两人的速度差是每小时 30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走 30 千米,那小张 3 小时走了15 30 45= + 千米,故小张的速度是 45 ÷3 =15千米/时,小王的速度是15 +30 =45千米/时.全程是 45 ×3 =135千米,小张走完全程用了135 +15= 9小时,所以他是上午 10 点出发的。
【小升初】小学数学《行程问题专题课程》含答案

17.行程问题知识要点梳理一、基本公式:1.路程=速度×时间2.速度=路程÷时间3.时间=路程÷速度二、问题类型1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷2④水速=(顺水速度-逆水速度)÷24.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析典例精讲考点1 一般行程问题【例1】小王骑公共自行车从家去上班,每分钟行350米,用了20分钟,下午下班沿原路回家,每分钟比去时多骑50米,多少分钟到家?【精析】先根据路程=速度×时间,求出家到单位的距离,再求出下班的速度,最后根据时间=路程÷速度即可解答。
【答案】350×20=7000(米)350+50=400 (米/分)7000÷400=17.5(分钟)答:17.5分钟到家。
【归纳总结】本题考查知识点:依据速度,时间以及路程之间的数量关系解决冋题。
考点2 相遇问题【例2】甲乙两车分别从相距480千米的A 、B 两城同时出发,相向而行,已知甲车从A 城到B 城需6小时,乙车从B 城到A 城需12小时。
小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。
然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。
解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。
这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。
小升初复习:知识点22行程问题

第二十二节:典型应用题(七)行程问题一般行程问题【例1】“共享单车”既环保,又方便,已经成为人们绿色出行的重要交通工具。
如图是小亮某次行程的详情。
请认真阅读下图信息,解答下列问题。
(1)小亮平均每分钟骑行多少米?(2)照这样的速度,他在一次远骑时骑行了105分钟,他一共骑行了多远?(3)小亮每骑行1分钟节约碳排量多少克?思路引导(1)根据路程÷时间=速度,用小亮骑行的路程除以用的时间,求出小亮平均每分钟骑行多少米;(2)他在一次远骑时骑行了105分钟,根据速度×时间=路程,可以求出一共骑行了多少米;(3)已知小亮骑行11分钟节约碳排量121克,那么小亮每骑行1分钟,节约碳排量(121÷11)克。
正确解答:(1)968÷11=88(米)答:小亮平均每分钟骑行88米。
(2)105×88=9240(米)答:他一共骑行了9240米。
(3)121÷11=11(克)答:小亮每骑行1分钟节约碳排量11克。
此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间。
【变式1】1. 如图是一辆汽车与一列火车的行程图表,根据图示回答问题。
(1)如图是()统计图。
(2)汽车的速度是每分钟()千米。
(3)火车停站时间是()分钟。
(4)火车停站后时速比汽车每分钟快()千米。
(5)汽车比火车早到()分钟。
相遇问题【例2】甲、乙两辆汽车同时从东西两座城市相向开出,甲车每小时行88千米,乙车每小时行80千米。
两车在距中点40千米处相遇。
东西两城相距多少千米?思路引导两车在距中点40千米处相遇,那么甲车比乙车多行了80千米,即两车行的路程相差是80千米,有了路程差与速度差就可以求出相遇的时间,进而根据速度和就可以求出距离。
正确解答:40×2÷(88-80)=80÷8=10(小时)(88+80)×10=168×10=1680(千米)答:东西两城相距1680千米。
小升初行程问题总结与练习

小升初典型行程问题公式一、平均速度=总路程÷总时间(v=s÷t)二、火车行程问题1、火车过桥路程=火车长+桥长2、火车过人路程=火车长3、火车过火车路程=甲火车长+乙火车长4、火车完全在桥上路程=桥长-火车长三、流水问题1、顺流速度=船在静水速度+水流速度2、逆流速度=船在静水速度-水流速度3、船的静水流速=(顺流速度+逆流速度)÷24、水流速度=(顺流速度-逆流速度)÷2四、相遇和追击问题:1、相遇时间=相遇路÷速度和2、追及时间=追及距离÷整流差3、环形行程中两人从同一地点相背而行首次相遇时,两人共走一个环形长度。
4、环形行程中两人同时从同一地点同向而行首次相遇时,快的比慢的多走一个环行长。
行程问题典型考题1、火车进入山洞隧道,从车头进入洞口到车尾进入洞口共用了a分钟,又当车头进入洞口到车尾出洞口共用了b分钟,且b:a=8:3,又知山洞隧道长315米,那么火车长多少米?(23中复试题)2、一列火车经过一个路标用了6.5秒,通过一座长300米的大桥用了23秒,它经过长800米的山洞要用多少秒?(25中试题)3、已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用了120秒,整列火车完全在桥上的时间为80秒。
求火车的速度和长度?(河北工程大学附中考题)4、一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经15秒,已知客车与货车的速度之比是5:3,问两车每秒各行驶多少米?(三中实验班试题)5、两码头相距108km,一艘轮船顺水行完全程10小时,逆水行完全程需12小时,这艘轮船的静水速度是多少?(23中复试试题)6、小明坐在一列时速为70km的客车上,迎面遇见一列30节的货车,货车每节车厢长15.8米,车厢间距1.2米,车头长10米,小明从看到车头到车尾共用16秒,求货车速度(一中试题)7、小刚由家去学校然后又按原路返回,去时每分钟行m米,回来时每分钟行n米,小刚来回的平均速度是每分钟多少米?8、甲乙两人同进从相距20千米的东、西两地出发相向而行,甲每小时行6千米,乙每小时行4千米,甲带一只狗,狗和甲同时出发,狗以每小时10千米的速度向乙奔去,碰到乙后就立即掉头朝甲这边跑,碰到甲又往乙那边跑……一直到两人相遇为止,这只狗共跑了多少千米?(邯郸市一中试题)9、一辆汽车以每秒20米的速度向山谷方向行驶,司机按了一下喇叭,4秒后听到从山谷中传来的回声,按喇叭时,汽车离山谷有多少米?(11中试题)10、在一环形轨道上有三枚子弹同时沿逆时针方向运动,已知甲于第10秒追上乙,在第30秒追上丙,第60秒时甲再次追上乙,并且在第70秒时再次追上丙,问乙追上丙用了多少时间?(一中试题)。
小升初数学行程问题精选及详解

试题习题、尽在百度小升初数学行程问题精选及详解1、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它.问:羊再跑多远,马可以追上它?解:根据“马跑4步的距离羊跑7步”,可以设马每步长为7x米,则羊每步长为4x米.根据“羊跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则羊跑5*4x=20米.可以得出马与羊的速度比是21x:20x=21:20根据“现在羊已跑出30米”,可以知道羊与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是30÷(21-20)×21=630米2、甲乙辆车同时从 a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求 a b 两地相距多少千米?答案720千米.由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份.又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米.所以算式是(40+40)÷(10-8)×(10+8)=720千米.3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?答案为两人跑一圈各要6分钟和12分钟.解:600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600÷100=6分钟,表示跑的快者用的时间百度文库:精选试题。
小升初数学冲刺-----行程问题(含答案)

小升初数学冲刺-----行程问题1、甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?解析:①4小时后相差多少千米:1604)300340(=⨯-(千米).②甲机提高速度后每小时飞行多少千米:4203402160=+÷(千米).2、两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?解析:甲、乙二人开始是同向行走,乙走得快,先到达目标.当乙返回时运动的方向变成了同时相对而行,把相同方向行走时乙用的时间和返回时相对而行的时间相加,就是共同经过的时乙到达目标时所用时间:9100900=÷(分钟),甲9分钟走的路程:720980=⨯(米),甲距目标还有:180720900=-(米),相遇时间:1)80100(180=+÷(分钟),共用时间:1019=+(分钟).3、甲、乙二人分别从东、西两镇同时出发相向而行.出发2小时后,两人相距54千米;出发5小时后,两人还相距27千米.问出发多少小时后两人相遇?解析:根据2小时后相距54千米,5小时后相距27千米,可以求出甲、乙二人3小时行的路程和为)2754(-千米,即可求出两人的速度和:9)25()2754(=-÷-(千米),根据相遇问题的解题规律;相隔距离÷速度和=相遇时间,可以求出行27千米需要:89275=÷+(小时).4、甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?解析:因为客车在行驶中耽误1小时,而货车没有停止继续前行,也就是说,货车比客车多走1小时.如果从总路程中把货车单独行驶1小时的路程减去,然后根据余下的就是客车和货车共同走过的.再求出货车和客车每小时所走的速度和,就可以求出相遇时间.然后根据路程=速度×时间,可以分别求出客车和货车在相遇时各自行驶的路程.解:相遇时间:4)7050()50530(=+÷-(小时)相遇时客车行驶的路程:280470=⨯(千米)相遇时货车行驶的路程:250)14(50=+⨯(千米).5、两车同时从甲乙两地相对开出,甲车每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少公里?解:甲乙两车的速度比=48:54=8:9那么相遇时甲车行了全程的8/17所以甲乙距离=36/(1/2-8/17)=36/(1/34)=1224千米6、客货两车从甲地到乙地客车出发,30分钟后货车才出发,结果货车比客车早到1小时,如果甲乙两地相距360km,客车速度是货车的3/4.货车和客车行驶的速度分别是多少?解:若同时出发客车比货车晚到1小时30分=1.5小时客车和货车的速度比=3:4时间比=4:3所以客车行驶全程的时间=1.5/(1-3/4)=6小时所以客车速度=360/6=60千米/小时货车速度=60/(3/4)=80千米/小时7、甲乙两车同时从A、B两地相对开出,4小时后相遇,相遇后甲车在开3小时到达B地。
小升初复习行程问题练习(含答案)

行程问题练习知识点梳理一、基础公式①路程=速度×时间②时间=路程÷速度③速度=路程÷时间二、常见题型①一般相遇:路程和=时间×速度和②中点相遇:四步曲(1)找出快走者多走的路程:中点路程×2 (2)算出速度差:快者速度-慢者速度 (3)时间:(1)的路程÷(2)的速度=时间(4)套用公式:路程和=时间×速度和③往返相遇:两者相对行驶,第三人在中间往返。
同时出发、同时停止就是相遇时间。
④环形相遇:背向行驶,相遇几次就共走了几个全长。
三、解题思路①画行程图理解题意。
②分析题型。
③套用公式。
例题1红红和聪聪分别从相距 1026 米的两地同时出发,相向而行。
红红家的小狗也跟来了,而且跑在了红红的前面。
当小狗和聪聪相遇后,立即返回跑向红红,遇到红红后,又立即返回跑向聪聪,这样跑来跑去,一直到两人相遇。
这只小狗一共跑了__________米。
(已知红红每分钟走54 米,聪聪每分钟走60 米,小狗每分钟跑70米)例题2一辆客车从 A 地出发开往 B 地,同时一辆货车从 B 地出发开往 A 地。
3 小时后两车在离 A 地 180 千米的 C 地相遇。
相遇后两车继续向前行驶,2 小时后,客车到达 B 地。
此刻,货车还要行驶多少小时才能到达A地?例题3星期天,小英从家里出发去少年宫学画画。
她刚走不久,妈妈发现小英忘了带画笔,于是就去追小英。
如图象表示两人行走的时间和路程。
①妈妈每分钟走__________米;②照这样的速度,妈妈出发后__________分钟可以追上小英。
例题4某日上午,甲、乙两车先后从 A 地出发沿一条公路匀速前往 B 地。
甲车 7 点出发,如图是甲行驶路程 s(千米)随行驶时间 t(小时)变化的图像。
乙车 8 点出发,若要在 9 点至 10 点之间(含 9 点和 10 点)追上甲车,则乙车的速度 v (单位:千米/时)的范围是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题经典题型
1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。
问他走后一半路程用了多少分钟?
2、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。
问:东西两地的距离是多少千米?
3、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。
0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。
又过了1.5小时,张明从学校骑车去营地报到。
结果3人同时在途中某地相遇。
问:骑车人每小时行驶多少千米?
4 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?
5 小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?
6、上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?
“相遇问题”,常常要考虑两人的速度和.
7、小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12
分钟.他们同时出发,几分钟后两人相遇?
8、小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.
9、一列长100米的火车过一座桥,火车的速度是25米/秒,它过桥一共用了10秒,那么桥的长度是多少?
10、甲骑摩托车,乙骑自行车,同时从相距126千米的A、B两城出发、相向而行。
3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。
求甲、乙二人的速度各是多少?
11、客轮行了全程的3\7时,货轮行全程的多少? 3/7×7/10=3/10 2.甲乙两码头相距多少千米?
12、A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?
13、两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?
14、一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?
15、骑自行车从甲地到乙地,以每小时10千米的速度行驶,下午1时到;以每小时15千米的速度行驶,下午1时到;以每小时15千米的速度行进,上午11时到;如果希望中午12时到,应以怎样的速度行进?
16、一辆公共汽车和一辆小轿车同时从相距299千米的两地相向而行,公共汽车每小时行 40千米,小轿车每小时行52千米,问:几小时后两车第一次相距69千米?再过多少时间两车再次相距69千米?
17、一列客车与一列货车同时同地反向而行,货车比客车每小时快6千米,3小时后,两车相距342千米,求两车速度。
18、甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8
千米,已知甲车速度是乙车的1.2倍,求A、B两地距离。
19、甲、乙两车同时从A、B两地相向而行,在距B地54千米处相遇,他们各自到达对方车站后立即返回原地,途中又在距A地42千米处相遇,求两次相遇地点的距离。
20、甲、乙、丙三人的步行速度分别为每分钟60米、50米和40米,甲从B地,乙和丙从A地同时出发相向而行,途中甲遇到乙后15分钟又遇到丙,求A、B
两地距离。
答案详情
1、解:(80+70)÷2=75(米) 6000÷75=80(分)
3000÷80=37.5(分) 80-37.5=42.5(分)
2、解:甲乙速度比:56:48=7:6
相遇时甲比乙多行:(7-6)÷(7+6)=1/13
两地距离:2×32÷(1÷13)=832千米。
3、解:老师速度:4+1.2=5.2(千米)
与李相遇时间是老师出发后(20.4-4×0.5)÷(4+5.2)=2(小时)
相遇地点距离学校4×(0.5+2)=10(千米)
所以骑车人速度=10÷(2+0.5-2)=20(千米)
4、解:9÷6=1.5(时)
面包车速度是 54-6=48(千米/小时).
城门离学校的距离是 48×1.5=72(千米).
5、解:追上所需时间=追上距离÷速度差
1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.
马上可看出前一速度差是15.自行车速度是
35- 15= 20(千米/小时).
6、解:画一张简单的示意图:
图上可以看出,从爸爸第一次追上到第二次追上,小明走了
8-4=4(千米).
而爸爸骑的距离是 4+ 8= 12(千米).
爸爸的速度是小明的 12÷4=3(倍).
小明骑8千米,爸爸可以骑行8×3=24(千米).
但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).
少骑行24-16=8(千米).
摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.
7、解:36÷(3+1)=9(分钟).
8、解:
小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是 2÷(5-4)=2(小时).
因此,甲、乙两地的距离是(5+4)×2=18(千米).
9、解:25×10=250(米)
那么桥长就是: 250-100=150(米)
10、解:甲的速度:(126÷2+24)÷3=29(千米/小时)
乙的速度:(126÷2-24)÷3= 13(千米/小时)
11、解:36÷3/10=120(千米)
12、解:后半段路程长:240÷2=120(千米)
后半段用时为:6÷2-0.5=2.5(小时)
后半段行驶速度应为:120÷2.5=48(千米/时)
原计划速度为:240÷6=40(千米/时)
汽车在后半段加快了:48-40=8(千米/时)。
13、解:顺水速度231÷11=21(千米/时)逆水速度21-10=11(千米/时),
逆水比顺水多需要的时间为:21-11=10(小时)
14、解:300-120=180(千米)300÷50=6(小时)
6-120÷40=3(小时),180÷3=60(千米/小时)
15、解:20÷(15-10)=4(小时)15×4=60(千米)60÷5=12(千米/时)
16、解: 299-69=230(千米)230÷(40+52)=2.5(时)
69×2=138(千米)138÷(40+52)=1.5(小时)
17、解:两车速度和为:342÷3=114(千米/小时)
货车速度为(114+6)÷2=60(千米/时)
客车速度为114-60=54(千米/时)
18、解:甲车在相遇时比乙车多走了:8×2=16(千米)
乙所走路程为16÷(1.2-1)=80(千米)
两地距离为(80+8)×2=176(千米)
19、解:第一次相遇时,甲、乙两人走的总路程是A到B距离的3倍
乙所走路程为54×3=162(千米)
这时他们相距A地42千米,也就是说A、B距离为:162-42=120(千米),两次相遇地点距离为120-54-42=24(千米)
20、解答:(60+40)×15=1500(米)
到甲、乙相遇为止,乙、丙走了:1500÷(50-40)=150(分钟)
A、B距离为:(60+50)×150=16500(米)。