中考试题在线-济宁市中考数学试题及答案

合集下载

山东济宁中考数学试题及答案解析

山东济宁中考数学试题及答案解析

山东济宁中考数学试题及答案解析一、选择题1. 下列哪个数不是32的约数?A) 2 B) 4 C) 5 D) 8【答案解析】C) 5解析:32除以5等于6余2,因此5不是32的约数。

2. 若一椭圆的长轴长为10,短轴长为6,则其离心率为()。

A) 1 B) 2 C) 3 D) 4【答案解析】B) 2解析:根据离心率的定义,离心率等于长轴与短轴的比值(e=a/b),所以离心率为10/6=2。

3. 已知函数f(x) = 3x^2 - 5x + 2,则f(-1)的值等于()。

A) -6 B) -4 C) -2 D) 0【答案解析】A) -6解析:将x替换为-1,代入函数f(x)中计算,f(-1) = 3*(-1)^2 - 5*(-1) + 2 = 3 + 5 + 2 = 10,所以f(-1)的值为-6。

4. 若A∪B={1, 2, 3, 4, 5},A∩B={2, 3, 4},则A的补集为()。

A) {1, 2, 3, 4, 5} B) {2, 3, 4, 5} C) {1, 5} D) {1}【答案解析】C) {1, 5}解析:A的补集即A中没有而A∪B中有的元素,即{1, 5}。

5. 已知a:b=3:5,b:x=4:7,则a:x=()。

A) 6:7 B) 9:20 C) 12:14 D) 15:20【答案解析】B) 9:20解析:根据比例的性质,a:x=(a:b)(b:x)=(3:5)(4:7)=(3*4:5*7)=12:35,则化简得到9:20。

二、填空题1. 化简:(3x^2y^3)(5x^4y^5)(-2xy)^3。

【答案解析】-120x^11y^14解析:将指数相乘,系数相乘,得到-120x^11y^14。

2. 三角形ABC,∠B = 90°,AC = 10,BC = 24,若CD ⊥ AB于D,求CD的长度。

【答案解析】CD = 8解析:根据勾股定理,AC^2 = AD^2 + CD^2,代入已知条件可得10^2 = AD^2 + CD^2,化简得100 = AD^2 + CD^2。

初中毕业升学考试(山东济宁卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(山东济宁卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(山东济宁卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.【答案】B.【解析】试题分析:根据正数都大于0,负数都小于0,正数大于一切负数即可判定在0,﹣2,1,这四个数中,最小的数是-2,故答案选B.考点:有理数的大小比较.【题文】下列计算正确的是()A.x2•x3=x5 B.x6+x6=x12 C.(x2)3=x5 D.x﹣1=x 【答案】A.【解析】试题分析:选项A,根据同底数幂的乘法可得原式=x5,正确;选项B,根据合并同类项法则可得原式=2x6,错误;选项C,根据幂的乘方可得原式=x6,错误;选项D,根据负整数指数幂法则原式=,错误,故答案选A.考点:负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方.【题文】如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A. 20°B. 30°C. 35°D. 50°【答案】C【解析】试题分析:由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,又因∵a∥b,再由平行线的性质可得∠2=∠3=35°.故答案选C.评卷人得分考点:平行线的性质.【题文】如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.【答案】D.【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.【题文】如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40° B.30° C.20° D.15°【答案】C.【解析】试题分析:已知,在⊙O中,=,∠AOB=40°,根据同圆或等圆中,同弧或等弧所对的圆周角相等,并且都等于所对圆周角的一半可得∠ADC=∠AOB=20°,故答案选C.考点:圆周角定理.【题文】已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【答案】A.【解析】试题分析:已知x﹣2y=3,所以3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故答案选A.考点:求代数式的值.【题文】如图将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A. 16cmB. 18cmC. 20cmD. 21cm【答案】C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C.考点:平移的性质.【题文】在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:参赛者编号12345成绩/分9688869386那么这五位同学演讲成绩的众数与中位数依次是()A.96,88, B.86,86 C.88,86 D.86,88【答案】D.【解析】试题分析:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,86出现两次,次数最多,是众数,中位数是中间的数为88,故答案选D.考点:中位数;众数.【题文】如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A. B. C. D.【答案】B.【解析】试题分析:根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况(如下图所示),所以使图中黑色部分的图形仍然构成一个轴对称图形的概率是.故答案选B.考点:轴对称图形的概念;概率.【题文】如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【答案】D.【解析】试题分析:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,可求得AM=OA•sin∠AOB=a,OM=a,所以点A的坐标为(a,a).因点A 在反比例函数y=的图象上,所以a×a=48,解得:a=10,或a=﹣10(舍去).即AM=8,OM=6.再由四边形OACB是菱形,OA=OB=10.所以S△AOF=S菱形AOBC=×OB×AM=×10×8=40.故答案选D.考点:反比例函数的综合题.【题文】若式子有意义,则实数x的取值范围是.【答案】x≥1.【解析】试题分析:根据二次根式的性质可得x﹣1≥0,即x≥1.考点:二次根式有意义的条件.【题文】如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.【答案】AH=CB或EH=EB或AE=CE.(添加其中任意一个即可)【解析】试题分析:根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.考点:全等三角形的判定.【题文】如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【答案】.【解析】试题分析:已知AG=2,GD=1,可得AD=3,再由AB∥CD∥EF,根据平行线分线段成比例定理可得. 考点:平行线分线段成比例定理.【题文】已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h 到达,这辆汽车原来的速度是 km/h.【答案】80.【解析】试题分析:设这辆汽车原来的速度是xkm/h,由题意得方程,解得x=80,经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.考点:分式方程的应用.【题文】按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.【答案】.【解析】试题分析:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是9,所以此规律方框内的l【题文】2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.【答案】(1)图见解析;(2)0.221万元.【解析】试题分析:(1)将销售总额减去2012、2014、2015年的销售总额,即可求得2013年的销售额,补全条形统计图即可;(2)将2015年的销售总额乘以甲品牌剃须刀所占百分比即可.试题解析:解:(1)2013年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),补全条形图如图:(2)1.3×17%=0.221(万元).答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.考点:条形统计图;折线统计图.【题文】某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.【答案】(1)30°;(2)文化墙PM不需要拆除,理由详见解析.【解析】试题分析:(1)由新坡面的坡度为1:,由特殊角的三角函数值,即可求得新坡面的坡角;(2)过点C作CD⊥AB于点D,由坡面BC的坡度为1:1,新坡面的坡度为1:.即可求得AD,BD的长,继而求得AB 的长,则可求得答案.试题解析:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.考点:解直角三角形的应用.【题文】某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【答案】(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】试题分析:(1)设年平均增长率为x,根据“2014年投入资金给×(1+增长率)2=2016年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.试题解析:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.【题文】如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.【答案】(1)1;(2)CN=CM,理由详见解析.【解析】试题分析:(1)根据正方形的性质可得△ABD是等腰直角三角形,再由勾股定理可得2AB2=BD2,即可求得AB=1;(2)根据等腰三角形的性质可得CE⊥AF,再证得∠BAF=∠BCN,利用AAS证得△ABF≌△CBN,根据全等三角形的性质可得AF=CN,再证△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN=CM.试题解析:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=CM.证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF∽△COM,∴=,∴==,即CN=CM.考点:四边形综合题.【题文】已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【答案】(1);(2)相切,理由见解析;(3).【解析】试题分析:(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9的距离,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.试题解析:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.考点:一次函数综合题;阅读理解题.【题文】如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣x+1;(2)点P坐标为(3,);(3)点Q坐标为(9,4)或(15,16).【解析】试题分析:(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;(2)作出B点关于l的对称点B′,连接EB′交l于点P,如图所示,,三角形BEP为顶点的三角形的周长最小,再求出直线B′E的解析式,进而得出P点坐标;(3)先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG 直线解析式可求出点Q坐标.试题解析:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)∴连接EB′交l于点P,如图所示设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得解得,则函数解析式为y=﹣x+把x=3代入解得y=,∴点P坐标为(3,);(3)∵y=﹣x+与x轴交于点D,∴点D坐标为(7,0),∵y=﹣x+与抛物线m的对称轴l交于点F,∴点F坐标为(3,2),求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k 值为2,设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x﹣14,设点Q的坐标为(a,),把点Q代入y=2x﹣14得=2a﹣14解得a1=9,a2=15.∴点Q坐标为(9,4)或(15,16).考点:二次函数综合题.。

2020年山东省济宁市中考数学试卷及其答案

2020年山东省济宁市中考数学试卷及其答案

2020年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(3分)﹣的相反数是()A.﹣B.﹣C.D.2.(3分)用四舍五入法将数3.14159精确到千分位的结果是()A.3.1B.3.14C.3.142D.3.1413.(3分)下列各式是最简二次根式的是()A.B.C.D.4.(3分)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.95.(3分)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C 在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里6.(3分)下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:cm)的平均数和方差,要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()甲乙丙丁平均数376350376350方差s212.513.5 2.4 5.4A.甲B.乙C.丙D.丁7.(3分)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=158.(3分)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.12πcm2B.15πcm2C.24πcm2D.30πcm29.(3分)如图,在△ABC中,点D为△ABC的内心,∠A=60°,CD=2,BD=4.则△DBC的面积是()A.4B.2C.2D.410.(3分)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.B.C.D.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)分解因式a3﹣4a的结果是.12.(3分)已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是(写出一个即可).13.(3分)已知m+n=﹣3,则分式÷(﹣2n)的值是.14.(3分)如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:,则斜坡AB的长是米.15.(3分)如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2.则BO的长是.三、解答题:本大题共7小题,共55分.16.(6分)先化简,再求值:(x+1)(x﹣1)+x(2﹣x),其中x=.17.(7分)某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分10099众数a98中位数96b平均数c94.8(1)统计表中,a=,b=,c=;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.18.(7分)如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.19.(8分)在△ABC中,BC边的长为x,BC边上的高为y,△ABC的面积为2.(1)y关于x的函数关系式是,x的取值范围是;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=﹣x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.20.(8分)为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?21.(9分)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与x轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.(1)求⊙C的标准方程;(2)试判断直线AE与⊙C的位置关系,并说明理由.22.(10分)如图,在菱形ABCD中,AB=AC,点E,F,G分别在边BC,CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).(1)求证:△AEH≌△AGH;(2)当AB=12,BE=4时.①求△DGH周长的最小值;②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.2020年山东省济宁市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(3分)﹣的相反数是()A.﹣B.﹣C.D.【解答】解:﹣的相反数是:.故选:D.2.(3分)用四舍五入法将数3.14159精确到千分位的结果是()A.3.1B.3.14C.3.142D.3.141【解答】解:3.14159精确到千分位的结果是3.142.故选:C.3.(3分)下列各式是最简二次根式的是()A.B.C.D.【解答】解:A、是最简二次根式,符合题意;B、=2,不是最简二次根式,不符合题意;C、=a,不是最简二次根式,不符合题意;D、=,不是最简二次根式,不符合题意.故选:A.4.(3分)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.9【解答】解:设这个多边形的边数为n,根据题意得:180°(n﹣2)=1080°,解得:n=8.故选:C.5.(3分)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C 在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里【解答】解:如图.根据题意得:∠CBD=84°,∠CAB=42°,∴∠C=∠CBD﹣∠CAB=42°=∠CAB,∴BC=AB,∵AB=15×2=30(海里),∴BC=30(海里),即海岛B到灯塔C的距离是30海里.故选:C.6.(3分)下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:cm)的平均数和方差,要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()甲乙丙丁平均数376350376350方差s212.513.5 2.4 5.4A.甲B.乙C.丙D.丁【解答】解:∵乙和丁的平均数最小,∴从甲和丙中选择一人参加比赛,∵丙的方差最小,∴选择丙参赛.故选:C.7.(3分)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=15【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴方程x+5=ax+b的解为x=20.故选:A.8.(3分)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.12πcm2B.15πcm2C.24πcm2D.30πcm2【解答】解:由三视图可知,原几何体为圆锥,∵l==5(cm),=•2πr•l=×2π××5=15π(cm2).∴S侧故选:B.9.(3分)如图,在△ABC中,点D为△ABC的内心,∠A=60°,CD=2,BD=4.则△DBC的面积是()A.4B.2C.2D.4【解答】解:过点B作BH⊥CD的延长线于点H.∵点D为△ABC的内心,∠A=60°,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A),∴∠BDC=90°+∠A=90°+×60°=120°,则∠BDH=60°,∵BD=4,∴DH=2,BH=2,∵CD=2,∴△DBC的面积=CD•BH==2,故选:B.10.(3分)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.B.C.D.【解答】解:∵第1个图形中正方体的个数为1,第2个图形中正方体的个数3=1+2,第3个图形中正方体的个数6=1+2+3,∴第100个图形中,正方体一共有1+2+3+……+99+100==5050(个),其中写有“心”字的正方体有100个,∴抽到带“心”字正方体的概率是=,故选:D.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)分解因式a3﹣4a的结果是a(a+2)(a﹣2).【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).12.(3分)已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是4(写出一个即可).【解答】解:根据三角形的三边关系,得第三边应大于6﹣3=3,而小于6+3=9,故第三边的长度3<x<9,这个三角形的第三边长可以是4.故答案为:4.13.(3分)已知m+n=﹣3,则分式÷(﹣2n)的值是.【解答】解:原式=÷=•=,当m+n=﹣3时,原式=故答案为:14.(3分)如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:,则斜坡AB的长是20米.【解答】解:如图所示:过点A作AF⊥BC于点F,∵斜面坡度为1:,∴tan∠ABF===,∴∠ABF=30°,∵在P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,∴∠HPB=30°,∠APB=45°,∴∠HBP=60°,∴∠PBA=90°,∠BAP=45°,∴PB=AB,∵PH=30m,sin60°===,解得:PB=20(m),故AB=20m,故答案为:20.15.(3分)如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2.则BO的长是4.【解答】解:连接OC,如图,∵CD2=CE•CA,∴,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;设⊙O的半径为r,∵CD=CB,∴,∴∠BOC=∠BAD,∴OC∥AD,∴,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴,即,∴r=4(负根已经舍弃),∴OB=4,故答案为4.三、解答题:本大题共7小题,共55分.16.(6分)先化简,再求值:(x+1)(x﹣1)+x(2﹣x),其中x=.【解答】解:原式=x2﹣1+2x﹣x2=2x﹣1,当x=时,原式=2×﹣1=0.17.(7分)某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分10099众数a98中位数96b平均数c94.8(1)统计表中,a=96,b=96,c=94.5;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.【解答】解:(1)八(1)班的成绩为:88、89、92、92、96、96、96、98、98、100,八(2)班成绩为89、90、91、93、95、97、98、98、98、99,所以a=96、c=×(88+89+92+92+96+96+96+98+98+100)=94.5,b==96,故答案为:96、96、94.5;(2)设(1)班学生为A1,A2,(2)班学生为B1,B2,B3,一共有20种等可能结果,其中2人来自不同班级共有12种,所以这两个人来自不同班级的概率是=.18.(7分)如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.【解答】解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC∴PD∥AB.19.(8分)在△ABC中,BC边的长为x,BC边上的高为y,△ABC的面积为2.(1)y关于x的函数关系式是y=,x的取值范围是x>0;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=﹣x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.【解答】解:(1)∵在△ABC中,BC边的长为x,BC边上的高为y,△ABC的面积为2,∴xy=2,∴xy=4,∴y关于x的函数关系式是y=,x的取值范围为x>0,故答案为:y=,x>0;(2)在平面直角坐标系中画出该函数图象如图所示;(3)将直线y=﹣x+3向上平移a(a>0)个单位长度后解析式为y=﹣x+3+a,解,整理得,x2﹣(3+a)x+4=0,∵平移后的直线与反比例函数图象有且只有一个交点,∴△=(3+a)2﹣16=0,解得a=1,a=﹣7(不合题意舍去),故此时a的值为1.20.(8分)为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?【解答】解:(1)设1辆大货车一次运输x箱物资,1辆小货车一次运输y箱物资,由题意可得:,解得:,答:1辆大货车一次运输150箱物资,1辆小货车一次运输100箱物资,(2)设有a辆大货车,(12﹣a)辆小货车,由题意可得:,∴6≤a<9,∴整数a=6,7,8;当有6辆大货车,6辆小货车时,费用=5000×6+3000×6=48000元,当有7辆大货车,5辆小货车时,费用=5000×7+3000×5=50000元,当有8辆大货车,4辆小货车时,费用=5000×8+3000×4=52000元,∵48000<50000<52000,∴当有6辆大货车,6辆小货车时,费用最小,最小费用为48000元.21.(9分)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与x轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D 的抛物线的顶点为E.(1)求⊙C的标准方程;(2)试判断直线AE与⊙C的位置关系,并说明理由.【解答】解:(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.∵与y轴相切于点D(0,4),∴CD⊥OD,∵∠CDO=∠CMO=∠DOM=90°,∴四边形ODCM是矩形,∴CM=OD=4,CD=OM=r,∵B(8,0),∴OB=8,∴BM=8﹣r,在Rt△CMB中,∵BC2=CM2+BM2,∴r2=42+(8﹣r)2,解得r=5,∴C(5,4),∴⊙C的标准方程为(x﹣5)2+(y﹣4)2=25.(2)结论:AE是⊙C的切线.理由:连接AC,CE.∵CM⊥AB,∴AM=BM=3,∴A(2,0),B(8,0)设抛物线的解析式为y=a(x﹣2)(x﹣8),把D(0,4)代入y=a(x﹣2)(x﹣8),可得a=,∴抛物线的解析式为y=(x﹣2)(x﹣8)=x2﹣x+4=(x﹣5)2﹣,∴抛物线的顶点E(5,﹣),∵AE==,CE=4+=,AC=5,∴EC2=AC2+AE2,∴∠CAE=90°,∴CA⊥AE,∴AE是⊙C的切线.22.(10分)如图,在菱形ABCD中,AB=AC,点E,F,G分别在边BC,CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).(1)求证:△AEH≌△AGH;(2)当AB=12,BE=4时.①求△DGH周长的最小值;②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠BCD=120°,∵AC是菱形ABCD的对角线,∴∠ACD=∠BCD=60°=∠ABC,∵BE=CG,∴△ABE≌△ACG(SAS),∴AE=AG,∵AF平分∠EAG,∴∠EAF=∠GAF,∵AH=AH,∴△AEH≌△AGH(SAS);(2)①如图1,过点D作DM⊥BC交BC的延长线于M,连接DE,∵AB=12,BE=4,∴CG=4,∴CE=DG=12﹣4=8,由(1)知,△AEH≌△AGH,∴EH=HG,∴l△DGH=DH+GH+DG=DH+HE+8,要使△DGH的周长最小,则EH+DH最小,最小为DE,在Rt△DCM中,∠DCM=180°﹣120°=60°,CD=AB=12,∴CM=6,∴DM=CM=6,在Rt△DME中,EM=CE+CM=14,根据勾股定理得,DE===4,∴△DGH周长的最小值为4+8;②Ⅰ、当OH与线段AE相交时,交点记作点N,如图2,连接CN,∴点O是AC的中点,∴S△AON =S△CON=S△ACN,∵三角形的面积与四边形的面积比为1:3,∴=,∴S△CEN =S△ACN,∴AN=EN,∵点O是AC的中点,∴ON∥CE,∴;Ⅱ、当OH与线段CE相交时,交点记作Q,如图3,连接AQ,FG,∵点O是AC的中点,∴S△AOQ =S△COQ=S△ACQ,∵三角形的面积与四边形的面积比为1:3,∴,∴S△AEQ =S△ACQ,∴CQ=EQ=CE=(12﹣4)=4,∵点O是AC的中点,∴OQ∥AE,设FQ=x,∴EF=EQ+FQ=4+x,CF=CQ﹣FQ=4﹣x,由(1)知,AE=AG,∵AF是∠EAG的角平分线,∴∠EAF=∠GAF,∵AF=AF,∴△AEF≌△AGF(SAS),∴FG=EF=4+x,过点G作GP⊥BC交BC的延长线于P,在Rt△CPG中,∠PCG=60°,CG=4,∴CP=CG=2,PG=CP=2,∴PF=CF+CP=4﹣x+2=6﹣x,在Rt△FPG中,根据勾股定理得,PF2+PG2=FG2,∴(6﹣x)2+(2)2=(4+x)2,∴x=,∴FQ=,EF=4+=,∵OQ∥AE,∴==,即的值为或.。

2023年山东省济宁市中考数学真题(解析版)

2023年山东省济宁市中考数学真题(解析版)

济宁市2023年初中学业水平考试一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1. 实数10 1.53π-,,,中无理数是( )A. π B. 0 C. 13- D. 1.5【答案】A【解析】【分析】根据无理数的概念求解.【详解】解:实数1,0,,1.53π-中,π是无理数,而10,,1.53-是有理数;故选A .【点睛】本题主要考查无理数,熟练掌握无理数的概念是解题的关键.2. 下列图形中,是中心对称图形的是( )A. B. C.D.【答案】B【解析】【分析】在一个平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;由此判断即可得出答案.【详解】选项A 、C 、D 中的图形不是中心对称图形,故选项A 、C 、D 不符合题意;选项B 中的图形是中心对称图形,故B 符合题意.故选:B .【点睛】本题考查了中心对称图形的定义,在一个平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.3. 下列各式运算正确的是( )A. 236x x x⋅= B. 1226x x x ÷= C. 222()x y x y +=+ D. ()3263x y x y =【答案】D【解析】【分析】根据同底数幂的乘除、完全平方公式、积的乘方逐个计算即可.【详解】A .235x x x ×=,所以A 选项不符合题意;B .12210x x x ÷=,所以B 选项不符合题意;C .222()2x y x y xy +=++,所以C 选项不符合题意;D .()3263x y x y =,所以D 选项符合题意.故选:D .【点睛】此题主要考查了同底数幂的乘除、完全平方公式、积的乘方,熟记运算法则是解题关键.4. 有意义,则实数x 的取值范围是( )A. 2x ≠ B. 0x ≥ C. 2x ≥ D. 0x ≥且2x ≠【答案】D【解析】【分析】根据二次根式有意义的条件和分式有意义的条件得到不等式组,解不等式组即可得到答案.∴020x x ≥⎧⎨-≠⎩,解得0x ≥且2x ≠,故选:D【点睛】此题考查了二次根式有意义的条件和分式有意义的条件,熟练掌握相关知识是解题的关键.5. 如图,,a b 是直尺的两边,a b P ,把三角板的直角顶点放在直尺的b 边上,若135∠=︒,则2∠的度数是( )A. 65︒B. 55︒C. 45︒D. 35︒【答案】B【解析】【分析】根据平行线的性质及平角可进行求解.【详解】解:如图:∵a b P ,135∠=︒,∴135,2ACD BCE ∠=∠=︒∠=∠,∵180BCE ACB ACD ∠+∠+∠=︒,90ACB ∠=︒,∴1809035552BCE ∠=︒-︒-︒=︒=∠;故选B .【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键.6. 为检测学生体育锻炼效果,从某班随机抽取10名学生进行篮球定时定点投篮检测,投篮进球数统计如图所示.对于这10名学生的定时定点投篮进球数,下列说法中错误的是( )A. 中位数是5B. 众数是5C. 平均数是5.2D. 方差是2【答案】D【解析】【分析】根据中位数、众数、平均数、方差定义逐个计算即可.【详解】根据条形统计图可得,从小到大排列第5和第6人投篮进球数都是5,故中位数是5,选项A 不符合题意;投篮进球数是5的人数最多,故众数是5,选项B 不符合题意;平均数342536272 5.210+⨯+⨯+⨯+⨯==,故选项C 不符合题意;方差()()()()()222223 5.24 5.225 5.236 5.227 5.22 1.5610-+-⨯+-⨯+-⨯+-⨯==,故选项D 符合题意;故选:D .【点睛】本题考查了中位数、众数、平均数、方差和条形统计图的知识,解答本题的关键在于读懂题意,从图表中筛选出可用的数据,然后整合数据进行求解即可.7. 下列各式从左到右的变形,因式分解正确的是( )A. 22(3)69+=++a a a B. ()24444a a a a -+=-+C ()()22555ax ay a x y x y -=+- D. ()()22824a a a a --=-+【答案】C【解析】【分析】根据因式分解的概念可进行排除选项.【详解】解:A 、22(3)69+=++a a a ,属于整式的乘法,故不符合题意;B 、()24444a a a a -+=-+,不符合几个整式乘积的形式,不是因式分解;故不符合题意;C 、()()22555ax ay a x y x y -=+-,属于因式分解,故符合题意;D 、因为()()22242828a a a a a a -+=+-≠--,所以因式分解错误,故不符合题意;故选C .【点睛】本题主要考查因式分解,熟练掌握因式分解的概念是解题的关键.8. 一个几何体的三视图如下,则这个几何体的表面积是( ).A. 39πB. 45πC. 48πD. 54π【答案】B【解析】【分析】先根据三视图还原出几何体,再利用圆锥的侧面积公式和圆柱的侧面积公式计算即可.【详解】根据三视图可知,该几何体上面是底面直径为6,母线为4的圆锥,下面是底面直径为6,高为4的圆柱,该几何体的表面积为:211π646π4π612π24π9π45π22S ⎛⎫=⨯⨯⨯+⨯+⨯⨯=++= ⎪⎝⎭.故选B .【点睛】本题主要考查了简单几何体的三视图以及圆锥的侧面积公式和圆柱的侧面积公式,根据三视图还原出几何体是解决问题的关键.9. 如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A B C D E ,,,,均在小正方形方格的顶点上,线段,AB CD 交于点F ,若CFB α∠=,则ABE ∠等于( )A. 180α︒- B. 1802α︒- C. 90α︒+ D. 902α︒+【答案】C【解析】【分析】根据三角形外角的性质及平行线的性质可进行求解.【详解】解:如图,由图可知:1,4GD EH CG BH ====,90CGD BHE ∠=∠=︒,∴()SAS CGD BHE V V ≌,∴GCD HBE ∠=∠,∵CG BD ∥,∴CAB ABD ∠=∠,∵CFB CAB GCD α∠=∠+∠=,∴ABD HBE α=∠+∠,∴90ABE ABD DBH HBE α∠=∠+∠+∠=︒+;故选C .【点睛】本题主要考查全等三角形性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.10. 已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,,34131111n n n a a a a a a +++==-- ,,,若12a =,则2023a 的值是( )A. 12- B. 13 C. 3- D. 2【答案】A【解析】【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;的由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.二、填空题:本大题共5小题,每小题3分,共15分.11. 一个函数过点()1,3,且y 随x 增大而增大,请写出一个符合上述条件的函数解析式_________.【答案】3y x =(答案不唯一)【解析】【分析】根据题意及函数的性质可进行求解.【详解】解:由一个函数过点()1,3,且y 随x 增大而增大,可知该函数可以为3y x =(答案不唯一);故答案为3y x =(答案不唯一).【点睛】本题主要考查正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.12. 已知一个多边形的内角和为540°,则这个多边形是______边形.【答案】5【解析】【详解】设这个多边形是n 边形,由题意得,(n -2) ×180°=540°,解之得,n =5.13. 某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A ,在点A 和建筑物之间选择一点B ,测得30m AB =.用高()1m 1m AC =的测角仪在A 处测得建筑物顶部E 的仰角为30︒,在B 处测得仰角为60︒,则该建筑物的高是_________m .【答案】()1【解析】【分析】结合三角形外角和等腰三角形的判定求得ED CD =,然后根据特殊角的三角函数值解直角三角形.【详解】解:由题意可得:四边形MNBD ,四边形DBAC ,四边形MNAC 均为矩形,∴30AB CD ==,1MN AC ==,在Rt EMC V 中,30ECD ∠=︒,在Rt EDM △中,60EDM ∠=︒,∴30DEC EDM ECD ∠=∠-∠=︒,∴DEC ECD ∠=∠,∴30ED CD ==,在Rt EDM △中,sin 60EM ED =︒,即30EM =解得EM =∴()1mEN EM MN =+=故答案为:()1+.【点睛】本题考查了解直角三角形的应用--仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.14. 已知实数m 满足210m m --=,则32239m m m --+=_________.【答案】8【解析】【分析】由题意易得21m m -=,然后整体代入求值即可.【详解】解:∵210m m --=,∴21m m -=,∴32239m m m --+()2229m m m m m --=-+229m m m -=-+29m m =-+()29m m =--+19=-+8=;故答案为8.【点睛】本题主要考查因式分解及整体思想,熟练掌握利用整体思维及因式分解求解整式的值.15. 如图,ABC V 是边长为6的等边三角形,点D E ,在边BC 上,若30DAE ∠=︒,1tan 3EAC ∠=,则BD =_________.【答案】3【解析】【分析】过点A 作AH BC ⊥于H ,根据等边三角形的性质可得60BAC ∠=︒,再由AH BC ⊥,可得=30BAD DAH ∠+∠︒,再根据=30BAD EAC ∠+∠︒,可得DAH EAC ∠=∠,从而可得1tan =tan =3DAH EAC ∠∠,利用锐角三角函数求得sin 60AH AB =⋅︒=1==3DH AH ,求得DH =【详解】解:过点A 作AH BC ⊥于H ,∵ABC V 是等边三角形,∴6AB AC BC ===,60BAC ∠=︒,∵AH BC ⊥,∴1302BAH BAC ∠=∠=︒,∴=30BAD DAH ∠+∠︒,∵30DAE ∠=︒,∴=30BAD EAC ∠+∠︒,∴DAH EAC ∠=∠,∴1tan =tan =3DAH EAC ∠∠,∵132BH AB ==,∵ =sin 60=6=AH AB ⋅︒,∴1==3DH AH ,∴DH =∴==3BD BH DH --,故答案为:3.【点睛】本题考查等边三角形的性质、锐角三角函数,熟练掌握等边三角形的性质证明DAH EAC ∠=∠三、解答题:本大题共7小题,共55分.16. 12cos3022--︒-+.【答案】52【解析】【分析】根据二次根式的运算、特殊三角函数值及负指数幂可进行求解.【详解】解:原式1222=-+25=52=.【点睛】本题主要考查二次根式的运算、特殊三角函数值及负指数幂,熟练掌握各个运算是解题的关键.17. 某学校为扎实推进劳动教育,把学生参与劳动教育情况纳入积分考核.学校随机抽取了部分学生的劳动积分(积分用x 表示)进行调查,整理得到如下不完整的统计表和扇形统计图.等级劳动积分人数A 90x ≥4B 8090x ≤<m C 7080x ≤<20D 6070x ≤<8E60x <3请根据以上图表信息,解答下列问题:(1)统计表中m =_________,C 等级对应扇形的圆心角的度数为_________;(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;(3)A 等级中有两名男同学和两名女同学,学校从A 等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.【答案】(1)15,144︒(2)该学校“劳动之星”大约有760人 (3)23【解析】【分析】(1)根据统计图可得抽取学生的总人数为50人,然后可得m 的值,进而问题可求解;(2)根据题意易知大于等于80的学生所占比,然后问题可求解;(3)根据列表法可进行求解概率.【小问1详解】解:由统计图可知:D 等级的人数有8人,所占比为16%,∴抽取学生的总人数为81650÷=%(人),∴504208315m =----=,C 等级对应扇形的圆心角的度数为2036014450⨯=︒︒;故答案为15,144︒;【小问2详解】解:由题意得:415200076050+⨯=(人),答:该学校“劳动之星”大约有760人【小问3详解】解:由题意可列表如下:从A 等级两名男同学和两名女同学中随机选取2人进行经验分享,共有12种情况,恰好抽取一名男同学和一名女同学共有8种情况,所以抽取一名男同学和一名女同学的概率为82123P ==.【点睛】本题主要考查扇形统计图与统计表、概率,熟练掌握扇形统计图及利用列表法求解概率是解题的关键.18. 如图,BD 是矩形ABCD 的对角线.(1)作线段BD 的垂直平分线(要求:尺规作图,保留作图㢃迹,不必写作法和证明);(2)设BD 的垂直平分线交AD 于点E ,交BC 于点F ,连接BE DF ,.①判断四边形BEDF 的形状,并说明理由;②若510AB BC ==,,求四边形BEDF 的周长.【答案】(1)图见详解(2)①四边形BEDF 是菱形,理由见详解;②四边形BEDF 的周长为25【解析】【分析】(1)分别以点B 、D 为圆心,大于12B D 为半径画弧,分别交于点M 、N ,连接MN ,则问题可求解;(2)①由题意易得EDO FBO ∠=∠,易得()ASA EOD FOB V V ≌,然后可得四边形BEDF 是平行四边形,进而问题可求证;②设BE ED x ==,则10AE x =-,然后根据勾股定理可建立方程进行求解.【小问1详解】解:所作线段BD 的垂直平分线如图所示:【小问2详解】解:①四边形BEDF 是菱形,理由如下:如图,由作图可知:OB OD =,∵四边形ABCD 是矩形,∴AD BC ∥,∴EDO FBO ∠=∠,∵E O D FO B ∠=∠,∴()ASA EOD FOB V V ≌,∴ED FB =,∴四边形BEDF 是平行四边形,∵EF 是BD 的垂直平分线,∴BE ED =,∴四边形BEDF 是菱形;②∵四边形ABCD 是矩形,10BC =,∴90,10A AD BC ∠=︒==,由①可设BE ED x ==,则10AE x =-,∵5AB =,∴222AB AE BE +=,即()222510x x +-=,解得: 6.25x =,∴四边形BEDF 的周长为6.2525⨯=.【点睛】本题主要考查矩形的性质、菱形的性质与判定、勾股定理及线段垂直平分线的性质,熟练掌握矩形的性质、菱形的性质与判定、勾股定理及线段垂直平分线的性质是解题的关键.19. 如图,正比例函数112y x =和反比例函数2(0)ky x x=>的图像交于点(),2A m .(1)求反比例函数的解析式;(2)将直线OA 向上平移3个单位后,与y 轴交于点B ,与2(0)ky x x=>的图像交于点C ,连接AB AC ,,求ABC V 的面积.【答案】(1)28y x= (2)3【解析】【分析】(1)待定系数法求函数解析式;(2)根据平移的性质求得平移后函数解析式,确定B 点坐标,然后待定系数法求直线AB 的解析式,从而利用三角形面积公式分析计算.【小问1详解】解:把(),2A m 代入112y x =中,122m =,解得4m =,∴()4,2A ,把()4,2A代入2(0)k y x x=>中,24k =,解得8k =,∴反比例函数的解析式为28y x=;【小问2详解】解:将直线OA 向上平移3个单位后,其函数解析式为132y x =+,当0x =时,3y =,∴点B 的坐标为()0,3,设直线AB 的函数解析式为BC y mx n =+,将()4,2A ,()0,3B 代入可得423m n n +=⎧⎨=⎩,解得143m n ⎧=-⎪⎨⎪=⎩,∴直线AB 的函数解析式为134BC y x =-+,联立方程组1328y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得1181x y =-⎧⎨=-⎩,2224x y =⎧⎨=⎩∴C 点坐标为()2,4,过点C 作CM x ⊥轴,交AB 于点N ,在134BC y x =-+中,当2x =时,52y =,∴53422CN =-=,∴134322ABC S =⨯⨯=△.【点睛】本题考查一次函数和反比例函数的交点问题,掌握待定系数法求函数解析式,运用数形结合思想解题是关键.20. 为加快公共领域充电基础设施建设,某停车场计划购买A ,B 两种型号的充电桩.已知A 型充电桩比B 型充电桩的单价少0.3万元,且用15万元购买A 型充电桩与用20万元购买B 型充电桩的数量相等.(1)A ,B 两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个B 型充电桩,购买总费用不超过26万元,且B 型充电桩的购买数量不少于A 型充电桩购买数量的12.问:共有哪几种购买方案?哪种方案所需购买总费用最少?【答案】(1)A 型充电桩单价为0.9万元,B 型充电桩的单价为1.2万元(2)共有三种方案:方案一:购买A 型充电桩14个,购买B 型充电桩11个;方案二:购买A 型充电桩15个,购买B 型充电桩10个;方案三:购买A 型充电桩16个,购买B 型充电桩9个;方案三总费用最少.【解析】【分析】(1)根据“用15万元购买A 型充电桩与用20万元购买B 型充电桩的数量相等”列分式方程求解;(2)根据“购买总费用不超过26万元,且B 型充电桩的购买数量不少于A 型充电桩购买数量的12”列不等式组确定取值范围,从而分析计算求解【小问1详解】解:设B 型充电桩单价为x 万元,则A 型充电桩的单价为()0.3x -万元,由题意可得:15200.3x x=-,解得 1.2x =,的的经检验: 1.2x =是原分式方程的解,0.30.9x -=,答:A 型充电桩单价为0.9万元,B 型充电桩的单价为1.2万元;【小问2详解】解:设购买A 型充电桩a 个,则购买B 型充电桩()25a -个,由题意可得:()0.9 1.225261252a a a a ⎧+-≤⎪⎨-≥⎪⎩,解得405033a ≤≤,∵a 须为非负整数,∴a 可取14,15,16,∴共有三种方案:方案一:购买A 型充电桩14个,购买B 型充电桩11个,购买费用为0.914 1.21125.8⨯+⨯=(万元);方案二:购买A 型充电桩15个,购买B 型充电桩10个,购买费用为0.915 1.21025.5⨯+⨯=(万元);方案三:购买A 型充电桩16个,购买B 型充电桩9个,购买费用为0.916 1.2925.2⨯+⨯=(万元),∵25.225.525.8<<∴方案三总费用最少.【点睛】本题主要考查了分式方程的应用,一元一次不等式组的应用,理解题意,找准等量关系列出分式方程和一元一次不等式组是解决问题的关键.21. 如图,已知AB 是O e 的直径,CD CB =,BE 切O e 于点B ,过点C 作CF OE ⊥交BE 于点F ,若2EFBF =.(1)如图1,连接BD ,求证:ADB OBE △≌△;(2)如图2,N 是AD 上一点,在AB 上取一点M ,使60MCN ∠=︒,连接MN .请问:三条线段MN BM DN ,,有怎样的数量关系?并证明你的结论.的【答案】(1)见解析 (2)MN BM DN =+,证明见解析【解析】【分析】(1)根据CF OE ⊥,OC 是半径,可得CF 是O e 的切线,根据BE 是O e 的切线,由切线长定理可得BF CF =,进而根据1sin 2CF E EF ==,得出30E ∠=︒,60EOB ∠=︒,根据CD CB =得出»»CDCB =,根据垂径定理的推论得出OC BD ⊥,进而得出90ADB EBO ∠=︒=∠,根据含30度角的直角三角形的性质,得出12AD BO AB ==,即可证明()AAS ABD OEB V V ≌;(2)延长ND 至H 使得DH BM =,连接CH ,BD ,根据圆内接四边形对角互补得出HDC MBC ∠=∠,证明HDC MBC V V ≌()SAS ,结合已知条件证明NC NC =,进而证明CNH CNM V V ≌()SAS ,得出NH MN =,即可得出结论.【小问1详解】证明:∵CF OE ⊥,OC 是半径,∴CF 是O e 的切线,∵BE 是O e 的切线,∴BF CF =,∵2EFBF=∴2EF CF =,∴1sin 2CF E EF ==∴30E ∠=︒,60EOB ∠=︒,∵CD CB=∴»»CDCB =,∴OC BD ⊥,∵AB 是直径,∴90ADB EBO ∠=︒=∠,∵90E EBD ∠+∠=︒,90ABD EBD ∠+∠=︒∴30E ABD ∠=∠=︒,∴12AD BO AB ==,∴()AAS ABD OEB V V ≌;【小问2详解】MN BM DN =+,理由如下,延长ND 至H 使得DH BM =,连接CH ,BD ,如图所示∵180,180CBM NDC HDC NDC ∠+∠=︒∠+∠=︒∴HDC MBC ∠=∠,∵CD CB =,DH BM =∴HDC MBCV V ≌()SAS ,∴BCM DCH ∠=∠,CM CH =由(1)可得30ABD ∠=︒,又AB 是直径,则90ADB ∠=︒,∴60A ∠=︒,∴180120DCB A ∠=︒-∠=︒,∵60MCN ∠=︒,∴1201206060BCM NCD NCM ∠+∠=︒-∠=︒-︒=︒,∴60DCH NCD NCH ∠+=∠=︒,∴NCH NCM ∠=∠,∵NC NC =,∴CNH CNMV V ≌()SAS ,∴NH MN =,∴MN DN DH DN BM =+=+.即MN BM DN =+.【点睛】本题考查了切线的判定,切线长定理,垂径定理的推论,全等三角形的性质与判定,根据特殊角的三角函数值求角度,圆周角定理,圆内接四边形对角互补,熟练掌握全等三角形的性质与判定是解题的关键.22. 如图,直线4y x =-+交x 轴于点B ,交y 轴于点C ,对称轴为32x =的抛物线经过B C ,两点,交x 轴负半轴于点A .P 为抛物线上一动点,点P 的横坐标为m ,过点P 作x 轴的平行线交抛物线于另一点M ,作x 轴的垂线PN ,垂足为N ,直线MN 交y 轴于点D .(1)求抛物线的解析式;(2)若302m <<,当m 为何值时,四边形CDNP 是平行四边形?(3)若32m <,设直线MN 交直线BC 于点E ,是否存在这样的m 值,使2MN ME =?若存在,求出此时m 的值;若不存在,请说明理由.【答案】(1)234y x x =-++(2)m =(3)存在,12m =【解析】【分析】(1)利用待定系数法求函数解析式;(2)结合平行四边形的性质,通过求直线MN 的函数解析式,列方程求解;(3)根据2MN ME =,确定E 点坐标,从而利用一次函数图象上点的特征计算求解.【小问1详解】解:在直线4y x =-+中,当0x =时,4y =,当0y =时,4x =,∴点()4,0B ,点()0,4C ,设抛物线的解析式为232y a x k ⎛⎫=-+ ⎪⎝⎭,把点()4,0B ,点()0,4C 代入可得2234023042a k a k ⎧⎛⎫-+=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得1254a k =-⎧⎪⎨=⎪⎩,∴抛物线的解析式为223253424y x x x ⎛⎫=--+=-++ ⎪⎝⎭;【小问2详解】解:由题意,()2,34P m m m -++,∴234PN m m =-++,当四边形CDNP 是平行四边形时,CD =,∴223443OD m m m m =-++-=-+,∴()20,3D m m -,(),0N m ,设直线MN 的解析式为213y k x m m =+-,把(),0N m 代入可得2130k m m m +-=,解得13k m =-,∴直线MN 的解析式为()233y m x m m =-+-,又∵过点P 作x 轴的平行线交抛物线于另一点M ,且抛物线对称轴为32x =,∴()23,34M m m m --++∴()2223334m m m m m -+-=-++,解得1m =(不合题意,舍去),2m =【小问3详解】解:存在,理由如下:∵2MN ME =,∴点E 为线段MN 的中点,∴点E 的横坐标为3322m m -+=,∵点E 在直线4y x =-+上,∴35,22E ⎛⎫ ⎪⎝⎭,把35,22E ⎛⎫ ⎪⎝⎭代入()233y m x m m =-+-中,可得()2353322m m m -+-=,解得14m =(不合题意,舍去),212m =.【点睛】本题考查一次函数和二次函数的综合应用,掌握待定系数法求函数解析式,利用数形结合思想和方程思想解题是关键.。

山东省济宁市中考数学试卷

山东省济宁市中考数学试卷

山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)的倒数是()A.6 B.﹣6 C.D.﹣2.(3分)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.53.(3分)下列图形中是中心对称图形的是()A.B.C.D.4.(3分)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣45.(3分)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.6.(3分)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x=D.x≠7.(3分)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a68.(3分)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B. C.﹣D.10.(3分)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:ma2+2mab+mb2= .12.(3分)请写出一个过点(1,1),且与x轴无交点的函数解析式:.13.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.14.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.15.(3分)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.三、解答题(本大题共7小题,共55分)16.(5分)解方程:=1﹣.17.(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19.(8分)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.山东省济宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(•济宁)的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:的倒数是6.故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(•济宁)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.5【分析】根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.【解答】解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.【点评】本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.3.(3分)(•济宁)下列图形中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(•济宁)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣4【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000016=1.6×10﹣5;故选;B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)(•济宁)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.(3分)(•济宁)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x=D.x≠【分析】根据二次根式有意义的条件即可求出x的值.【解答】解:由题意可知:解得:x=故选(C)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.7.(3分)(•济宁)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a6【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则化简求出答案.【解答】解:(a2)3+a2•a3﹣a2÷a﹣3=a6+a5﹣a5=a6.故选:D.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确掌握运算法则是解题关键.8.(3分)(•济宁)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.【分析】画树状图展示所以12种等可能的结果数,再找出两次摸出的球上的汉字组成“孔孟”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率==.故选B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.9.(3分)(•济宁)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B. C.﹣D.【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选:A.【点评】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.10.(3分)(•济宁)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP 的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③【分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【解答】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③,故选D.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)(•济宁)分解因式:ma2+2mab+mb2= m(a+b)2.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:原式=m(a2+2ab+b2)=m(a+b)2,故答案为:m(a+b)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(•济宁)请写出一个过点(1,1),且与x轴无交点的函数解析式:y=(答案不唯一).【分析】反比例函数的图象与坐标轴无交点.【解答】解:反比例函数图象与坐标轴无交点,且反比例函数系数k=1×1=1,所以反比例函数y=(答案不唯一)符合题意.故答案可以是:y=(答案不唯一).【点评】本题考查了反比例函数的性质,此题属于开放题,答案不唯一,若是二次函数也符合题意.13.(3分)(•济宁)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.(3分)(•济宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0 .【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.【点评】此题主要考查了角平分线的性质以及坐标与图形的性质,解题时注意:第二象限内的点的横坐标为负,纵坐标为正,得出P点位置是解题关键.15.(3分)(•济宁)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,由直角三角形的性质得出B1B2=A1B1=,A2B2=A1B2=B1B2=,由相似多边形的性质得出正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=,求出正六边形A1B1C1D1E1F1的面积=,得出正六边形A2B2C2D2E2F2的面积,同理得出正六边形A4B4C4D4E4F4的面积.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.【点评】本题考查了正六边形的性质、相似多边形的性质、正六边形面积的计算等知识;熟练掌握正六边形的性质,由相似多边形的性质得出规律是关键.三、解答题(本大题共7小题,共55分)16.(5分)(•济宁)解方程:=1﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(7分)(•济宁)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是40 ;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【分析】(1)利用折线统计图结合条形统计图,利用优秀人数÷优秀率=总人数求出即可;(2)分别求出第四次模拟考试的优秀人数以及第三次的优秀率即可得出答案;(3)利用已知条形统计图以及折线统计图分析得出答案.【解答】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点评】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.18.(7分)(•济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?【分析】(1)每天的销售利润W=每天的销售量×每件产品的利润;(2)根据配方法,可得答案;(3)根据自变量与函数值的对应关系,可得答案.【解答】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>48,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【点评】本题考查了二次函数的应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.19.(8分)(•济宁)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.【分析】(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;(2)过O作OF垂直于AC,利用垂径定理得到F为AC中点,再由四边形OFED为矩形,求出FE的长,由AF+EF求出AE的长即可.【解答】(1)证明:连接OD,∵D为的中点,∴=,∴∠BOD=∠BAE,∴OD∥AE,∵DE⊥AC,∴∠ADE=90°,∴∠AED=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=10,∴AF=CF=AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=AB,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.【点评】此题考查了切线的性质与判定,勾股定理,以及垂径定理,熟练掌握各自的性质及定理是解本题的关键.20.(8分)(•济宁)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.【分析】(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM;【解答】解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.【点评】本题考查翻折变换、矩形的性质、剪纸问题、等边三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会理由翻折变换添加辅助线,属于中考常考题型.21.(9分)(•济宁)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.【分析】(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m 的不等式组,从而可求得m的取值范围;(2)先求得抛物线的对称轴,当n≤x≤﹣1时,函数图象位于对称轴的左侧,y随x的增大而减小,当当x=n时,y有最大值﹣3n,然后将x=n,y=﹣3n代入求解即可;(3)先求得点M的坐标,然后再求得当MP经过圆心时,PM有最大值,故此可求得点P的坐标,从而可得到函数C2的解析式.【解答】解:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.∵m为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x2+x.(2)抛物线的对称轴为x=﹣=﹣.∵n≤x≤﹣1<﹣,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小.∴当x=n时,y=﹣3n.∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).∴n的值为﹣2.(3)∵y=2x2+x=2(x+)2﹣,∴M(﹣,﹣).如图所示:当点P在OM与⊙O的交点处时,PM有最大值.设直线OM的解析式为y=kx,将点M的坐标代入得:﹣k=﹣,解得:k=.∴OM的解析式为y=x.设点P的坐标为(x,x).由两点间的距离公式可知:OP==,解得:x=2或x=﹣2(舍去).∴点P的坐标为(2,1).∴当点P与点M距离最大时函数C2的解析式为y=2(x﹣2)2+1.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质,勾股定理的应用,待定系数法求一次函数的解析式,找出PM取得最大值的条件是解题的关键.22.(11分)(•济宁)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【分析】(1)由∠ONP=∠M,∠NOP=∠MON,得出△NOP∽△MON,证出点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,求出∠AON=60°,由点M和N的坐标得出∠MNO=90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作MH⊥x轴于H,由勾股定理求出OM=2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;②求出MN==2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(3)证出OM=2=ON,∠MON=60°,得出△MON是等边三角形,由点P在△MON的内部,得出∠PON≠∠OMN,∠PNO≠∠MON,即可得出结论.【解答】解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠AON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ONcos60°=,∴OD=OPcos60°=×=,PD=OP•sin60°=×=,∴P(,);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.【点评】本题是反比例函数综合题目,考查了相似三角形的性质、相似点的判定与性质、三角函数、坐标与图形性质、勾股定理、等边三角形的判定与性质、直线解析式的确定等知识;本题综合性强,有一定难度,熟练掌握相似点的判定与性质是解决问题的关键.。

济宁中考数学试卷真题

济宁中考数学试卷真题

济宁中考数学试卷真题一、选择题1. 若函数$f(x) = ax^2 + 3x - 1$的图像经过点(2, -2),则a的值为()。

2. 在下面的等式中,为使等式成立,x的值为()3. 若正方形顶点坐标为(0, 0), (2, 0), (2, 2), (0, 2),矩形顶点坐标为(0, 0), (k, 0), (k, 2), (0, 2),则k的值为()。

4. 在下面的方程组中,x的值为()。

5. 若函数$y = \sin x$的图像如图所示,那么下列函数图像中,与之相同的是()。

二、填空题1. 一张纸厚0.03mm,折1次厚度为()。

2. 如果仪表盘的初始读数为350km,且刻度0-20占1/8圆周,经过一个刻度,面板的读数增加()。

3. 一个正20面体有()个棱。

4. 宽为6cm的电视机顶盒放在宽为10cm的茶几上,若不考虑茶几的高度,茶几两边至少突出电视机顶盒的宽度为()cm。

5. 若函数$f(x)=ax^2+4a-3$对于所有的x都成立,则a的值为()。

三、计算题1. 给定等比数列$\{ a_n\}$,其中$a_1 = 3$,$a_3 = 24$,求$a_5$的值。

2. 如图所示,已知大矩形的边长比为6:7,小矩形的面积为48平方单位,求小矩形长边的长度。

3. 小明房间的地板是一个边长为3m的正方形,小明放了一个边长为2m的正方形地毯在正中间,地毯边刚好平行于地板边。

如果小明和朋友站在边长为2m的正方形地毯外侧同时拍手,拍手声音从哪个方位反射后再传回到他们那里。

4. 一次装满水的圆锥形瓶子,体积为$600\pi$立方厘米。

把一个高为10厘米,底半径为2厘米的圆锥形蜡烛浸入瓶内,问瓶中的水能否全部倒出。

5. 已知空间非平行直线l和m的距离为4,同时l与平面P1,P2平行,那么m与平面P1, P2体最小角为多少。

文章完整部分已省略...根据济宁中考数学试卷真题的要求,本试卷共分为选择题、填空题和计算题三个部分。

(中考精品卷)山东省济宁市中考数学真题(解析版)

2022年山东省济宁市中考数学真题一、选择题1. 用四舍五入法取近似值,将数0.0158精确到0.001的结果是()A. 0.015B. 0.016C. 0.01D. 0.02 【答案】B【解析】【分析】利用四舍五入的方法,从万分位开始四舍五入取近似值即可.【详解】解:0.0158≈0.016.故选:B.【点睛】本题主要考查了近似数和有效数字,正确利用四舍五入法取近似值是解题的关键.2. 如图是由6个完全相同的小正方体搭建而成的几何体,则这个几何体的主视图是()A. B. C. D.【答案】A【解析】【分析】找到从正面看所得的图形即可.【详解】解:从正面看,底层有3个正方形,第二层有2个正方形,第三层有1个正方形,故选:A.【点睛】本题考查简单组合体三视图的识别,主视图是指从物体的正面看物体所得到的图形.3. 下列各式运算正确的是( ) A. 3()3x y x y --=-+ B. 326x x x ⋅= C. 0( 3.14)1π-= D. ()235xx =【答案】C 【解析】【分析】利用去括号的法则,幂的运算法则和零指数幂的意义对每个选项进行判断即可. 【详解】A :3()33x y x y --=-+,故选项A 不正确; B :325x x x ×=,故选项B 不正确; C :0( 3.14)1π-=,故选项C 正确; D :()236xx =,故选项D 不正确;故选:C .【点睛】本题考查了去括号法则,幂的运算法则和零指数幂的意义,正确利用上述法则对每个选项做出判断是解题的关键.4. 下面各式从左到右的变形,属于因式分解的是( ) A. 21(1)1x x x x --=-- B. 221(1)x x -=- C. 26(3)(2)x x x x --=-+ D. 2(1)x x x x -=-【答案】C 【解析】【分析】根据因式分解的定义对选项逐一分析即可.【详解】把一个多项式化成几个整式积的形式,这种变形叫做因式分解. A 、右边不是整式积的形式,故不是因式分解,不符合题意;B 、形式上符合因式分解,但等号左右不是恒等变形,等号不成立,不符合题意;C 、符合因式分解的形式,符合题意;D 、从左到右是整式的乘法,从右到左是因式分解,不符合题意; 故选C .【点睛】本题考查因式分解,解决本题的关键是充分理解并应用因式分解的定义. 5. 某班级开展“共建书香校园”读书活动.统计了1至7月份该班同学每月阅读课外书的本数,并绘制出如图所示的折线统计图.则下列说法正确的是( )A. 从2月到6月,阅读课外书的本数逐月下降B. 从1月到7月,每月阅读课外书本数的最大值比最小值多45C. 每月阅读课外书本数的众数是45D. 每月阅读课外书本数的中位数是58【答案】D【解析】【分析】根据折线统计图的变化趋势即可判断A,根据折线统计图中的数据以及众数的定义,中位数的定义即可判断B,C,D选项.【详解】A.从2月到6月,阅读课外书的本数有增有降,故该选项不正确,不符合题意;B.从1月到7月,每月阅读课外书本数的最大值为78比最小值28多50,故该选项不正确,不符合题意;C. 每月阅读课外书本数的众数是58,故该选项不正确,不符合题意;D.这组数据为:28,33,45,58,58,72,78,则每月阅读课外书本数的中位数是58,故该选项正确,符合题意;故选D【点睛】本题考查了折线统计图,求极差,求中位数,从统计图获取信息是解题的关键.6. 一辆汽车开往距出发地420km的目的地,若这辆汽车比原计划每小时多行10km,则提前1小时到达目的地.设这辆汽车原计划的速度是x km/h,根据题意所列方程是()A. 420420110x x=+-B.420420110x x+=+C. 420420110x x=++D.420420110x x+=-【答案】C【解析】【分析】设这辆汽车原计划的速度是x km/h ,,则实际速度为()10x +km/h ,根据题意“提前1小时到达目的地”,列分式方程即可求解.【详解】解:设这辆汽车原计划的速度是x km/h ,则实际速度为()10x +km/h , 根据题意所列方程是420420110x x =++ 故选C【点睛】本题考查了列分式方程,理解题意列出方程是解题的关键. 7. 已知圆锥的母线长8cm ,底面圆的直径6cm ,则这个圆锥的侧面积是( ) A. 96πcm 2 B. 48πcm 2 C. 33πcm 2 D. 24πcm 2【答案】D 【解析】【分析】根据圆锥的侧面积=12×底面周长×母线长计算即可求解. 【详解】解:底面直径为6cm ,则底面周长=6π, 侧面面积=12×6π×8=24πcm 2. 故选D .【点睛】本题考查圆锥的计算,解题的关键是熟练掌握圆锥的侧面积=12×底面周长×母线长.8. 若关于x 的不等式组>0,72>5x a x -⎧⎨-⎩仅有3个整数解,则a 的取值范围是( )A. -4≤a <-2B. -3<a ≤-2C. -3≤a ≤-2D. -3≤a <-2【答案】D 【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,即可解答.详解】解:>072>5x a x -⎧⎨-⎩①②由①得,x a > 由②得,1x <因不等式组有3个整数解1x a ∴<<【32a∴-≤<-故选:D.【点睛】本题考查解一元一次不等式组、一元一次不等式组的整数解,掌握相关知识是解题关键.9. 如图,三角形纸片ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则AE的长是()A. 136B.56C.76D.65【答案】A【解析】【分析】根据题意可得AD = AB = 2,∠B = ∠ADB,CE= DE,∠C=∠CDE,可得∠ADE = 90°,继而设AE=x,则CE=DE=3-x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD = AB = 2,∠B = ∠ADB,∵折叠纸片,使点C与点D重合,∴CE= DE,∠C=∠CDE,∵∠BAC = 90°,∴∠B+ ∠C= 90°,∴∠ADB + ∠CDE = 90°,∴∠ADE = 90°,∴AD2 + DE2 = AE2,设AE=x,则CE=DE=3-x,∴22+(3-x)2 =x2,解得136 x=即AE=13 6故选A【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.10. 如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A. 297B. 301C. 303D. 400 【答案】B【解析】【分析】首先根据前几个图形圆点的个数规律即可发现规律,从而得到第100个图摆放圆点的个数.【详解】解:观察图形可知:第1幅图案需要4个圆点,即4+3×0,第2幅图7个圆点,即4+3=4+3×1;第3幅图10个圆点,即4+3+3=4+3×2;第4幅图13个圆点,即4+3+3+3=4+3×3;第n幅图中,圆点的个数为:4+3(n-1)=3n+1,……,第100幅图,圆中点的个数为:3×100+1=301.故选:B.【点睛】本题主要考查了图形的变化规律,解答的关键是由所给的图形总结出存在的规律.二、填空题11. 有意义,则x的取值范围是________.【答案】3x≥【解析】【分析】根据二次根式的被开方数是非负数列出不等式,解不等式即可. 【详解】根据题意,得30x -≥, 解得:3x ≥; 故答案为:3x ≥.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.12. 如图,直线l 1,l 2,l 3被直线l 4所截,若l 1∥l 2,l 2∥l 3,∠1=126o 32',则∠2的度数是___________.【答案】5328'︒ 【解析】【分析】根据平行线的性质得23,34∠=∠∠=∠,根据等量等量代换得34∠=∠,进而根据邻补角性质即可求解. 【详解】解:如图l 1∥l 2,l 2∥l 3,23∴∠=∠,34∠=∠,24∴∠=∠,∠1=12632'︒,2418012632∴∠=∠=-︒'︒17960126325328'''=︒-︒=︒,故答案为:5328'︒.【点睛】本题考查了邻补角,平行线的性质,掌握平行线的性质是解题的关键. 13. 已知直线y 1=x -1与y 2=kx +b 相交于点(2,1).请写出b 值____(写出一个即可),使x >2时,y 1>y 2. 【答案】2(答案不唯一) 【解析】【分析】根据题意将点(2,1)代入y 2=kx +b 可得21k b +=,即12bk -=,根据x >2时,y 1>y 2,可得1k <,即可求得b 的范围,即可求解. 【详解】解:∵直线y 1=x -1与y 2=kx +b 相交于点(2,1), ∴点(2,1)代入y 2=kx +b , 得21k b +=, 解得12bk -=, ∵直线y 1=x -1,y 随x 的增大而增大, 又 x >2时,y 1>y 2,∴1k <,12b ∴-<,解得1b >-,故答案为:2(答案不唯一)【点睛】本题考查了两直线交点问题,掌握一次函数的性质是解题的关键. 14. 如图,A 是双曲线()80y x x=>上的一点,点C 是OA 的中点,过点C 作y 轴的垂线,垂足为D ,交双曲线于点B ,则△ABD 的面积是___________.【答案】4 【解析】【分析】根据点C 是OA 的中点,根据三角形中线的可得S △ACD = S △OCD , S △ACB = S △OCB ,进而可得S △ABD = S △OBD ,根据点B 在双曲线()80y x x=>上,BD ⊥ y 轴,可得S △OBD =4,进而即可求解.【详解】 点C 是OA 的中点,∴S △ACD = S △OCD , S △ACB = S △OCB , ∴S △ACD + S △ACB = S △OCD + S △OCB , ∴S △ABD = S △OBD ,点B 在双曲线()80yx x=>上,BD ⊥ y 轴, ∴S △OBD =12×8=4, ∴S △ABD =4, 答案为:4.【点睛】本题考查了三角形中线的性质,反比例函数的k 的几何意义,掌握反比例函数k 的几何意义是解题的关键.15. 如图,点A ,C ,D ,B 在⊙O 上,AC =BC ,∠ACB =90°.若CD =a ,tan ∠CBD =13,则AD 的长是___________.【答案】 【解析】【分析】如图,连接AB ,设,AD BC 交于点E ,根据题意可得AB 是O 的直径,90ADB ∠=︒,设AC m =,证明CED AEB ∽△△,根据相似三角形的性质以及正切的定义,分别表示出,AE ED ,根据Rt ABC △,勾股定理求得m =,根据AD AE ED =+即可求解.【详解】解:如图,连接AB ,设,AD BC 交于点E ,∵∠ACB =90° ∴AB 是O 的直径,90ADB ∴∠=︒,tan ∠CBD =13, 13DE DB ∴=,在Rt DEB △中,BE == ,CD CD = ,CBD ACD ∴∠=∠,∴1tan 3CAD ∠=, 13CE AC ∴= 设AC m = 则13CE m =, AC =BC ,23EB m ∴=,DE ∴==,Rt ACE 中,AE ===,AD AE ED ∴=+=+=, DBDB = ,ECD EAB ∴∠=∠,又CED AEB ∠=∠,CED AEB ∴ ∽,CD CE AB AE ∴===, CD a = ,AB ∴=,AC BC m == ,AB ∴=,=,解得m =,AD ∴===,故答案为:.【点睛】本题考查了90°圆周角所对的弦是直径,同弧所对的圆周角相等,正切的定义,相似三角形的性质与判定,勾股定理,掌握以上知识是解题的关键.三、解答题16.已知2a =2b =-,求代数式22a b ab +的值.【答案】-4【解析】分析】先将代数式因式分解,再代入求值.【详解】22()a b ab ab a b +=+(22=+-+-14 4.=-⨯=-故代数式的值为4-.【点睛】本题考查因式分解、二次根式的混合运算,解决本题的关键是熟练进行二次根式的计算.17. 6月5日是世界环境日.某校举行了环保知识竞赛,从全校学生中随机抽取了n 名学生的成绩进行分析,并依据分析结果绘制了不完整的统计表和统计图(如下图所示). 学生成绩分布统计表【成绩/分组中值频率75.5≤x<80.5 78 0.0580.5≤x<85.5 83 a85.5≤x<90.5 88 0.37590.5≤x<95.5 93 0.27595.5≤x<100.5 98 0.05请根据以上图表信息,解答下列问题:(1)填空:n=,a=;(2)请补全频数分布直方图;(3)求这n名学生成绩的平均分;(4)从成绩在75.5≤x<80.5和95.5≤x<100.5的学生中任选两名学生.请用列表法或画树状图的方法,求选取的学生成绩在75.5≤x<80.5和95.5≤x<100.5中各一名的概率.【答案】(1)40,0.25(2)见解析(3)88.125分(4)图表见解析,2 3【解析】【分析】(1)根据“频率=频数÷总数”和频率之和为1可得答案;(2)用总人数减去其他组的人数即为80.5到85.5组人数,即可补全频数分布直方图;(3)利用平均数的计算公式计算即可;(4)列出树状图即可求出概率【小问1详解】解:由图表可知:20.0540n =÷=,40215112100.254040a ----=== 【小问2详解】解:由(1)可知,80.5到85.5组人数为4021511210----=(人),频数分布图为:【小问3详解】解: 1(278108315881193298)88.12540⨯+⨯+⨯+⨯+⨯=(分) 【小问4详解】解:解:用A 1,A 2表示75.5≤x <80.5中的两名学生,用B 1,B 2表示95.5≤x <100.5中的两名学生,画树状图,得由上图可知,所有结果可能性共12种,而每一种结果的可能性是一样的,其中每一组各有一名学生被选到有8种. ∴每一组各有一名学生被选到的概率为82123=. 【点睛】本题主要考查本题考查读频数分布直方图,求平均数,利用树状图求概率,掌握相关的概念以及方法是解题的关键.18. 如图,在矩形ABCD 中,以AB 的中点O 为圆心,以OA 为半径作半圆,连接OD 交半圆于点E ,在 BE 上取点F ,使 BE AF =,连接BF ,DF .(1)求证:DF 与半圆相切;(2)如果AB =10,BF =6,求矩形ABCD 的面积.【答案】(1)见解析(2)2003 【解析】【分析】(1)连接OF ,证明(SAS)DAO DFO ≅ ,可得DAO DFO ∠∠=,根据矩形的性质可得90DAO ∠= ,进而即可得证;(2)连接AF ,根据题意证明AOD FBA ∽,根据相似三角形的性质求得DO ,进而勾股定理AD ,根据矩形的面积公式即可求解.【小问1详解】证明:连接OF .AE EF= , .DOA FOD ∠∠∴=,AO FO DO DO == ,(SAS)DAO DFO ∴≅.DAO DFO ∠∠∴=四边形ABCD 是矩形,90DAO ∴∠=90..DFO DF ∠∴=∴ 与半圆相切【小问2详解】解:连接AF ,AO FO = ,DOA DOF ∠=∠,DO AF \^,AB Q 为半圆的直径,90AFB ∴∠= ,BF AF ∴⊥,//..DO BF AOD ABF ∠∠∴∴=90OAD AFB ∠∠== ,AOD FBA ∴ ∽AO DO BF AB∴=, 5610DO ∴=, 253DO ∴=,在Rt AOD ∆中,20.3AD === ∴矩形ABCD 的面积为2020010.33⨯= 【点睛】本题考查了切线的性质,相似三角形的性质与判定,勾股定理,矩形的性质,掌握以上知识是解题的关键.19. 某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A ,B 两地,两种货车载重量及到A ,B 两地的运输成本如下表: 货车类型 载重量(吨/辆) 运往A 地的成本(元/辆) 运往B 地的成本(元/辆) 甲种16 1200 900 乙种12 1000 750(1)求甲、乙两种货车各用了多少辆;(2)如果前往A 地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往B 地.设甲、乙两种货车到A ,B 两地的总运输成本为w 元,前往A 地的甲种货车为t 辆.①写出w 与t 之间的函数解析式;②当t 为何值时,w 最小?最小值是多少?【答案】(1)甲种货车用10辆,则乙种货车用14辆(2)①5022500w t =+;②t =4时,w 最小=22 700元【解析】【分析】(1)设甲种货车用x 辆,则乙种货车用(24-x )辆.根据题意列一元一次方程即可求解;(2)①根据表格信息列出w 与t 之间的函数解析式;②根据所运物资不少于160吨列出不等式,求得t 的范围,然后根据一次函数的性质求得最小值即可.【小问1详解】(1)设甲种货车用x 辆,则乙种货车用(24-x )辆.根据题意,得16x +12(24-x )=328.解得x =10.∴24-x =24-10=14.答:甲种货车用10辆,则乙种货车用14辆.【小问2详解】①12001000(12)900(10)750[14(12)]5022500w t t t t t =+-+-+--=+.②1612(12)160t t +- …4t ∴…∵50>0,∴w 随t 的减小而减小.∴当t =4时,w 最小=50×4+22 500=22 700(元).【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,一次函数的应用,根据题意列出方程,不等式与一次函数关系式是解题的关键.20. 知识再现:如图1,在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c . ∵sin a A c =,sin b B c = ∴sin a c A =,sin b c B = ∴sin sin a b A B=(1)拓展探究:如图2,在锐角ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c .请探究sin a A ,sin b B ,sin c C之间的关系,并写出探究过程. (2)解决问题:如图3,为测量点A 到河对岸点B 的距离,选取与点A 在河岸同一侧的点C ,测得AC =60m ,∠A =75°,∠C =60°.请用拓展探究中的结论,求点A 到点B 的距离.【答案】(1)sin sin sin ab c A B C∠∠==,证明见解析(2)【解析】【分析】拓展研究:作CD ⊥AB 于点D ,AE ⊥BC 于点E ,根据正弦的定义得AE = c sin B , AE = b sin ∠BCA ,CD = a sin B ,CD = b sin ∠BAC ,从而得出结论; 解决问题:由拓展探究知,sin sin AB AC C CBA=∠ 代入计算即可. 【小问1详解】(拓展探究)证明:作CD ⊥AB 于点D ,AC ⊥BC 于点E .在Rt ΔABE 中,sin AE AE B AB c==,同理:sin CD CD B BC a==, sin ,sin CD CD AE AE BAC BCA AC b AC b∠∠====. sin ,sin ,AE c B AE b BCA ∠∴==sin ,sin CD a B CD b BAC ∠==.sin sin ,sin sin c B b BCA a B b BAC ∠∠∴==.,sin sin sin sin b c a b B BCA BAC B ∠∠∴==. sin sin sin a b c BAC B BCA∠∠∴==. 【小问2详解】(解答问题)解:在ΔABC 中,180180756045.CBA A C ∠∠∠=--=--=,sin sin AB AC C CBA=∠ ∴60sin 60sin 45AB ∴=解得:AB =答:点A 到点B 的距离为AB =. 【点睛】本题主要考查了解直角三角形,对于锐角三角形,利用正弦的定义,得出sin sin sin a b c BAC B BCA==∠∠是解题的关键. 21. 已知抛物线()2211:1(1)12C y m x m x =-+-+-与x 轴有公共点.(1)当y 随x 的增大而增大时,求自变量x 的取值范围;(2)将抛物线1C 先向上平移4个单位长度,再向右平移n 个单位长度得到抛物线2C (如图所示),抛物线2C 与x 轴交于点A ,B (点A 在点B 的右侧),与y 轴交于点C .当OC =OA 时,求n 的值;(3)D 为抛物线2C 的顶点,过点C 作抛物线2C 的对称轴l 的垂线,垂足为G ,交抛物线2C 于点E ,连接BE 交l 于点F .求证:四边形CDEF 是正方形.【答案】(1)1x <-(2)n =2(3)见解析 【解析】【分析】(1)根据抛物线与x 轴由公共点,可得0∆≥,从而而求出m 的值,进而求得抛物线对称轴,进一步得到结果;(2)根据图像平移的特征可求出平移后抛物线的解析式,根据0x =和0y =分别得出点C 和A 的坐标,根据OC OA =列出方程,进而求的结果;(3)从而得出点B 、点C 的坐标,由抛物线的解析式可得出点D 的坐标和点E 的坐标,进而求得BE 的解析式,从而得出点F 的坐标,进而得出1CG EG DG FG ====,进一步得出结论.【小问1详解】 解:∵抛物线()2211(1)12y m x m x =-+-+-与x 轴有公共点, ∴()221(1)41(1)0.2m m ⎡⎤+-⨯-+⨯-⎢⎥⎣⎦… ∴2(1)0.m --…∴10m -=.∴1m =,∴2221(1)y x x x =---=-+,∵10-<,∴当1x <-时,y 随着x 的增大而增大.【小问2详解】解:由题意,得222(1)42(1)23y x n x n x n n =-+-+=----++,当y =0时,2(1)40.x n -+-+=,解得:3x n =-+或1.x n =+,∵点A 在点B 的右侧,∴点A 的坐标为(1+n ,0),点B 的坐标为(-3+n ,0).∵点C 的坐标为(0,-n 2 +2n +3),∴n +1=-n 2+2n +3.解得:n =2或n =-1(舍去).故n 的值为2.【小问3详解】解:由(2)可知:抛物线C 2的解析式为y =-(x -1)2+4.∴点A 的坐标为(3,0),点B 的坐标为(-1,0)点C 的坐标为(0,3),点D 的坐标为(1,4),抛物线C 2的对称轴是直线x =1,∵点E 与点C 关于直线x =1对称,∴点E 的坐标为(2,3).∴点G 的坐标为(1,3).设直线BE 解析式为y =kx +b ,∴0,2 3.k b k b -+=⎧⎨+=⎩解得:1,1.k b =⎧⎨=⎩ ∴y =x +1.当x =1时,y =1+1=2.点F 的坐标为(1,2).∴FG =EG =DG =CG =1.∴四边形CDEF 为矩形.又∵CE ⊥DF ,∴四边形CDEF 为正方形.【点睛】本题主要考查二次函数的图像与性质,求一次函数的解析式,平移图像的特征,正方形的判定,解决问题的关键是平移前后抛物线解析式之间的关系.22. 如图,△AOB 是等边三角形,过点A 作y 轴的垂线,垂足为C ,点C 的坐标为(0,.P 是直线AB 上在第一象限内的一动点,过点P 作y 轴的垂线,垂足为D ,交AO 于点E,连接AD,作DM⊥AD交x轴于点M,交AO于点F,连接BE,BF.(1)填空:若△AOD是等腰三角形,则点D的坐标为;(2)当点P在线段AB上运动时(点P不与点A,B重合),设点M的横坐标为m.①求m值最大时点D的坐标;②是否存在这样m值,使BE=BF?若存在,求出此时的m值;若不存在,请说明理由.【答案】(1)⎛⎝或(0,2)(2)①点D坐标⎛⎝;②存在,23m=【解析】【分析】(1)根据题意易得∠AOB=60°从而∠AOC=30°和∠CDA=60°,根据tan30°求得AC的长,再根据sin60°求得AD的长,当OA=AD和OD=OA时分情况讨论,即可得到OD的长,从而得到D点坐标;(2)①设点D的坐标为(0,a),则OD=a,CDa,易证ACD DOM∆∆∽,从而得出CD ACOM DO=,代入即可得到m与a的函数关系,化为顶点式即可得出答案;②作FH⊥y轴于点H,得到AC∥PD∥FH∥x轴,易得AE CDEF DH=,OH OFDH EF=,易证BEA BFO∆∆≌得出AE FO=,即OH CDDH DH=,设OD n=,则2DH OC CD OH n=--=,通过证得ACD DHF∆∆∽得出HD HFCA CD=,代入即的为可得到n 的值,进一步得到m 的值.【小问1详解】∵△AOB 是等边三角形,∴∠AOB =60°,∴∠AOC =30°,∵AC ⊥y 轴,点C 的坐标为(0),∴OC ,∴tan 301AC OC =︒== , 当△AOD 是等腰三角形,OD =AD ,∠DAO =∠DOA =30°,∴∠CDA =60°,∴sin 60AC AD ==︒,∴OD AD ==,∴D 的坐标为⎛⎝, 当△AOD 是等腰三角形,此时OA =OD 时,2cos30OC OA ==︒, ∴OD =OA =2,∴点D 坐标为(0,2),故答案为:⎛⎝或(0,2); 【小问2详解】①解:设点D 的坐标为(0,a ),则OD =a ,CD a ,∵△AOB 是等边三角形,∴60AOB OBA BAO ∠∠∠=== ,∴90906030COA AOB ∠∠=-=-= ,在Rt ΔAOC 中,tan CA COA OC∠=,∴tan 1CA OC COA ∠===, ∴22OA CA ==, ∵AD DM ⊥,∴90ADC ODM ∠∠+= ,∵90CAD ADC ∠∠+= ,∴CAD ODM ∠∠=,∵90ACD DOM ∠∠== ,∴ACD DOM ∆∆∽,∴CD AC OM DO =1a=,∴2234m a a ⎛=-+=--+ ⎝,∴当a =m 的最大值为34;∴m 的最大值为34时,点D 坐标为⎛ ⎝; ②存在这样的m 值,使BE =BF ;作FH ⊥y 轴于点H ,∴AC ∥PD ∥FH ∥x 轴,∴AE CD EF DH =,OH OF DH EF=, BF BE = ,BEF BFE ∴∠=∠,180BEA BEF ∠∠+= ,180BFO BFE ∠∠+= ,∴BEA BFO ∠∠=,∵60BAE BOF ∠∠== ,∴()BEA BFO AAS ∆∆≌,∴AE FO =,∴OH CD DH DH=, ∴CD HO =,设OD n =,则2DH OC CD OH n =--=,tan 30)HF HO n ==- , ∵CAD ODM ∠∠=,90ACD DHF ∠∠== ,∴ACD DHF ∆∆∽, ∴HD HF CA CD=,=,解得:n =或n =,当n =P 与点A 重合,不合题意,舍去,当n =22332443m n ⎛=--+=-+= ⎝ , ∴存在这样m 值,使BE =BF .此时23m = . 【点睛】本题考查了等边三角形的性质、特殊角的三角函数,全等三角形的判定和性质、相似三角形的判定和性质以及二次函数的综合运用,解题的关键是得出二次函数的关系式,是对知识的综合考查。

2024年山东省济宁市中考数学试卷(附答案)

2024年山东省济宁市中考数学试卷(附答案)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求。

1.(3分)﹣3的绝对值是()A.3B.C.﹣3D.﹣【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣3|=3,故选:A.【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“建”字一面的相对面上的字是()A.人B.才C.强D.国【分析】根据正方体表面展开图的特征进行判断即可.【解答】解:由正方体表面展开图的“相间、Z端是对面”可知,“建”与“国”是对面,故选:D.【点评】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的“相间、Z端是对面”是正确解答的关键.3.(3分)下列运算正确的是()A.B.C.D.【分析】根据每一选项依次计算判断即可得解.【解答】选项A:和不是同类二次根式,不能合并,不合题意;选项B:,正确,符合题意;选项C:=≠1,所以C错误,不合题意;选项D:∵≥0,∴=5,故D错误,不合题意.故选:B.【点评】本题主要考查了二次根式的运算,熟练掌握相关知识是解题的关键.4.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,E是AB的中点,连接OE.若OE=3,则菱形的边长为()A.6B.8C.10D.12【分析】根据菱形对角线互相垂直得到△AOB是直角三角形,再利用直角三角形斜边上的中线等于斜边的一半即可求解.【解答】∵四边形ABCD是菱形,∴AC⊥BD,∴△AOB是直角三角形,∵E是AB的中点,∴OE=AB,∵OE=3,∴AB=6,即菱形的边长为6.故选:A.【点评】本题主要考查了菱形的性质和直角三角形斜边上的中线等于斜边的一半,熟练掌握相关知识是解题的关键.5.(3分)为了解全班同学对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,班主任对全班50名同学进行了问卷调查(每名同学只选其中的一类),依据50份问卷调查结果绘制了全班同学喜爱节目情况扇形统计图(如图所示).下列说法正确的是()A.班主任采用的是抽样调查B.喜爱动画节目的同学最多C.喜爱戏曲节目的同学有6名D.“体育”对应扇形的圆心角为72°【分析】根据全面调查和抽样调查的定义以及扇形统计图中各个部分所表示的数量和所占的百分比解答即可.【解答】解:班主任采用的是全面调查,故选项A说法错误,不符合题意;喜爱娱乐节目的同学最多,故选项B说法错误,不符合题意;喜爱戏曲节目的同学有:50×6%=3(名),故选项C说法错误,不符合题意;“体育”对应扇形的圆心角为:360°×20%=72°,故选项D说法错误,不符合题意;故选:D.【点评】本题考查扇形统计图以及全面调查和抽样调查,理解扇形统计图表示各个部分所占整体的百分比是正确判断的关键.6.(3分)如图,边长为2的正六边形ABCDEF内接于⊙O,则它的内切圆半径为()A.1B.2C.D.【分析】根据正六边形的性质以及勾股定理进行计算即可.【解答】解:如图,连接OA,OB,过点O作OM⊥AB,垂足为点M,∵六边形ABCDEF是正六边形,点O是它的中心,∴∠AOB==60°,∵OA=OB,∴△AOB是正三角形,∵OM⊥AB,∴AM=BM=AB=1,在Rt△AOM中,OA=2,AM=1,∴OM==,即它的内切圆半径为,故选:D.【点评】本题考查正多边形和圆,掌握正六边形的性质以及勾股定理是正确解答的关键.7.(3分)已知点A(﹣2,y1),B(﹣1,y2),C(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【分析】根据反比例函数图象上点的坐标特征及反比例函数性质解答即可.【解答】解:在反比例函数y=中k<0,反比例函数图象分布在第二、四象限,在每个象限内,y随x的增大而增大,∵C(3,y3)在第四象限,∴y3<0,∵﹣2<﹣1,∴0<y1<y2,∴y3<y1<y2,故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数性质是关键.8.(3分)解分式方程时,去分母变形正确的是()A.2﹣6x+2=﹣5B.6x﹣2﹣2=﹣5C.2﹣6x﹣1=5D.6x﹣2+1=5【分析】原方程两边同乘2(3x﹣1)去分母即可.【解答】解:原方程两边同乘2(3x﹣1)得2(3x﹣1)﹣2=5,即6x﹣2﹣2=5故选:A.【点评】本题考查解分式方程﹣去分母,找到正确的最简公分母是解题的关键.9.(3分)如图,分别延长圆内接四边形ABCD的两组对边,延长线相交于点E,F.若∠E=54°41',∠F=43°19',则∠A的度数为()A.42°B.41°20'C.41°D.40°20'【分析】根据圆内接四边形对角互补得出∠A+∠BCD=180°,再根据三角形外角的性质得出∠CDF=∠A+∠E,∠BCD=∠F+∠CDF,由此得到2∠A+∠F+∠E=180°,即可求解.【解答】解:∵四边形ABCD是圆内接四边形,∴∠A+∠BCD=180°,∵∠CDF是△ADE的外角,∴∠CDF=∠A+∠E,∵∠BCD是△CDF的外角,∴∠BCD=∠F+∠CDF,∴∠BCD=∠F+∠A+∠E,∴∠A+∠F+∠A+∠E=180°,∴2∠A+∠F+∠E=180°,∵∠E=54°41',∠F=43°19',∴2∠A+54°41'+43°19'=180°,∴∠A=41°,故选:C.【点评】本题考查了圆内接四边形的性质及三角形外角的性质,度分秒的换算,熟练掌握这些知识点是解题的关键.10.(3分)如图,用大小相等的小正方形按照一定规律拼正方形.第一幅图有1个正方形,第二幅图有5个正方形,第三幅图有14个正方形……按照此规律,第六幅图中正方形的个数为()A.90B.91C.92D.93【分析】根据所给图形,依次求出图形中正方形的个数,发现规律即可解决问题.【解答】解:由所给图形可知,第一幅图中正方形的个数为:1=12;第二幅图中正方形的个数为:5=12+22;第三幅图中正方形的个数为:14=12+22+32;第四幅图中正方形的个数为:30=12+22+32+42;…,所以第n幅图中正方形的个数为:12+22+32+…+n2,当n=6时,12+22+32+…+62=91(个),即第六幅图中正方形的个数为91个.故选:B.【点评】本题主要考查了图形变化的规律,能根据所给图形发现正方形个数变化的规律是解题的关键.二、填空题:本大题共5小题,每小题3分,共15分。

济宁中考数学试题及答案

济宁中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程\(2x + 3 = 9\)的解?A. \(x = 1\)B. \(x = 2\)C. \(x = 3\)D. \(x = 4\)答案:B2. 一个圆的直径是10厘米,那么它的半径是多少?A. 5厘米B. 10厘米C. 20厘米D. 15厘米答案:A3. 计算\((-2)^3\)的值是多少?A. -8B. 8C. -6D. 6答案:A4. 一个数的3倍加上4等于21,这个数是多少?A. 5B. 6C. 7D. 8答案:B5. 一个三角形的三个内角分别是45度、45度和90度,这个三角形是什么类型的三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不等边三角形答案:B6. 下列哪个选项是不等式\(3x - 5 > 10\)的解?A. \(x > 3\)B. \(x > 5\)C. \(x < 3\)D. \(x < 5\)答案:B7. 计算\(\sqrt{49}\)的值是多少?A. 7B. -7C. 49D. -49答案:A8. 如果一个数的平方是25,那么这个数是多少?A. 5B. -5C. 5或-5D. 0答案:C9. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,它的体积是多少?A. 60立方厘米B. 120立方厘米C. 30立方厘米D. 40立方厘米答案:A10. 计算\((-3) \times (-2)\)的值是多少?A. -6B. 6C. -5D. 5答案:B二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。

答案:162. 一个数的相反数是-7,那么这个数是______。

答案:73. 一个数的绝对值是5,那么这个数可以是______。

答案:5或-54. 如果一个数除以-2等于-3,那么这个数是______。

答案:65. 一个数的1/3等于10,那么这个数是______。

2020年山东省济宁市中考数学试卷(附答案解析)

2020年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(3分)﹣的相反数是()A.﹣B.﹣C.D.2.(3分)用四舍五入法将数3.14159精确到千分位的结果是()A.3.1B.3.14C.3.142D.3.1413.(3分)下列各式是最简二次根式的是()A.B.C.D.4.(3分)一个多边形的内角和是1080°,则这个多边形的边数是()A.9B.8C.7D.65.(3分)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C 的距离是()A.15海里B.20海里C.30海里D.60海里6.(3分)下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:cm)的平均数和方差,要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()甲乙丙丁平均数376350376350方差s212.513.5 2.4 5.4A.甲B.乙C.丙D.丁7.(3分)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=158.(3分)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.12πcm2B.15πcm2C.24πcm2D.30πcm29.(3分)如图,在△ABC中,点D为△ABC的内心,∠A=60°,CD=2,BD=4.则△DBC的面积是()A.4B.2C.2D.410.(3分)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.B.C.D.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)分解因式a3﹣4a的结果是.12.(3分)已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是(写出一个即可).13.(3分)已如m+n=﹣3,则分式÷(﹣2n)的值是.14.(3分)如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:,则斜坡AB的长是米.15.(3分)如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2.则BO的长是.三、解答题:本大题共7小题,共55分.16.(6分)先化简,再求值:(x+1)(x﹣1)+x(2﹣x),其中x=.17.(7分)某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分10099众数a98中位数96b平均数c94.8(1)统计表中,a=,b=,c=;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.18.(7分)如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.19.(8分)在△ABC中,BC边的长为x,BC边上的高为y,△ABC的面积为2.(1)y关于x的函数关系式是,x的取值范围是;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=﹣x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.20.(8分)为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?21.(9分)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与x轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D (0,4),过点A,B,D的抛物线的顶点为E.(1)求⊙C的标准方程;(2)试判断直线AE与⊙C的位置关系,并说明理由.22.(10分)如图,在菱形ABCD中,AB=AC,点E,F,G分别在边BC,CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).(1)求证:△AEH≌△AGH;(2)当AB=12,BE=4时.①求△DGH周长的最小值;②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.参考答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.【解答】解:﹣的相反数是:.故选:D.2.【解答】解:3.14159精确到千分位的结果是3.142.故选:C.3.【解答】解:A、是最简二次根式,符合题意;B、=2,不是最简二次根式,不符合题意;C、=a,不是最简二次根式,不符合题意;D、=,不是最简二次根式,不符合题意.故选:A.4.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.5.【解答】解:如图.根据题意得:∠CBD=84°,∠CAB=42°,∴∠C=∠CBD﹣∠CAB=42°=∠CAB,∴BC=AB,∵AB=15×2=30,∴BC=30,即海岛B到灯塔C的距离是30海里.故选:C.6.【解答】解:∵乙和丁的平均数最小,∴从甲和丙中选择一人参加比赛,∵丙的方差最小,∴选择丙参赛.故选:C.7.【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴方程x+5=ax+b的解为x=20.故选:A.8.【解答】解:由三视图可知,原几何体为圆锥,∵l==5(cm),∴S侧=•2πr•l=×2π××5=15π(cm2).故选:B.9.【解答】解:过点B作BH⊥CD的延长线于点H.∵点D为△ABC的内心,∠A=60°,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A),∴∠BDC=90°+∠A=90°+×60°=120°,则∠BDH=60°,∵BD=4,∴DH=2,BH=2,∵CD=2,∴△DBC的面积=CD•BH==2,故选:B.10.【分析】先根据已知图形得出第100个图形中,正方体一共有1+2+3+……+99+100=5050(个),再用带“心”字的正方体个数除以总个数即可得.【解答】解:∵第1个图形中正方体的个数为1,第2个图形中正方体的个数3=1+2,第3个图形中正方体的个数6=1+2+3,∴第100个图形中,正方体一共有1+2+3+……+99+100==5050(个),其中写有“心”字的正方体有100个,∴抽到带“心”字正方体的概率是=,故选:D.二、填空题:本大题共5小题,每小题3分,共15分.11.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).12.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围,即可得出结果.【解答】解:根据三角形的三边关系,得第三边应大于6﹣3=3,而小于6+3=9,故第三边的长度3<x<9,这个三角形的第三边长可以,4.故答案为:4.13.【分析】根据分式运算法则即可求出答案.【解答】解:原式=÷=•=,当m+n=﹣3时,原式=故答案为:14.【分析】如图所示:过点A作AF⊥BC于点F,根据三角函数的定义得到∠ABF=30°,根据已知条件得到∠HPB=30°,∠APB=45°,求得∠HBP=60°,解直角三角形即可得到结论.【解答】解:如图所示:过点A作AF⊥BC于点F,∵斜面坡度为1:,∴tan∠ABF===,∵在P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,∴∠HPB=30°,∠APB=45°,∴∠HBP=60°,∴∠PBA=90°,∠BAP=45°,∴PB=AB,∵PH=30m,sin60°===,解得:PB=20,故AB=20(m),答:斜坡AB的长是20m,故答案为:20.15.【分析】由CD2=CE•CA和∠ACD=∠DCE,可判断△CAD∽△CDE,得到∠CAD=∠CDE,再根据圆周角定理得∠CAD=∠CBD,所以∠CDB=∠CBD,于是利用等腰三角形的判定可得BC=DC,连结OC,如图,设⊙O的半径为r,先证明OC∥AD,利用平行线分线段成比例定理得到=2,则PC=2CD=4,然后证明△PCB∽△P AD,利用相似比得,再利用比例的性质可计算出r的值.【解答】解:连结OC,如图,∵CD2=CE•CA,∴,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∴∠CDB=∠CBD,∴BC=DC;设⊙O的半径为r,∵CD=CB,∴,∴∠BOC=∠BAD,∴OC∥AD,∴,∴PC=2CD=4,∵∠PCB=∠P AD,∠CPB=∠APD,∴△PCB∽△P AD,∴,即,∴r=4,∴OB=4,故答案为4.三、解答题:本大题共7小题,共55分.16.【分析】直接利用乘法公式以及单项式乘以多项式运算法则计算得出答案.【解答】解:原式=x2﹣1+2x﹣x2=2x﹣1,当x=时,原式=2×﹣1=0.17.【分析】(1)根据平均数和众数、中位数的定义分别求解可得;(2)先设(1)班学生为A1,A2,(2)班学生为B1,B2,B3,根据题意画出树形图,再根据概率公式列式计算即可.【解答】解:(1)八(1)班的成绩为:88、89、92、92、96、96、96、98、98、100,八(2)班成绩为89、90、91、93、95、97、98、98、98、99,所以a=96、c=×(88+89+92+92+96+96+96+98+98+100)=94.5,b==96,故答案为:96、96、94.5;(2)设(1)班学生为A1,A2,(2)班学生为B1,B2,B3,一共有20种等可能结果,其中2人来自不同班级共有12种,所以这两个人来自不同班级的概率是=.18.【分析】(1)尺规作图作出∠APD=∠ABP,即可得到∠DPC=∠P AB,从而得到△PCD ∽△ABP;(2)根据题意得到∠DPC=∠ABC,根据平行线的的判定即可证得结论.【解答】解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC∴PD∥AB.19.【分析】(1)根据三角形的面积公式即可得到结论;(2)根据题意在平面直角坐标系中画出该函数图象即可;(3)将直线y=﹣x+3向上平移a(a>0)个单位长度后解析式为y=﹣x+3+a,根据一元二次方程根的判别式即可得到结论.【解答】解:(1)∵在△ABC中,BC边的长为x,BC边上的高为y,△ABC的面积为2,∴xy=2,∴xy=4,∴y关于x的函数关系式是y=,x的取值范围为x>0,故答案为:y=,x>0;(2)在平面直角坐标系中画出该函数图象如图所示;(3)将直线y=﹣x+3向上平移a(a>0)个单位长度后解析式为y=﹣x+3+a,解,整理得,x2﹣(3+a)x+4=0,∵平移后的直线与反比例函数图象有且只有一个交点,∴△=(3+a)2﹣16=0,解得a=1,a=﹣7(不合题意舍去),故此时a的值为1.20.【分析】(1)设1辆大货车一次运输x箱物资,1辆小货车一次运输y箱物资,由“2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱”,可列方程组,即可求解;(2)设有a辆大货车,(12﹣a)辆小货车,由“运输物资不少于1500箱,且总费用小于54000元”可列不等式组,可求整数a的值,即可求解.【解答】解:(1)设1辆大货车一次运输x箱物资,1辆小货车一次运输y箱物资,由题意可得:,解得:,答:1辆大货车一次运输150箱物资,1辆小货车一次运输100箱物资,(2)设有a辆大货车,(12﹣a)辆小货车,由题意可得:,∴6≤a<9,∴整数a=6,7,8;当有6辆大货车,6辆小货车时,费用=5000×6+3000×6=48000元,当有7辆大货车,5辆小货车时,费用=5000×7+3000×5=50000元,当有8辆大货车,4辆小货车时,费用=5000×8+3000×4=52000元,∵48000<50000<52000,∴当有6辆大货车,6辆小货车时,费用最小,最小费用为48000元.21.【分析】(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.在Rt △BCM中,利用勾股定理求出半径以及点C的坐标即可解决问题.(2)结论:AE是⊙C的切线.连接AC,CE.求出抛物线的解析式,推出点E的坐标,求出AC,AE,CE,利用勾股定理的逆定理证明∠CAE=90°即可解决问题.【解答】解:(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.∵与y轴相切于点D(0,4),∴CD⊥OD,∵∠CDO=∠CMO=∠DOM=90°,∴四边形ODCM是矩形,∴CM=OD=4,CD=OM=r,∵B(8,0),∴OB=8,∴BM=8﹣r,在Rt△CMB中,∵BC2=CM2+BM2,∴r2=42+(8﹣r)2,解得r=5,∴C(5,4),∴⊙C的标准方程为(x﹣5)2+(y﹣4)2=25.(2)结论:AE是⊙C的切线.理由:连接AC,CE.∵CM⊥AB,∴AM=BM=3,∴A(2,0),B(8,0)设抛物线的解析式为y=a(x﹣2)(x﹣8),把D(0,4)代入y=a(x﹣2)(x﹣8),可得a=,∴抛物线的解析式为y=(x﹣2)(x﹣8)=x2﹣x+4=(x﹣5)2﹣,∴抛物线的顶点E(5,﹣),∵AE==,CE=4+=,AC=5,∴EC2=AC2+AE2,∴∠CAE=90°,∴CA⊥AE,∴AE是⊙C的切线.22.【分析】(1)先判断出△ABC是等边三角形,进而判断出∠ACD=∠ABC,判断出△ABE ≌△ACG,即可得出结论;(2)①先判断出EH+DH最小时,△AEH的周长最小,在Rt△DCM中,求出CM=6,DM =6,在Rt△DME中,根据勾股定理得,DE=4,即可得出结论;②分两种情况:Ⅰ、当OH与线段AE相交时,判断出点N是AE的中点,即可得出结论;Ⅱ、当OH与CE相交时,判断出点Q是CE的中点,再构造直角三角形,即可得出结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠BCD=120°,∵AC是菱形ABCD的对角线,∴∠ACD=∠BCD=60°=∠ABC,∵BE=CG,∴△ABE≌△ACG(SAS),∴AE=AG,∵AF平分∠EAG,∴∠EAF=∠GAF,∵AH=AH,∴△AEH≌△AGH(SAS);(2)①如图1,过点D作DM⊥BC交BC的延长线于M,连接DE,∵AB=12,BE=4,∴CG=4,∴CE=DG=12﹣4=8,由(1)知,△AEH≌△AGH,∴EH=HG,∴l△DGH=DH+GH+DG=DH+HE+8,要使△DGH的周长最小,则EH+DH最小,最小为DE,在Rt△DCM中,∠DCM=180°﹣120°=60°,CD=AB=12,∴CM=6,∴DM=CM=6,在Rt△DME中,EM=CE+CM=14,根据勾股定理得,DE===4,∴△DGH周长的最小值为4+8;②Ⅰ、当OH与线段AE相交时,交点记作点N,如图2,连接CN,∴点O是AC的中点,∴S△AON=S△CON=S△ACN,∵三角形的面积与四边形的面积比为1:3,∴=,∴S△CEN=S△ACN,∴AN=EN,∵点O是AC的中点,∴ON∥CE,∴;Ⅱ、当OH与线段CE相交时,交点记作Q,如图3,连接AQ,FG,∵点O是AC的中点,∴S△AOQ=S△COQ=S△ACQ,∵三角形的面积与四边形的面积比为1:3,∴,∴S△AEQ=S△ACQ,∴CQ=EQ=CE=(12﹣4)=4,∵点O是AC的中点,∴OQ∥AE,设FQ=x,∴EF=EQ+FQ=4+x,CF=CQ﹣FQ=4﹣x,由(1)知,AE=AG,∵AF是∠EAG的角平分线,∴∠EAF=∠GAF,∵AF=AF,∴△AEF≌△AGF(SAS),∴FG=EF=4+x,过点G作GP⊥BC交BC的延长线于P,在Rt△CPG中,∠PCG=60°,CG=4,∴CP=CG=2,PG=CP=2,∴PF=CF+CP=4﹣x+2=6﹣x,在Rt△FPG中,根据勾股定理得,PF2+PG2=FG2,∴(6﹣x)2+(2)2=(4+x)2,∴x=,∴FQ=,EF=4+=,∵OQ∥AE,∴==,即的值为或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

济宁市二〇一三年高中阶段学校招生考试
数学试题
注意事项:
1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分,共6页.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟.
2.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第Ⅰ卷时,必须使用2B铅笔把答题卡上相应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.
4.答第Ⅱ卷时,必须使用0.5毫米黑色签字笔在答题卡上书写.务必在题号所指示的答题区域内作答.答作图题时,要先用2B铅笔试画,无误后用黑色签字笔描黑.
5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.
6.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷(选择题共30分)
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.
1.一运动员某次跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作
A.-10m B.-12m C.+10m D.+12m
答案:A
2.如果整式x n-2-5x+2是关于x的三次三项式,那么n等于
A.3 B.4 C.5 D.6
答案:C
3.2013年国家财政支出将大幅向民生倾斜,民生领域里流量最大的开销是教育,预算支出将达到23 000多亿元.将23 000用科学记数法表示应为A.2.3×104B.0.23×106C.2.3×105D.23×104
答案:A
4.已知ab=4,若-2≤b≤-1,则a的取值范围是
A.a≥-4 B.a≥-2 C.-4≤a≤-1 D.-4≤a≤-2
答案:D
5.(2013山东济宁,5,3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()
A.a>0 B.当-1<x<3时,y>0
C.c<0 D.当x≥1时,y随x的增大而增大
答案:B
6.下列说法正确的是
A.中位数就是一组数据中最中间的一个数
B.8,9,9,10,10,11这组数据的众数是9
C.如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=0 D.一组数据的方差是这组数据的极差的平方
答案:C
7.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多
A.60元B.80元C.120元D.180元
答案:C
8.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是
A.(0,0) B.(0,1) C.(0,2) D.(0,3)
答案:D
9.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为
A .45cm 2
B .85cm 2
C .165cm 2
D .32
5cm 2
答案:B
10.如图,以等边三角形ABC 的BC 边为直径画半圆,分别交AB 、AC 于点E 、D ,DF 是圆的切线,过点F 作BC 的垂线交BC 于点G .若AF 的长为2,则FG 的长为
A .4
B .33
C .6
D .32
第Ⅱ卷 共70分
11.(2013山东济宁,11,3分)如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm ,到屏幕的距离为60cm ,且幻灯片中的图形的高度为6cm ,则屏幕上图形的高度为_____cm .
答案:18
12.如图,△ABC 和△A ′B ′C 是两个完全重合的直角三角板,∠B=30°,斜边长为10cm .三角板A ′B ′C 绕直角顶点C 顺时针旋转,当点A ′落在AB 边上时,CA ′旋转所构成的扇形的弧长为________cm .
答案:4
5π 13.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是________. 答案:
32
14.(2013山东济宁,14,3分)三棱柱的三视图如图所示,△EFG 中,EF=8cm ,EG=12cm ,∠EGF=30°,则AB 的长为_________cm .
15.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有________盏灯.
答案:3
三、解答题:本大题共8小题,共55分.
16.(5分)计算:(2-3)2012·(2+3)2013-2
3
2
--(2
-)0.
解:原式=[(2-3)(2+3)]2012·(2+3)-3-1=2+3-3-1=1。

17.(5分)以“光盘”为主题的公益活动越来越受到社会的关注.某校为培养学生勤俭节约的习惯,随机抽查了部分学生(态度分为:赞成、无所谓、反对),并将抽查结果绘制成图1和图2(统计图不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共抽查了多少名学生?
(2)将图1补充完整;
(3)根据抽样调查结果,请你估计该校3000名学生中有多少名学生持反对态度?
解:(1)130÷65%=200;
(2)200-130-50=20;
(3)3000×20
200
=300。

18.(2013山东济宁,18,6分)钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图2),点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5km;同时,点B在点C的南偏西36°方向.若一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19)
19.(6分)人教版教科书对分式方程验根的归纳如下:
“解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”请你根据对这段话的理解,解决下面问题:
已知关于x的方程
1
m
x
-
-1

x
x-1
=0无解,方程x2+kx+6=0的一个根是m.
(1)求m和k的值;
(2)求方程x2+kx+6=0的另一个根.
20.(6分)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF ⊥BE.
(1)求证:AF=BE;
(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.
21.(7分)阅读材料:
若a,b都是非负实数,则a+b≥2ab.当且仅当a=b时,“=”成立.
证明:∵(a b
)2≥0,∴a-2ab+b≥0.
∴a+b≥2ab.当且仅当a=b时,“=”成立.
举例应用:
已知x>0,求函数y=2x+2
x
的最小值.
解:y=2x+2
x

2
22x
x
=4.当且仅当2x=
2
x
,即x=1时,“=”成立.
当x=1时,函数取得最小值,y
最小
=4.
问题解决:
汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之
间行驶时(含70公里和110公里),每公里耗油(
1
18
+
2
450
x
)升.若该汽车以每小时
x公里的速度匀速行驶,1小时ud耗油量为y升.(1)求y关于x的函数关系式(写出自变量x的取值范围);
(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).
22.(8分)如图1,在平面直角坐标系中,O 为坐标原点,P 是反比例函数y=12x (x >0)图象上任意一点,以P 为圆心,PO 为半径的圆与坐标轴分别交于点A 、B .
(1)求证:线段AB 为⊙P 的直径;
(2)求△AOB 的面积;
(3)如图2,Q 是反比例函数y=12x
(x >0)图象上异于点P 的另一点,以Q 为圆心,QO 为半径画圆与坐标轴分别交于点C 、D .
求证:DO ·OC=BO ·OA .
23.如图,直线y=-12
x+4与坐标轴分别交于点A 、B ,与直线y=x 交于点C .在线段OA 上,动点Q 以每秒1各单位长度的速度从点O 出发向点A 做匀速运动,同时动点P 从点A 出发向点O 做匀速运动,当点P 、Q 其中一点停止运动时,另一点也停止运动.分别过点P 、Q 作x 轴的垂线,交直线AB 、OC 于点E 、F ,连接EF .若运动时间为t 秒,在运动过程中四边形PEFQ 总为矩形(点P 、Q 重合除外).
(1)求点P 运动的速度是多少?
(2)当t 为多少秒时,矩形PEFQ 为正方形?
(3)当t 为多少秒时,矩形PEFQ 的面积S 最大?并求出最大值.。

相关文档
最新文档