初三数学第二次月考试卷

合集下载

九年级数学第二次月考试题

九年级数学第二次月考试题

初三数学第二次月考试题一、仔细选一选(每小题3分,共30分)1、如图1,圆.和圆.的位置关系是 ( )(A)外离. (B)相切. (C)相交. (D)内含.2.如图2,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =20,CD =16,那么线段OE 的长为 ( )(A)10. (B)8. (C)6. (D)4.3.下列说法正确的是 ( )(A)正五边形的中心角是108°. (B)正十边形的每个外角是18°.(C)正五边形是中心对称图形. (D)正五边形的每个外角是72°.A.①②B. ②③C. ①③D. ①②③5. ⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A.相交B.相切C.相离D.无法确定6.已知两圆的半径是方程01272=+-x x 两实数根,圆心距为8,那么这两个圆的位置关系是( ) A.内切 B.相交 C.外离 D.外切7. 两个圆是同心圆,大、小圆的半径分别为9和 5,如果⊙P 与这两个圆都相切,则⊙P 的半径为( )A.2B.7C.2或7D.2或4.58.化简)22(28+-得( ) A .—2 B .22- C .2 D . 224-9. 下面是李明同学在一次测验中解答的填空题,其中答对的是( ).A.若x 2=4,则x =2B.方程x (2x -1)=2x -1的解为x =1C.若x 2-5xy-6y 2=0(xy ≠),则y x =6或y x =-1。

D.若分式1232-+-x x x 值为零,则x =1,210. 下列图形中,不是旋转图形的是 ( )二、 认真填一填(每小题3分,共24分)11、如图4,⊙O 的半径OD 为5cm,直线l ⊥OD ,垂足为O ,则直线l 沿射线OD 方向平移______cm 时与⊙O 相切. 12、如图5,∠C 是⊙O 的圆周角,∠C =38°,∠OAB =______度. 13、两圆的半径分别为3cm 和4cm,圆心距为5cm,则两圆的位置关系为______. 14、如图6,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于______时,AC 才能成为⊙O 的切线. 15、如图,⊙O 内切于ABC △,切点分别为D E F ,,. 已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 那么EDF ∠等于 16、如图,△ABC 内接于⊙O ,∠BAC =120°, AB =AC ,BD 为 ⊙O 的直径,AD =6,则BC = 。

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。

九年级上册第二次月考数学试卷

九年级上册第二次月考数学试卷

20 -20 学年九年级第一学期第二次月考数学学科试卷学校: 班级: 姓名: 考号:一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。

1.抛物线2(2020)2021y x =-+的顶点坐标是( )A .(2020,2021)-B .(2020,2021)C .(2020,2021)-D .(2020,2021)-- 2.已知是方程x 2﹣3x +c =0的一个根,则c 的值是( )A .﹣6B .6C .D .23.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°; 4.抛物线y =2x 2与y =﹣2x 2相同的性质是( ) A .开口向下 B .对称轴是y 轴C .有最低点D .对称轴是x 轴5.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .6.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( ) A .24°B .30°C .50°D .60°7.如图,△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,点C 恰好在AB 上,则∠A 的度数为( ) A .30°B .60°C .70°D .75° 8.若二次函数y =x 2+mx 的对称轴是x =4,则关于x 的方程x 2+mx =9的根为( ) A .x 1=0,x 2=8B .x 1=1,x 2=9C .x 1=1,x 2=﹣9D .x 1=﹣1,x 2=99.已知等腰三角形的两边长分别是一元二次方程x 2﹣6x +8=0的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或410.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①abc <0;②b 2﹣4ac >0;③a +b <0;④2a +c <0,其中正确的个数是( ) A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,满分20分) 11.点M (1,2)关于原点的对称点的坐标为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,若AB =10,CD =8,则BH 的长度为 . 13.若一个圆锥的母线长为4,底面半径是1,则它的侧面展开图的面积是______. 14.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R ,其内接正十二边形的周长为C .若R =,则C = ,≈ (结果精确到0.01,参考数据:≈2.449,≈1.414).三、(本大题共2小题,每小题8分,满分16分)15.解方程: 3x (x +1)=3x +316.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆. (1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,ΔABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,5)。

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、单选题(共18分)1.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.直角三角形C.正五边形D.正六边形2.在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x+2)2﹣1D.y=(x﹣2)2﹣1 3.若点P(2,n﹣1)与点Q(m+1,3)关于原点对称,则m+n的值为()A.﹣5B.﹣1C.1D.54.电影《长津湖》一上映,第一天票房2.05亿元,若每天票房的平均增长率相同,三天后累计票房收入达10.53亿元,平均增长率记作x,方程可以列为()A.2.05(1+2x)=10.53B.2.05(1+x)2=10.53C.2.05+2.05(1+x)2=10.53D.2.05+2.05(1+x)+2.05(1+x)2=10.535.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.D.16.如图,矩形ABCD中,AB=8,BC=14,M,N分别是直线BC,AB上的两个动点,AE =2,△AEM沿EM翻折形成△FEM,连接NF,ND,则DN+NF的最小值为()A.14B.16C.18D.20二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程(x﹣2)(x+1)=0的根是.8.如图,AB是⊙O的直径,∠D=32°,则∠BOC等于.9.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(﹣1,6)和B(5,3),如图所示,则使不等式ax2+bx+c<mx+n成立的x的取值范围是.10.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是.11.如图,将正方形ABCD绕点A逆时针旋转60度得到正方形AEGF,连接EF,BF,点M,N分别为EF,BF的中点,连接MN,若MN的长度为1,则EF的长度为.12.如图所示,已知二次函数y=ax2+bx+c(a≠0)的部分图象,下列结论中:①abc>0;②4a+c>0;③若t为任意实数,则有a﹣bt≥at2+b;④若函数图象经过点(2,1),则a+b+c=;⑤当函数图象经过(2,1)时,方程ax2+bx+c﹣1=0的两根为x1,x2(x1<x2),则x1﹣2x2=﹣8.其中正确的结论有.三、解答题(共84分)13.解方程:x2+2x=0.14.如图,已知:A、B、C、D是⊙O上的四个点,且=,求证:AC=BD.15.如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象经过点C(0,﹣3),与x 轴交于点A、B(点A在点B左侧).(1)求二次函数的解析式及顶点坐标;(2)根据图象直接写出当y>0时,自变量x的取值范围.16.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:△AEB≌△ADC;(2)连接DE,若∠ADC=110°,求∠BED的度数.17.已知关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实数根x1,x2.(1)求k的取值范围;(2)若x1x2=5,求k的值.18.在△ABC中,AB=AC,点A在以BC为直径的半圆外.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图①中作弦EF,使EF∥BC;(2)在图②中以BC为边作一个45°的圆周角.19.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC绕点A顺时针旋转90°后得到的图形△AB1C1;(2)请画出将△ABC关于原点O成中心对称的图形△A2B2C2;(3)当△ABC绕点A顺时针旋转90°后得到△AB1C1时,点B对应旋转到点B1,请直接写出B1点的坐标.20.如图,△ABC内接于⊙O,AB是⊙O的直径.直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).21.恰逢新余桔子成熟的时节,为增加农民收入,助力乡村振兴.某驻村干部指导某农户进行桔子种植和销售,已知桔子的种植成本为1元千克,经市场调查发现,今年销售期间桔子的销售量y(千克)与销售单价x(元/千克)(1≤x≤12)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)请同学们求一下这位农户销售桔子获得的最大利润.22.如图所示,抛物线y=ax2+bx+c的对称轴为直线x=3,抛物线与x轴交于A(﹣2,0)、B两点,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)连接BC,在第一象限内的抛物线上,是否存在一点P,使△PBC的面积最大?最大面积是多少?23.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△BC的三边AB,BC,AC分别相切于点D,E,F则△ABC叫做⊙O的外切三角形,以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD AD+BC(横线上填“>”,“<”或“=”);(2)利用图2证明你的猜想;(3)若圆外切四边形的周长为36.相邻的三条边的比为2:6:7.求此四边形各边的长.24.如图,已知二次函数L1:y=ax2﹣4ax+4a+4(a>0)和二次函数L2:y=﹣a(x+2)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣4ax+4a+4(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是;(2)当EF=MN﹣1时,直接写出a的值;(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+2)2+1=0的解.参考答案一、单选题(共18分)1.解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不一定是轴对称图形,不是中心对称图形,故本选项不合题意;C、是轴对称图形,但不是中心对称图形,故本选项不合题意;D、是轴对称图形,也是中心对称图形,故本选项符合题意.故选:D.2.解:将二次函数y=x2的图象向左平移2个单位长度,得到:y=(x+2)2,再向上平移1个单位长度得到:y=(x+2)2+1.故选:B.3.解:∵点P(2,n﹣1)与点Q(m+1,3)关于原点对称称,∴m+1=﹣2,n﹣1=﹣3,∴m=﹣3,n=﹣2.∴m+n=﹣3﹣2=﹣5.故选:A.4.解:∵第一天票房约2.05亿元,且以后每天票房的增长率为x,∴第二天票房约2.05(1+x)亿元,第三天票房约2.05(1+x)2亿元.依题意得:2.05+2.05(1+x)+2.05(1+x)2=10.53.故选:D.5.解:连接OA,如图,∵AB⊥CD,∴AE=BE=AB=4,在Rt△OAE中,OE===3,∴CE=OC﹣OE=5﹣3=2.故选:B.6.解:如图作点D关于BC的对称点D′,连接ND′,ED′.在Rt△EDD′中,∵DE=12,DD′=16,∴ED′==20,∵DN=ND′,∴DN+NF=ND′+NF,∵EF=EA=2是定值,∴当E、F、N、D′共线时,NF+ND′定值最小,最小值=20﹣2=18,∴DN+NF的最小值为18,故选:C.二、填空题(共18分)7.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故答案为:x1=2,x2=﹣1.8.解:∵∠D=32°,∴∠BOC=2∠D=64°,故答案为:64°.9.解:观察函数图象知,当﹣1<x<5时,直线在抛物线的上方,即ax2+bx+c<mx+n,故答案为:﹣1<x<5.10.解:圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π.11.解:如图所示,连接BE,∵点M,N分别为EF,BF的中点,∴MN是△BEF的中位线,∴BE=2MN=2,由旋转可得,AB=AE,∠BAE=60°,∴△ABE是等边三角形,∴AE=BE=2=AF,又∵∠EAF=90°,∴EF===2.故答案为:2.12.解:由抛物线开口向上,因此a>0,对称轴是直线x=﹣=﹣1,因此a、b同号,所以b>0,抛物线与y轴的交点在负半轴,因此c<0,所以abc<0,故①不正确;由对称轴x=﹣=﹣1可得b=2a,由图象可知,当x=1时,y=a+b+c>0,即a+2a+c>0,∴3a+c>0,又∵a>0,∴4a+c>0,因此②正确;当x=﹣1时,y最小值=a﹣b+c,∴当x=t(t≠﹣1)时,a﹣b+c<at2+bt+c,即a﹣bt<at2+b,∴x=t(t为任意实数)时,有a﹣bt≤at2+b,因此③不正确;函数图象经过点(2,1),即4a+2b+c=1,而b=2a,∴2a+3b+c=1,∴a+b+c=,因此④正确;当函数图象经过(2,1)时,方程ax2+bx+c=1的两根为x1,x2(x1<x2),而对称轴为x =﹣1,∴x1=﹣4,x2=2,∴x1﹣2x2=﹣4﹣4=﹣8,因此⑤正确;综上所述,正确的结论有:②④⑤,故答案为:②④⑤.三、解答题(共84分)13.解:由原方程,得x(x+2)=0,则x=0或x+2=0,解得,x1=0,x2=﹣2.14.证明:∵=,∴=,∴AC=BD.15.解:(1)将C(0,﹣3)代入y=x2﹣2x+c得,c=﹣3,∴y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)令y=0得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∴当y>0时,自变量x的取值范围是x<﹣1或x>3.16.(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,,∴△EAB≌△DAC(SAS).(2)解:如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,∵△EAB≌△DAC,∴∠AEB=∠ADC=110°.∴∠BED=50°.17.解:(1)根据题意得Δ=(2k+1)2﹣4(k2+1)>0,解得k>;(2)根据题意得x1x2=k2+1,∵x1x2=5,∴k2+1=5,解得k1=﹣2,k2=2,∵k>,∴k=2.18.解:(1)如图①,EF为所作;(2)如图②,∠PBC为所作.19.解:(1)如图,△AB1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据(1)的图可得B1的坐标(2,﹣2).20.(1)证明:连接OC,∵直线l与⊙O相切于点A,∴∠DAB=90°,∵DA=DC,OA=OC,∴∠DAC=∠DCA,∠OAC=∠OCA,∴∠DCA+∠ACO=∠DAC+∠CAO,即∠DCO=∠DAO=90°,∴OC⊥CD,∴直线DC是⊙O的切线;(2)解:∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∵OC=OB,∴△COB是等边三角形,∴OC=OB=BC=2,∴CE=OC=2,∴图中阴影部分的面积=S△OCE﹣S扇形COB=﹣=2﹣.21.解:(1)当1≤x≤9时,设y=kx+b(k≠0),则,解得:,∴当1≤x≤9时,y=﹣300x+3300,当9<x≤12时,y=600,∴y=.(2)设利润为W,则:当1≤x≤9时,W=(x﹣1)y=(x﹣1)(﹣300x+3300)=﹣300x2+3600x﹣3300=﹣300(x﹣6)2+7500,∵开口向下,对称轴为直线x=6,∴当1≤x≤9时,W随x的增大而增大,∴x=5时,W最大=7500元,当9<x≤12时,W=(x﹣1)y=600(x﹣1)=600x﹣600,∵W随x的增大而增大,∴x=12时,W最大=6600元,∵7500>6600,∴最大利润为7500元.22.解:(1)∵抛物线的对称轴为直线x=3,A(﹣2,0),∴B点坐标为(8,0),设抛物线解析式为y=a(x+2)(x﹣8),把C(0,4)代入得4=a×2×(﹣8),解得a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣8),即y=﹣x2+x+4;(2)存在.设点P的坐标为(x,﹣x2+x+4),设直线BC的解析式为y=kx+m(k≠0).将B(8,0)、C(0,4)代入y=kx+m,得:,解得:,∴直线BC的解析式为y=﹣x+4.过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∵S△PBC=S△PCD+S△PBD,∴△PCD与△PBD可以看作成以PD为底,两高之和为OB的三角形,∴S△PBC=PD•OB=×8×(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.此时P点的坐标为(4,6).23.解:(1)∵⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,∴猜想AB+CD=AD+BC,故答案为:=;(2)已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H,求证:AD+BC=AB+CD,证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等;(3)∵相邻的三条边的比为2:6:7,∴设此三边为2x,6x,7x,根据圆外切四边形的性质得,第四边为2x+7x﹣6x=3x,∵圆外切四边形的周长为36,∴2x+6x+7x+3x=18x=36,∴x=2,∴此四边形的四边的长为2x=4,6x=12,7x=14,3x=6.即此四边形各边的长为:4,12,14,6.24.解:(1)∵y=ax2﹣4ax+4a+4=a(x﹣2)2+4,a>0,∴y min=4,∵时,二次函数L1,L2的y值同时随着x的增大而减小,∴﹣2<x<2,故答案为:4,﹣2<x<2;(2)∵M(2,4),N(﹣2,1),∴MN==5,∵E(0,4a+4),F(0,﹣4a+1),∴EF=8a+3,∴8a+3=5﹣1,∴a=;(3)当AM=MN时,(m﹣2)2+42=25,∴m1=5,m2=﹣1,当m=5时,﹣a(x+2)2+1=0的解为:x=5,x=﹣9,当m=﹣1时,﹣a(x+2)2+1=0的解为:x=﹣1或x=﹣3,当AN=AM时,(m﹣2)2+42=(﹣2﹣m)2+12,∴m=,∴﹣a(x+2)2+1=0的解为:x=或x=,当AN=MN时,(m+2)2+1=25,∴m=﹣2﹣2(舍去),m=﹣2+2,∴﹣a(x+2)2+1=0的解为:x=﹣2+2,x=﹣2﹣2,综上所述:方程﹣a(x+2)2+1=0的解是:x=﹣1或x=﹣3;x=或x=;x=﹣2+2,或x=﹣2﹣2.。

数学初三第二次月考试卷

数学初三第二次月考试卷

一、选择题(每题3分,共30分)1. 下列数中,是质数的是()A. 18B. 19C. 20D. 212. 下列各式中,错误的是()A. 3a + 5b = 8B. 2(x + y) = 2x + 2yC. (a - b)² = a² - 2ab + b²D. (a + b)² = a² + 2ab + b²3. 如果a = 2,b = -3,那么代数式2a - 3b的值是()A. -5B. -1C. 5D. 14. 下列各图中,正确表示y = -2x + 1的是()(图略)5. 一个长方形的长是a,宽是b,那么它的面积是()A. a + bB. abC. a² + b²D. 2a + 2b6. 下列方程中,有唯一解的是()A. 2x + 3 = 7B. 2x + 3 = 7xC. 2x + 3 = 0D. 2x + 3 = 3x7. 如果m = 5,n = 2,那么代数式3m² - 2mn + n²的值是()A. 27B. 25C. 21D. 198. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = 3x²9. 下列各式中,正确的是()A. (x + y)² = x² + 2xy + y²B. (x - y)² = x² - 2xy + y²C. (x + y)² = x² - 2xy + y²D. (x - y)² = x² + 2xy + y²10. 一个等腰三角形的底边长为b,腰长为a,那么它的周长是()A. 2a + bB. 3a + bC. 2a - bD. 3a - b二、填空题(每题5分,共25分)11. 如果x = 3,那么2x - 5的值是__________。

初三九年级数学第2次月考测试题

初三九年级数学第2次月考测试题

九年级第二次月考数 学 试 卷(说明:全卷共8页,考试时间90分钟,满分120分)一.选择题(本题共5小题,每小题3分,共15分,每小题给的四个答案中,有且只有一个是正确的,将你认为正确的选项填在题后的括号内) 1.下列运算正确的是( )A .236a a a =÷B .()0)1(101=-+--C .ab b a 532=+D .()222b a b a +=+2.四边形的两条对角线相等,则顺次连接四边形各边中点所得的四边形是( )A .梯形B .矩形C .菱形D .正方形3.直线x y 2=与双曲线xky =的一个交点坐标为(2,4),则它们的另一个交点坐标是( )A .(-2,-4)B .(-2,4)C .(-4,-2)D .(2,-4)4.我们从不同的方向观察同一个物体,可以看到不同的平面图形.如图,是一个由小正方体组成的几何体,它的左视图是 ( )ABC D班 号姓名:试室座号:密封线内不要答题5.中央电视台“幸运52”栏目中的“百宝箱”互动环节是一种竞赛游戏,游戏规则如下:在20个商标牌中,有5个商标的背面注明了一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖,参与这个游戏的观众有三次翻牌的机会,翻过的牌不能再翻.某观众前两次翻牌均获得若干奖金,则该观众第三次翻牌获奖的概率是 ( )A .41B .51C .61D .203 二.填空题(本题共5小题,每小题4分,共20分,请把你认为正确的答案写在横线上) 6.长城总长约为6310000米,用科学记数法表示约是 米(保留两个有效数字). 7.如图是一根木杆在一天上午不同时刻的影子,则它们按时间先后顺序是 . 8.函数x y 21-=中自变量x 的取值范围是 . 9.已知□ABCD 中,∠A 比∠B 小20°,那么∠C 等于 度.10.如图,CB ,CD 分别的钝角△AEC 和锐角△ABC 的中线,且AC =AB ,给出下列结论:①AE =2AC ; ②CE =2CD ;③∠ACD =∠BCE ; ④CB 平分∠DCE ,请写出正确结论的序号 .三.解答题(本题共5小题,每小题6分,共30分) 11.化简:91322-÷-x x x x(第7题)ABEC(第10题)12.解不等式组,并把解集在数轴上表示出来: ()⎪⎩⎪⎨⎧<---x x x 24332113.在如图所示的方格图中,我们称每个小正方形的顶点为“格点” ,以格点为顶点的三角形叫做“格点三角形”. (1)在图中(每个小正方形的边长都是1)作一个面积为3 的格点钝角三角形ABC ; (2)再在图中作格点等腰直角三角形DEF ,使△DEF 的三边 都不与小正方形的边重合.14.解方程:0242=-+x x≤315.如图,已知正方形ABCD 中,P 为DC 上一点,连接BP ,过A ,C 两点作AE ⊥BP ,CF ⊥BP ,垂足为E .F ,请问BE 与CF 的大小有什么关系?并说明理由.四.(本题共4小题,每小题7分,共28分) 16.一次函数b kx y +=的图象与反比例函数xny =的图象相交于A (3,2), B (m ,-3)两点,求这两个函数的表达式.P密封线内不要答题17.甲骑自行车,乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程y 与时间x的函数关系的图象如图所示,根据图象解决下列问题:(1)谁先出发?先出发多长时间?谁先到达终点?先到多少时间? (2)分别求出甲,乙两人的行驶速度.18.已知,如图正方形ABCD 中,AB =2,P 是BC 边上与B .C 不重合的任意点,DQ ⊥AP 于Q ,当点P 在BC 上变动时,线段DQ 也随之变化,设AP =x ,DQ =y . 求y 与x 之间的函数关系式,并指出x 的取值范围.分)CDP班 号姓名:试室座号:密封线内不要答题19.下图是某篮球队队员年龄结构直方图,根据图中的信息解答下列问题:(1)该队队员年龄的平均数. (2)该队队员年龄的众数和中位数.五.解答题(本题共3小题,每小题9分,共27分)20.某商场购进甲、乙两种服装后,都加上进价的40%后标价出售.“国庆”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售,某顾客购买甲、乙两种服装各1件,共付182元,两种服装标价之和为210元.问这两种服装的标价各是多少?年龄17 18 21 23 2421.已知:如图, 在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为E ,连接DE 交AC 于F . (1) 求证:四边形ADCE 为矩形. (2) 求证:DE ∥AB ,DE =AB .(3) 当△ABC 满足什么条件时,四边形ADCE 是一个正方形?简述你的理由.ABCDE NFM22.如图:在梯形ABCD 中,AD ∥BC ,E ,F 分别是BD ,AC 的中点,BD 平分∠ABC求证:(1) AE ⊥BD (2) EF =21( BC -AB )A BCDEF密封线内不要答题。

初三第二次月考——数学试卷

初三第二次月考——数学试卷卷 一一、选择题:(本题有12小题,每小题4分,共48分。

每小题只有一个选项是正确的,不选、错选、多选均不给分) 1、计算:(+2)+(-1)的结果是( ) A 、-1 B 、1 C 、2 D 、3 2、已知:如图1,在△ABC 中,∠ADE =∠C ,则下列等式成立的是( ) A 、AD AB =AE AC B 、 AE BC =ADBD C 、DE BC =AE AB D 、 DE BC =AD AB3、下列图形中,不可能围成正方体的有( )个A 、1B 、2C 、3D 、44、计算111---x x x 的结果是( )A 、 x -1B 、 1-xC 、1D 、-15、下列图案中既是中心对称图形,又是轴对称图形的是()A .B .C .D . 6、抛物线24y x x =+的对称轴是( )A 、x =-2B 、x =4C 、x =2D 、x =-47、有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼板3块,分别写有“20”, “08”和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京2008”,则他们就给婴儿奖励。

假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是( )A 、16B 、14C 、13D 、128、扇形的半径为30cm ,圆心角为1200,用它做成一个圆锥的侧面,则圆锥底面半径为( )A、10 cm B、20 cm C、10π cm D、20π cm 9、钟老师出示了小黑板上的题目(如图)后,小敏回答:“方程有一根为1”,小聪回答:“方程有一根为2”。

则你认为( )A 、只有小敏回答正确B 、只有小聪回答正确ABCD E 图1C 、小敏、小聪回答都不正确D 、小敏、小聪回答都正确图210、如图2,Rt △ABC 中,∠ACB =90°,AC =4,BC =3,以AC 为直径的圆交AB 于D ,则AD 的长为( )A 、59B 、512C 、516D 、 4 11、现规定一种新的运算“*”:b a b a *=,如23239*==,则132*=( ) A 、18 B 、8 C 、16 D 、3212、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A 、106元B 、108元C 、118元D 、105元卷 二二、填空题:(本题有6小题,每小题5分,共30分) 13、在函数y x =-12中,自变量x 的取值范围是___________________。

初三第二次数学月考试卷

一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √3B. πC. -2D. 2/32. 已知等差数列{an}的公差d=2,且a1=1,则a10的值为()A. 19B. 20C. 21D. 223. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 75°B. 120°C. 30°D. 45°4. 已知函数f(x)=x²-4x+3,则f(2)的值为()A. -1B. 0C. 1D. 35. 若等比数列{an}的公比q=1/2,且a1=8,则S5的值为()A. 31B. 32C. 33D. 346. 在△ABC中,若AB=AC,则∠BAC是()A. 锐角B. 直角C. 钝角D. 无法确定7. 已知二次函数y=ax²+bx+c的图象开口向上,且a=1,b=2,则c的取值范围是()A. c<0B. c=0C. c>0D. c≠08. 若方程x²-3x+2=0的两根为x1和x2,则x1+x2的值为()A. 2B. 3C. 4D. 59. 在平面直角坐标系中,点A(2,3),点B(-1,2),则线段AB的长度为()A. √5B. √10C. √15D. √2010. 若等差数列{an}的前n项和为Sn,公差d=3,且S5=45,则a1的值为()A. 3B. 6C. 9D. 12二、填空题(每题5分,共25分)11. 已知等差数列{an}的公差d=2,且a1=1,则a10=__________。

12. 在△ABC中,∠A=60°,∠B=45°,则∠C=__________°。

13. 已知函数f(x)=x²-4x+3,则f(2)=__________。

14. 若等比数列{an}的公比q=1/2,且a1=8,则S5=__________。

九年级第二次月考数学试卷

九年级第二次月考数学试卷九年级第二次月考数学试卷题号一二三四总分分数一. 仔细填填:(每小题3分,共30分)1. 分式,当_ __________时分式的值为零.2.若函数y=(m + 1)是反比例函数,则m的值等于.3. 用科学记数法表示:1纳米=米(1厘米=103纳米).4. ①约分: _________;②计算:(-2 y 3)-3= .5. 若点A(-2,y1).B(-1, y2).C(1, y3)在反比例函数y=的图象上,则.. 的大小关系:.6. 如果一个三角形的三边的比是,则这是三角形.7. 一项工程,甲单独做_小时完成,乙单独做y小时完成,则两人一起完成这项工程需要_______ ___小时.8. 某电路中,电压是定值,当R=3时I=2,用电阻R表示电流I的函数式.9. 如果梯子底端离建筑物9m,那么15m长的梯子可达到建筑物的高度是.10.已知个一命题的原命题是〝等边三角形是锐角三角形〞,它的逆命题是.二. 精心选选:(每小题3分,共30分)11.下列说法最正确的是( ).A.分式的分子要含有字母B.式子:是分式C.当A=0时,分式的值为0(A.B为整式) D.是分式方程12. 把分式中的.同时扩大2倍,那么分式的值().A.扩大2倍 B.缩小2倍C.改变为原来的D.不改变13.下列各式计算正确的是().A. B.C. D.(-3)-2 =914.若变量与成正比例,变量又与z成反比例,则与的关系是( ) .A.成反比例B.成正比例 C.y与成正比例D.与成反比例15.一次函数与反比例函数的图象交点的个数为( ).A.0个B.1个C.2个D.无数个16.如图(1),A.C分别是反比例函数y=图象上两点.若Rt△AOB与Rt△COD的面积分别为S1,S2,则S1与S2的大小关系是( ).A.S1_gt;S2 B.S1=S2=1; C.S1_lt;S2 D. S1=S2=217.下列解方程正确的是( ).A.去分母得:2(_+2)+3_=1B.去分母得:4(_+3)-_+2(_-3)=(_-3)(_+3)C.3(_+2)-2(_-3)=3_+4 去括号得: 3_+6-2_-6=3_+4D.去分母得:_(_-5)+2-(_2-25)=018.函数y=a(_-3)与在同一坐标系中的大致图象是( ).19.直角三角形的两直角边分别为6.8,则斜边上的高是( ).A.6B.8C.4.8D.4820.观察下列各组数:①3,4,5;②1,,2;③5,6,7;④7,8,13其中可以作为三角形的三边的有多少组( ).A.3B.2C. 1D. 0三. 用心算算:(每小题6分,共24分)21. a + 2-22.23.已知一位女士在一家商场购买东西后回家,她先向东走30米,再向北走40米,又向东走50米,最后向北走80米回到家,问她家离商场的直线距离是多少米?(画出草图,再解答)24.已知反比例函数的图像与一次函数y=k_+m的图像相交于点A(2,1).(1)分别求出这两个函数的解析式;(2)写出点P(-1,5)关于_轴的对称点B的坐标,并判断点B否在一次函数y=k_+m的图像上;四. 用心想想:(每题8分,共16分)25.如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=17m,BC=8m,求这块地的面积.26.某中学到离学校15千米的某地旅游,先遣队和大队同时出发,先遣队的行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作.求先遣队和大队的速度各是多少?。

月考试卷初三第二次数学

考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 已知二次函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(1,-3),则下列选项中,满足条件的是()。

A. a=1,b=2,c=-3B. a=2,b=-1,c=-3C. a=-1,b=2,c=-3D. a=-2,b=-1,c=-32. 在直角坐标系中,点A(2,3)关于直线y=x的对称点B的坐标是()。

A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)3. 若sinα=0.6,cosα=-0.8,则sin2α的值为()。

A. 0.48B. 0.96C. 1.44D. 1.924. 下列各组数中,成等差数列的是()。

A. 1,3,5,7,9B. 2,4,6,8,10C. 1,2,4,8,16D. 3,6,9,12,155. 若等比数列{an}的公比为q,且a1=2,a3=32,则q的值为()。

A. 2B. 4C. 8D. 166. 下列函数中,为奇函数的是()。

A. y=x^2B. y=x^3C. y=x^4D. y=x^57. 已知一元二次方程x^2-5x+6=0的两个根为a和b,则a+b的值为()。

A. 5B. 6C. 7D. 88. 在△ABC中,∠A=30°,∠B=75°,则∠C的度数为()。

A. 30°B. 45°C. 60°D. 75°9. 已知函数y=2x+1在x=3时的函数值为7,则函数y=2x+1在x=5时的函数值为()。

A. 11B. 12C. 13D. 1410. 若|a|=5,|b|=3,则|a+b|的最大值为()。

A. 8B. 9C. 10D. 12二、填空题(每题3分,共30分)11. 若a=2,b=-3,则a^2+b^2的值为______。

12. 已知sinθ=0.8,cosθ=0.6,则sin2θ的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O 初三数学第二次月考试卷一、填空题:(每空2分,计34分)1、下列方程:(1)x x 5312=- (2)0122=--x x (3)0322=--x x (4)1122=+-x x (5)125122++=-x x 其中是一元二次方程的有( );是分式方程的有( )(填序号)2、在实数范围内分解因式:=--3422x x ( )3、解方程2344322=-+-x x x x 时,设y=( )原方程化为( ) 4、若一元二次方程()068122=+--x x k 没有实数根,则k 的最小整数值是( ) 5、列车在途中因故停车5分钟,而后提速运行,每小时比原来多行5千米,前进30千米后就把耽误的时间追回来,问列车原来运行的速度是多少?若设列车原来运行的速度为x 千米/时,则列出的方程为( ) 6、经过已知点A 、B 可以作( )个圆,这些圆的圆心轨迹是( ) 7、已知,︒=∠+∠90B A , sinA+cosB=3 ,则tanA=( )8、三角形( )叫三角形的外心,三角形的外心具有的性质是( )9、△ABC 中,∠C=90度 BC=3cm ,AC=4cm ,D 为斜边AB 的中点,以B 为圆心,BC 为半径作圆,那么点A 、D 、C 与的⊙B 位置关系是:点A 在⊙B 的( ),点D 在⊙B 的( ),点C 在( ) 10、如图,AB 为⊙O 的弦,C 为AB 上一点,且∠OCA=∠AOC=72度,OA=2 那么∠B=( )BC=( )二、选择题:(每空3分,计30分) 11、下列命题是真命题的是( ) A C B(A )平分弦的直径垂直于弦 (B )垂直于弦的直线必过圆心 (C )三点可以确定一个圆 (D )直径是圆的弦12、Rt △ABC 中,斜边的中线长为7,则△ABC 外接圆的直径是( ) (A )14 (B )7 (C )27(D )不能确定 13、在⊙O 中弦AB 的长为10cm ,点O 到AB 的距离为35cm ,则∠AOB 的度数为( ) (A )150度 (B )120度 (C )90度 (D )60度14、在半径为R 的圆中,垂直平分半径的弦长为( ) (A )R 43 (B )R 23 (C )R 3 (D )R 32 15、已知⊙O 的直径为26 cm ,在圆心O 的两侧有两条平行弦AB 、CD ,已知AB=24 cm ,CD= 10cm则AB 、CD 的距离为( )(A )7 cm 或1cm (B )7cm 或17 cm (C )7cm (D )17cm16、下列说法中:①a=b 的反面是a>b ②A>60度的反面是A<60度 ③点P 在直线a 上的反面是点P 在直线a 外 ④点A 在⊙O 上的反面是点A 在⊙O 外, 其中不正确的有( ) (A )1个 (B )2个 (C )3个 (D )4个 17、二次三项式:①3422--x x ②4322++x x ③5752+-x x ④91242+-x x 在实数范围内不能分解的有:( ) (A )①④ (B )②③ (C )①③(D )②④18、若关于x 的方程4142-=+-x m x x 有增根,m 值为( ) (A )4(B )2(C )±4(D )±219、由方程组:()()⎩⎨⎧=++-=-411122y x y x 消去y 化简后得到的方程是( ) (A )03222=--x x (B )05222=+-x x (C )01222=++x x (D )09222=++x x 20、某化肥厂一月份生产尿素5000吨,后来改进操作技术,使第一季度共生产化肥17500吨,求二、三月份平均每月增长的百分率x ,所得的方程为( ) (A )()175********=+x (B )()175001500050002=++x(C )()()1750015000150002=+++x x(D )()()17500150001500050002=++++x x初三数学第二次月考试卷一、1、( );( ) 2、( ) 3、( );( )4、( )5、( )6、( );( )7、( )8、( );( )9、( );( );( ) 10、( );( )二、1、 2、 3、 4、 5、6、 7、 8、 9、 10、 三、解答题:(21题10分,22、23各题6分,24、25各题7分,总计36分) 21、解下列方程或方程组:(1)241221122x x x x -=--+ (2)⎪⎩⎪⎨⎧=+-=+065202222y xy x y x22、已知在⊙O 中,半径R=2,弦AB=22 AB=32 求∠BAC 的的度数(自己先画图,再写出计算过程) 23、已知如图,AB 是⊙O 的直径,CD 是弦,AE ⊥CD 垂足为E ,BF ⊥CD 垂足为F ,求证:CE=DF EA CDFB24、某商场销售一批名牌产品,平均每天可以售出20件,每件盈利40元,为扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施,经调查发现,如果每件产品每降价1元,平均每天可多出售2件,若商场平均每天要盈利1200元,问每件产品应降价多少元?25、有两条公路OM 、ON 相交成30度角,沿公路OM 方向有一所中学A ,AO=160米,当拖拉机沿ON 方向行驶时,其噪音将对周围100米范围产生影响,已知拖拉机每小时行18千米,那么拖拉机沿ON 方向行驶时,是否会给中学带来影响?若不受影响,请说明理由,若受影响,请计算影响的时间。

N O A M26、附加题:经调查研究,目前我国国民总产值每增加一个百分点,就可增加90万人的就业机会,若今后两年内要增加1500万人的就业机会,那么国民总产值在今后两年内平均每年增长率是多少?(083.467.16= 203.4667.17= 080.11667.1=)初三数学第二次月考答案及评分标准一、填空题:(每空2分,共计34分)1.①②; ④ 2、⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+-210221022x x 3、42-x x ;2313=+y y4、25、12153030=+-x x 6、无数; 线段AB 的垂直平分线 7、3 8、外接圆的圆心; 到三角形三个顶点距离相等 9、外部, 内部; ⊙B 上 10、︒36;15-二、选择题:(每题3分,共计30分)DADCD CBDAD 三、解答题:(21题10分,22、23各题6分,24、25各题7分,总计36分) 21、(1)解: 去分母,得 ()()221212=+--x x x (1分) 整理, 得 0522=+x x (2分) 解, 得 01=x ,252-=x (4分) 经检验:01=x ,252-=x 都是原方程的解 (5分) (2)、解: 由②得 ()()032=--y x y x (1分)原方程组可化为:⎩⎨⎧=-=+022022y x y x 和⎩⎨⎧=-=+032022y x y x (3分) 解,得 ⎩⎨⎧==2411y x ;⎩⎨⎧-=-=24221y x ; ⎪⎩⎪⎨⎧==22333y x ; ⎪⎩⎪⎨⎧-=-=22344y x ; (5分) 22、解:情况(1) 如图(1)作AB OE ⊥,AC OF ⊥则221==AB AE 321==AC AF (2分)又 半径︒=∠∴==∠∴=451221cos 2AO AE OA (3分) ︒=∠∴==∠302232cos AO AF (4分) ︒=∠+∠=∠∴7521BAC情况(2) 如图(2) 当AB 、AC 在圆心O 同侧时,︒=︒-︒=∠-∠=∠15304521BAC (6分) 23、证明:作CD OH ⊥于H 由垂径定理,得CH=DH (2分)又CD AE ⊥ CD BF ⊥ BF OH AE ////∴AB 为⊙O 直径 FH EH OB OA =∴=∴ (4分)DH FH CH EH -=-∴ 即 CE=DF (6分) 24、解:设每件产品降价x 元, 依题意得 ()()120022040=+-x x (3分)整理,得 04006022=+-x x即 0200302=+-x x解,得 201=x 102=x (5分) 要尽快减少库存, 10=∴x 不合题意(舍去) 20=∴x答:每件产品就降价20元。

(7分) 25、解:过点A 作ON AH ⊥于H (1分) 在Rt △AOH 中,OH=160米,∠AOH=︒30 ∴ m m OA AH 1008021<==(3分) ∴会给中学带来影响 (4分)设ON 上有B 、C 两点满足AB=AC=10m在Rt △ABH 中,60801002222=-=-=AH AB BH∴BC=2BH=120(m ) (6分)又∵速度 18千米/时=5米/秒∴ 时间 245120==t (秒) (7分) 26、附加题:设平均每年增长率为x 67.16901500= 则: ()%67.16112+=+x (4分)即 ()1667.112=+x∴1667.11±=+x 负值舍去∴080.11≈+x %8080.0==x (6分)答:平均每年增长率约为8% (7分)。

相关文档
最新文档