Surface functionalization of MoS2 with POSS for
Adv.Mater.清华大学-CVD可控制备高质量多层MoS2

Adv.Mater.清华大学-CVD可控制备高质量多层MoS2【引言】具有本征带隙的二维MoS2由于其在电子和光电子器件方面的显著潜力而引起了极大的关注。
但是,由于这种材料的迁移率相对较低(甚至低于多晶硅),这大大地阻碍了其迈向实际应用。
目前已经有一系列针对单层MoS2的研究,但是与此同时多层MoS2的研究相应的有所缺失。
然而实际上,由于具有较高的态密度,多层MoS2具有比单层MoS2高得多的迁移率和驱动电流,这使得多层MoS2在薄膜晶体管、逻辑器件和传感器等方面更具应用前景。
然而,到目前为止报道的多层MoS2的优异性能是通过机械剥离获得的,这并不适合实际应用,而目前化学气相沉积(CVD)合成的多晶多层MoS2薄膜,显示出低得多的迁移率。
【成果简介】为了推进多层为了推进多层MoS2的实际应用,清华大学焦丽颖教授(通讯作者)等人通过CVD方法生长出高度结晶的多层MoS2薄片解决了上述问题。
可以实现高达20层的MoS2以良好限定的AA顺序堆叠在一起,而且每层的边缘是原子级平滑的Mo原子锯齿形结构。
多层沟道、原子级有序的边缘以及理想的接触几何形状使得这些CVD 生长的多层MoS2薄片表现出优于机械剥离多层MoS2的电性能。
除了场效应晶体管之外,这些多层MoS2晶体管也适合于构建基于单层-多层MoS2结的整流二极管。
文章中的制备方法使高品质多层MoS2更易于构建多功能高性能电子设备,从而使二维MoS2在未来的电子器件中更具竞争力。
该成果以“High-Mobility Multilayered MoS2 Flakes with Low Contact Resistance Grown by Chemical Vapor Deposition”为题于2017年2月发表在期刊Advanced Materials上。
【图文简介】图1 合成不同层数的MoS2薄片a)使用拱形氧化Mo箔作为反应前体CVD生长MoS2的示意图。
二维二硫化钼(MoS2)及应用

2
研究背景
石墨烯(Graphene)是二维结构的一个典 型代表,它只有一个原子层厚,达到了母体石 墨的几何极限。作为一个理想的二维量子体系, 在理论上Graphene并不是一个新事物。Wallace Philip 在20世纪40年代就对石墨烯二维量子体 系的电子结构开展了研究。几年后,石墨烯的 波函数方程被 J. W. Mcclur 成功推导得到。尽 管人们对Graphene的电输运性能提出过质疑, 但是并没有阻挡理论学家对石墨烯这个理想模 型结构的研究热情。
[1] Coleman J N, Lotya M, O'Neill A, etal. Two-dimensional nanosheets produced by liquid exfoliation of layered materials.Science,2011,331:568~571
7
研究背景
16
MoS2
早在1986年,就有人通过插入锂的方法成功剥离出单层二硫化钼。 2007年,世界上第一支纳米二硫化钼晶体管在美国马里兰大学问世,但由于其迁移 率并不理想因而并未引起太多注意。 2011年,Kis教授实验组在上发表了自己利用单层二硫化钼成功制造晶体管的文章, 引起轰动。 2011年11月,该实验组又报道了世界上第一只二硫化钼集成电路的成功研制。他们 将两只二硫化钼晶体管集成在一起,实现了简单的“或非”运算。 2012年,美国的Liu实验组报导了采用原子层沉积工艺制作的场效应晶体管,他们在 Al2O3绝缘衬底上使用23层,总厚度为15nm的二硫化钼纳米片层材料,成功制造出 双栅MOSFET,迁移率达到517cm2/V· s,是最初的纳米二硫化钼晶体管迁移率的10 倍。 同年,日本东京大学的Zhang实验组利用离子液体作为栅极绝缘体,使用纳米二硫 化钼材料成功研制出了双极型晶体管,其空穴和电子导电的开关比均大于102,实现 了较高的空穴迁移率。
双层单晶mote2非中心反演对称

双层单晶mote2非中心反演对称双层单晶mote2非中心反演对称双层单晶mote2材料是一种特殊的二维材料,具有非常独特的性质和结构。
它是由两层二硫化钼(MoS2)单晶片垂直叠加而成的,其中每一层都由一个钼(Mo)原子层和两个硫(S)原子层构成。
与其他材料相比,双层单晶mote2材料具有许多特殊的性质,因此在科学和技术领域中备受关注。
双层单晶mote2材料的一个重要特点是其非中心反演对称性。
这意味着当我们对一个层进行了不可逆转的反演操作时,另一个层也将发生相同的变化,但是两个层之间的相对位置将改变。
换句话说,这种材料的两个层之间存在一种关联性,当我们对其中一个层进行操作时,另一个层也会相应地发生变化。
非中心反演对称性在双层单晶mote2材料中具有重要的意义。
首先,它使得这种材料在物理学和电子学中具有广泛的应用前景。
由于非中心反演对称性使得在材料中可以引入电子自旋解耦的效应,这将导致一系列新奇的物理现象的出现。
例如,由于两个层之间的相互作用,双层单晶mote2材料可以呈现出非常有趣的自旋态调制效应,这在自旋电子学和量子信息存储方面具有很大的潜力。
此外,双层单晶mote2材料的非中心反演对称性还使得它具有优异的光学性质。
这种材料在光的吸收和发射过程中表现出非常高的效率,因此有望应用于光电器件的制备和光学通信技术的发展。
由于非中心反演对称性的存在,双层单晶mote2材料可以呈现出非常高的光学吸收率和量子效率,这使得它成为理想的光电材料。
此外,双层单晶mote2材料还具有优异的电子传输性能。
这种材料可以实现电子的高度自由移动,具有极高的载流子迁移率和低的电阻率。
这使得双层单晶mote2材料在电子学领域中具有广泛的应用前景,例如高速电子器件、太阳能电池和柔性电子器件等。
总之,双层单晶mote2材料的非中心反演对称性是其独特性质和优异性能的重要基础。
这种材料具有广泛应用前景,特别是在物理学、电子学和光学领域。
英文论文写作

❸挖掘和强调自己研究的重要性或创新性可从以下角度。 如:(1)时间问题;(2)研究手段问题;(3)研究区域问题;(4)存在不确定性; (5)研究的完全创新性(We aim to test the feasibility (reliability) of the……It is hoped that the question will be resolved with our proposed method (approach). )
3.2 Proton transfer dynamics control the mechanism of O2 reduction by a nonprecious metal electrocatalyst. (Nature Materials, 2016, 15,754–759 )
3.3 Femtosecond control of electric currents in metallic ferromagnetic heterostructures. (Nature Nanotechnology 2016, 11,455–458)
4.4 Optimized quantum sensing with a single electronspin using real-time adaptive measurements. (Nature Nanotechnology, 2016,11,247–252)
有些表征手段或者研究方法生来就是让人膜拜的,特别是一些原位的表 征手段,能够直观地告诉人们以前得不到的一些信息。
展望我们工作的价值
Abstract写作举例(更简洁版)
mos2纳米片_表面官能团__理论说明

mos2纳米片表面官能团理论说明1. 引言1.1 概述Mos2纳米片作为一种二维材料,在领域内引起了广泛的关注。
其独特的结构和优异的物理性质使其具备诸多潜在应用,例如光电子学、催化剂、能源存储等。
然而,Mos2纳米片本身的性质还不足以满足实际应用需求。
因此,通过引入表面官能团对Mos2纳米片进行功能化改性成为一种重要策略。
1.2 文章结构本文将首先介绍Mos2纳米片的特性,包括其结构与组成、物理性质以及应用领域。
随后,我们将详细阐述表面官能团的概念和作用,包括定义与分类,并探讨表面官能团对Mos2纳米片性质的影响以及在材料功能化中的应用。
接着,我们将介绍关于引入表面官能团的方法,包括化学方法、物理修饰法和生物修饰法。
进一步地,我们将引入第一原理计算方法来模拟和计算Mos2纳米片上表面官能团的影响机制,并揭示调控机制。
最后,我们将对主要研究结果进行总结,并指出研究的不足之处并展望未来发展方向。
1.3 目的本文旨在深入探讨Mos2纳米片上表面官能团的理论说明,阐述其特性和功能化调控机制。
通过分析研究结果,期望能够为Mos2纳米片的设计与合成提供理论指导,并推动其在各个领域的应用。
同时,本文还将挖掘相关研究中存在的问题,并展望未来相关研究的方向和前景。
2. Mos2纳米片的特性2.1 结构与组成Mos2纳米片是由钼和硫原子构成的二维纳米材料,属于过渡金属二硫化物(TMDs)家族。
其结构类似于石墨烯,由层层堆叠的镁铝层(每个层有一个钼原子和两个硫原子)组成。
这种堆叠结构形成了稳定的六方晶格,使得Mos2纳米片具有优异的力学强度和化学稳定性。
2.2 物理性质Mos2纳米片具有许多特殊的物理性质,使其在各种应用中备受关注。
首先,Mos2纳米片是一种直接带隙半导体材料,在光电器件领域具有广泛应用前景。
其带隙大小约为1.8 eV,使其能够有效地吸收可见光,并产生电荷分离。
此外,Mos2纳米片还表现出良好的透明性、高电子迁移率和较小的载流子散射损失等优点。
二硫化钼光响应

二硫化钼光响应
二硫化钼是一种具有高开关比、合适带隙、较强稳定性的过渡金属氧化物,被认为是下一代纳米光电子器件的有利竞争者。
关于二硫化钼光响应的研究有:
-武汉大学物理科学与技术学院肖湘衡教授课题组利用离子注入技术在二氧化硅衬底上构筑杂质元素埋层,随后通过化学气相沉积(CVD)工艺成功实现了薄层二维材料的大面积无损精确掺杂,并有效提高了其光响应速率。
-西安交通大学电子科学与工程学院电子陶瓷与器件教育部重点实验室任巍教授和牛刚教授团队利用机械剥离获得少层二硫化钼材料制备具有背栅结构和纳米级沟道长度的光电晶体管,实现了较高探测率(>10^13 Jones)和响应率(>10^3 A/W)。
mos2硫空位epr信号不对称的原因
mos2硫空位epr信号不对称的原因
一种导致mos2硫空位EPR信号不对称的原因是晶格畸变。
mos2材料中硫空位是晶格缺陷,它会产生未成对的电子,从而导
致EPR(电子顺磁共振)信号的出现。
然而,硫空位的EPR信号
在mos2中往往呈现不对称的形状。
这种信号不对称性可以归因于晶格的畸变,即晶格结构的非均
匀性。
在mos2中,晶格畸变可能由多种因素引起,例如晶格中的
缺陷、应力和杂质等。
这些因素会引起一部分mos2晶格存在畸变,从而使硫空位周围的晶格结构发生变化。
晶格畸变会导致硫空位附近的晶体场发生变化,进而影响到硫
空位的电子状态和能级结构。
这种电子状态和能级结构的变化将
反映在EPR信号中,使其呈现出不对称的形状。
mos2中的局域电子相互作用也可能导致硫空位EPR信号的不
对称性。
局域电子相互作用包括电子-电子相互作用和电子-核相互
作用,它们会对硫空位周围的电子态产生影响,从而导致EPR信
号的变化。
mos2硫空位EPR信号不对称的原因主要包括晶格畸变和局域
电子相互作用。
研究这些原因有助于我们更好地理解mos2材料中
硫空位的行为和特性。
二维MoS2光电性能的缺陷调控研究
二维MoS2光电性能的缺陷调控研究二维MoS2光电性能的缺陷调控研究摘要:MoS2是一种重要的二维材料,在光电领域有广泛的应用前景。
然而,MoS2的缺陷对其光电性能产生了极其重要的影响。
本文针对MoS2的缺陷问题展开研究,探讨不同方法对MoS2光电性能的影响。
首先,我们介绍了MoS2的晶体结构、电子结构和光学性质,阐述了其优异的光电性能。
接着,我们讨论了MoS2的缺陷类型及其对光电性能的影响。
在此基础上,介绍了几种调控MoS2缺陷的方法,如离子注入、化学气相沉积等方法。
最后,我们总结了这些方法的优缺点,并展望了未来的研究方向。
关键词:MoS2,缺陷,光电性能,离子注入,化学气相沉积1. 引言MoS2是一种具有“2D平面结构”的重要材料,其拥有极高的机械硬度、化学稳定性和储能性能等特点,因此在材料科学、电子学、光电子学等领域受到广泛关注。
尤其在光电领域,MoS2材料因其优异的光学性质和光电性能被誉为下一代电子器件的重要材料之一。
然而,MoS2材料中存在各种缺陷,这些缺陷在很大程度上影响了MoS2的光电性能。
因此,如何控制和调控MoS2缺陷,从而提高其光电性能,一直是研究的热点问题之一。
2. MoS2的晶体结构、电子结构和光学性质MoS2的晶体结构为六方晶系,由层状的Mo和S原子组成,每个Mo原子被六个硫原子围绕,每个硫原子被三个Mo原子包围。
MoS2材料最厚可以达到数十层,每一层内部原子呈现出类似于石墨的平面结构,但不同于石墨,多晶MoS2中各层之间是通过van der Waals力相互作用的。
MoS2材料的能带结构和电学性质受限于其2D平面结构,如其禁带宽度较大,高达1.2电子伏特,较之其他二维半导体材料更能满足互联等应用的要求。
同时,MoS2还具有优异的光学性质,具有多种发射颜色,可以应用于宽谱分布激光器,也能产生可见光的光致发光。
3. MoS2的缺陷类型及其对光电性能的影响MoS2材料中的坑缺陷和边界缺陷是其最常见的两种类型,存在这些缺陷的MoS2材料其光电性能均比未处理的MoS2差,如缺陷可能导致局部电荷密度的改变或改变原子结构的排列方式。
二维MoS2薄膜的可控制备及其电子输运特性研究
二维MoS2薄膜的可控制备及其电子输运特性研究【摘要】二维MoS2作为一种新型半导体材料,在电子学和光电子学领域具有广泛的应用前景。
在本文研究中,我们采用化学气相沉积(CVD)技术在氧化硅基底上制备了高质量的二维MoS2薄膜,并通过压电传感器进行了表征。
通过在不同条件下控制CVD过程中的温度、气体流量和反应时间等参数,成功地实现了对MoS2薄膜的可控制备。
同时,利用离子束雕刻技术对MoS2薄膜进行了纳米加工,使其形成了具有排列有序的长条纹的结构,可作为电极进行电子输运特性研究。
进一步的电子输运实验表明,MoS2薄膜具有半导体特性,并在室温下呈现出n型导电性。
在不同温度和电场的情况下,MoS2薄膜的电子输运性质表现出明显的变化。
通过调控材料的缺陷和掺杂,成功地实现了对MoS2薄膜电子输运特性的调控。
结果表明,MoS2薄膜在电子学和光电子学器件中具有广泛的应用前途。
【关键词】二维MoS2;CVD;可控制备;纳米加工;电子输运特性【Abstract】Two-dimensional (2D) MoS2 as a novel semiconductor material has great potential applications in thefields of electronics and optoelectronics. In this study, high-quality 2D MoS2 film was prepared on aSiO2 substrate by chemical vapor deposition (CVD) technique and characterized by piezoelectric sensors. The controllable preparation of MoS2 film was achieved by controlling the temperature, gas flow rate, and reaction time in the CVD process under different conditions. Meanwhile, the MoS2 film was patterned by ion beam etching, forming a structure with a longitudinally aligned stripe that was used as an electrode for the study of electronic transport characteristics.Further electronic transport experiments demonstrated that the MoS2 film exhibited semiconductor properties and showed an n-type conductivity at room temperature. The electronic transport properties of MoS2 film showed significant changes under different temperatures and electric fields. By controlling the material defects and doping, the electronic transport characteristics of MoS2 film were successfully regulated. The results indicated that MoS2 film had great potential applications in electronics and optoelectronics devices.【Keywords】Two-dimensional MoS2; CVD; Controllable preparation; Nanofabrication; Electronic transport characteristicTwo-dimensional MoS2 has attracted increasingattention in recent years due to its unique properties and potential applications in electronics and optoelectronics devices. In order to fully utilize its potential, the controllable preparation of high-quality MoS2 film is crucial.One of the most commonly used methods for preparing MoS2 film is chemical vapor deposition (CVD). By controlling the growth conditions, such as temperature, pressure, and precursor concentration, high-quality MoS2 film with uniform thickness and large area can be obtained.The electronic transport properties of MoS2 film are strongly dependent on its crystal quality, defect density, and doping level. It has been found that the electronic transport properties of MoS2 film can be significantly improved by reducing the defect density and doping with certain impurities.Under different temperatures and electric fields, the electronic transport properties of MoS2 film exhibitsignificant changes. For instance, the electrical conductivity of MoS2 film can increase with increasing temperature or electric field due to the enhanced carrier mobility. Furthermore, the conductivity can also be tuned by controlling the doping level, as certain dopants can either enhance or suppress the carrier concentration.In summary, the controllable preparation andregulation of electronic transport characteristics of MoS2 film provide opportunities for its potential applications in future electronic and optoelectronics devices. The nanofabrication of MoS2-based devices with high performance and reliability can be achieved with the advancement of the synthesis and characterization techniquesApart from electronic and optoelectronic applications, MoS2 films also have potential in other fields such as energy storage and catalysis. One of the most promising applications is in supercapacitors, which are energy storage devices with high power density and fast charging and discharging capabilities. MoS2 has been explored as an electrode material for supercapacitors due to its large surface area, high electrical conductivity, and good stability. Researchers have reported that MoS2-basedsupercapacitors exhibit excellent electrochemical performance, which can be further improved by tuning the morphology and structure of the material.MoS2-based catalysts have also attracted muchattention in recent years due to their high catalytic activity and selectivity in various chemical reactions. For instance, MoS2 has been reported to be anefficient catalyst for the hydrogen evolution reaction (HER), which is a key step in water-splitting technologies for the production of hydrogen fuel. The high catalytic activity of MoS2 for HER can be attributed to its unique electronic and geometric structures, as well as the synergistic effect between the active sites and the support material.In addition, MoS2 can also be used as a catalyst for other reactions such as hydrodesulfurization (HDS) and oxygen reduction reaction (ORR), which are important processes in the petrochemical industry and fuel cells, respectively. The catalytic performance of MoS2 can be further enhanced by modifying its surface chemistry, morphology, and structure through various methods such as doping, surface functionalization, and nanostructuring.Overall, the controllable preparation and regulationof MoS2 films offer great opportunities for their applications in various fields. With the continuous development of synthesis and characterization techniques, as well as the increasing understanding of the fundamental properties and behaviors of MoS2, we can expect more breakthroughs in the design and fabrication of advanced MoS2-based materials and devices in the futureOne promising application of MoS2 is in optoelectronics. Due to its direct bandgap nature and strong light-matter interaction, MoS2 has been demonstrated to have excellent performance as a photoelectric material, making it an ideal candidatefor solar cells and photodetectors. Additionally,MoS2-based light-emitting diodes (LEDs) have shown promising performance in terms of brightness and efficiency, and could potentially be integrated with electronic devices for optoelectronic applications.Another potential application of MoS2 is in energy storage devices, such as batteries and supercapacitors. MoS2 has been shown to have a high specific capacitance and excellent cycling stability, making it an attractive electrode material for supercapacitors. In addition, MoS2 has been used as a cathode material in lithium-ion batteries, with promising results interms of both capacity and cycle life. Further research is needed to fully realize the potential of MoS2 in energy storage applications, but thematerial's unique properties make it a promising candidate for future developments.In the field of catalysis, MoS2 has shown great potential due to its high surface area, abundance, and unique electronic and chemical properties. MoS2-based catalysts have been used in various applications, such as electrocatalysis, photocatalysis, and hydrogen evolution reactions. Additionally, MoS2-basedcatalysts have shown promising activity for conversion of greenhouse gases, such as carbon dioxide, into valuable chemicals, making them a potentially important tool for addressing climate change.Overall, the unique properties and versatile applications of MoS2 make it an exciting material for research and development in various fields. As the understanding of MoS2 continues to grow, we can expect to see more advances in the design and fabrication of advanced materials and devices. The development of new synthesis and characterization techniques will also play a critical role in unlocking the full potential of MoS2-based materials. Ultimately, these advancements have the potential to revolutionize anumber of industries and make a significant impact on our daily livesIn conclusion, MoS2 is a promising material that has garnered significant attention due to its unique properties and potential applications in various fields. The research and development in this area are expected to lead to significant advancements in the design and fabrication of advanced materials and devices, which could revolutionize numerous industries and make a significant impact on our daily lives. Continued efforts in the development of new synthesis and characterization techniques are critical to unlocking the full potential of MoS2-based materials。
金属电池中MoSe2层状电极结构储离子机理研究
垒 有 显 著 的 降 低 。 因 此 ,应 变 可 以 改 善 MoSe2 电 极 在 金 属 离 子 电 池 的 应 用 效 果 ,尤 其 是 对 镁 和 锌 金 属 电 池 的 效 果
ered material was increased, and the diffusion path was increased. By calculating the change law of adsorption en⁃
ergy and migration energy barrier under strain conditions by first principles, it was found that the degree of
( 通信作者)
引文格式:卢晓东 ,陈兵兵 ,周剑秋 . 金属电池中 MoSe2 层状电极结构储离子机理研究[J]. 电力学报 ,2021,36(01):3542. DOI:10. 13357/j. dlxb. 2021. 005.
Copyright©博看网 . All Rights Reserved.
结 构 。 此 外 ,通 过 CINEB 方 法 探 究 M 离 子 的 迁 移 能 垒 来 分 析 金 属 电 池 的 性 能 ,计 算 结 果 表 明 ,离 子 的 迁 移 能 垒 大
小 依 次 为 锌 离 子 > 镁 离 子 > 钠 离 子 > 锂 离 子 。 最 后 ,通 过 引 入 应 变 ,使 其 层 状 材 料 层 间 距 增 加 ,增 加 其 扩 散 路 径 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Surface functionalization of MoS2 with POSS for enhancing thermal, flame-retardant and mechanical properties in PVA composites
Shu-Dong Jiang,a Gang Tang,a Zhi-Man Bai,ab Yu-Ying Wang,c Yuan Hu*ab and Lei Songa
a
State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China. E-mail: yuanhu@; Fax: +86-551-3601664; Tel: +86-551-3601664 Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
Surface functionalization of molybdenum disulfide (MoS2) was prepared by a simple reflux reaction between DITG-MoS2 and octa-vinyl polyhedral oligomeric silsesquioxanes (OvlPOSS). The structure of OvlPOSS-MoS2 was confirmed by XRD, FTIR and TEM. The SEM and TEM results of fracture surface exhibited that OvlPOSS-MoS2 was dispersed well in the matrix due to the good interfacial interaction between the functionalized MoS2 and PVA. The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results indicated that the thermal decomposition temperature and the glass transition temperature (Tg) were improved. Compared with pure PVA, the maximum degradation temperature of the PVA/OvlPOSS-MoS2 nanocomposites was increased by 23 C, and the Tg of the PVA/OvlPOSS-MoS2 was improved by 10.2 C. Meanwhile, the peak of heat release rate (pHRR) and total heat release (THR) were decreased. The tensile stress was increased by 57% with addition of 2 wt% OvlPOSS-MoS2. Moreover, the addition of OvlPOSS-MoS2 significantly decreased the gaseous products, including hydrocarbons, carbonyl compounds and carbon monoxide, which was attributed to the synergistic effect of OvlPOSS and MoS2: the adsorption and barrier effect of MoS2 inhibited the heat and gas release and promoted the formation of graphitized carbons, while OvlPOSS improved the thermal oxidative resistance of the char layer.
Received 17th October 2013 Accepted 27th November 2013 DOI: 10.1039/c3ra45911j /advances
1. Introduction
Recent progress in understanding 2D ordered crystals of graphene has drawn more and more scientists into the nanosheet eld. Various 2D nanosheets such as transition metal dichalcogenides (TMDs, e.g. MoS2 and WS2), transition metal oxides (TMOs), and hexagonal boron nitride (h-BN) have been attracting tremendous attention due to the unusual properties associated with their ultrathin nanosheet structure.1–6 Among these 2D layered materials, molybdenum disulde (MoS2) is one of the more commercially available members with a analogous structure to graphite, which is composed of three stacked atom layers (S–Mo–S) held together by van der Waals forces.7 Like some other members of the family of 2D layered materials, MoS2 has many comprehensive applications due to their unmatched properties. For example, MoS2 is frequently used as
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 3253–3262 | 3253
View Article Online
RSC Aபைடு நூலகம்vances
Paper
Published on 28 November 2013. Downloaded by Zhejiang University on 23/06/2015 10:34:23.
RSC Advances
PAPER
View Article Online
View Journal | View Issue
Published on 28 November 2013. Downloaded by Zhejiang University on 23/06/2015 10:34:23.
Cite this: RSC Adv., 2014, 4, 3253
a solid lubricant in rigorous environments, lithium ion batteries, catalysts and sensors.2,7–11 It is believed that a 2D ordered MoS2 crystal structure with an exposed (002) crystal surface would be valuable to exploit many unique properties of a graphitic-like (002) plane, such as superb lubrication performance, mechanical strength, and others. In the early ages of the polymer nanocomposites research, layered silicates, and layered double hydroxides (LDHs) are the most widely investigated.12,13 However, very recently, the discovery of graphene with its combination of extraordinary physical properties and ability to be dispersed in various polymer matrices has created a new class of polymer nanocomposites.14,15 It is well known that pristine MoS2 is unsuitable for intercalation by large species, such as polymer chains, because MoS2 as a bulk material has a pronounced tendency to agglomerate in polymer matrix which usually destroys the properties of the composites. Therefore, there has been great interest in the improvement of the dispersion of MoS2 nanosheets in polymer matrix. Fortunately, the layered structure of MoS2 enables easy intercalation of metal ions, such as Li+ and Mg2+.16 So it is convenient to prepare polymer nanocomposites by the intercalation of metal ions (Li+) and then exfoliated to single or few layers through the hydrolysis of the Li+. Like the graphene, single MoS2 nanosheets were used to fabricate the polymer based nanocomposites, which can effectively enhance the mechanical, thermal properties and ame