最新——河南中考数学第22题解析
2019年高考备考:河南中考数学真题(第22题)类比拓展探究题分类汇编-附答案精品

青霄有路终须到,金榜无名誓不还! 2019-2020 年备考 类比、拓展探究题 17 年)如图 1,在 Rt△ABC 中,∠A=90°,AB=AC, 点 D,E 分别在边 AB,AC 上,AD=AE,连接 DC,点 M, P,N 分别为 DE,DC,BC 的中点. (1)观察猜想 图 1 中,线段 PM 与 PN 的数量关系是 PM=PN ,位置关系是 (2)探究证明 把△ADE 绕点 A 逆时针方向旋转到图 2 的位 置,连接 MN,BD,CE,判断△PMN 的形状,并说明 理由; (3)拓展延伸 把△ ADE 绕点 A 在平面内自由旋转,若 AD=4,AB=10,请直接写出△PMN 面积的最大值. PM⊥PN ;
BD
14 年) (1)问题发现 如图 1,△ACB 和△DCE 均为等边三角形,点 A、D、 E 在同一直线上,连接 BE 填空: (1)∠AEB 的度数为 (2) 线段 BE 之间的数量关系是 ; 。
【分析】(1)利用三角形的中位线得出 PM= CE, PN= BD,进而判断出 BD=CE,即可得出结论,另为 利用三角形的中位线得出平行线即可得出结论; (2)先判断出△ABD≌△ACE,得出 BD=CE,同(1) 的方法得出 PM= BD,PN= BD,即可得出 PM=PN,同 (1)的方法即可得出结论; (3)先判断出 MN 最大时,△PMN 的面积最大,进而 求出 AN,AM,即可得出 MN 最大=AM+AN,最后用面积 公式即可得出结论. 【解答】解:(1)∵点 P,N 是 BC,CD 的中点, ∴PN∥BD,PN= BD, ∵点 P,M 是 CD,DE 的中点, ∴PM∥CE,PM= CE, ∵AB=AC,AD=AE, ∴BD=CE, ∴PM=PN, ∵PN∥BD, ∴∠DPN=∠ADC, ∵PM∥CE, ∴∠DPM=∠DCA, ∵∠BAC=90°, ∴∠ADC+∠ACD=90°,
2016河南中考数学22题及解答

22.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为a+b(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣﹣3=2﹣,∴P(2﹣,).。
终稿 2013河南省中考试题第22题

河南卷第22题张存敬(河南师范大学附属中学)原题呈现:如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转.当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AE C的面积为S2,则S1与S2的数量关系是.A(D)B(E)(图1)(图2)(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BD C和△AEC中BC、CE边上的高,请证明小明的猜想.(图4)EDCBA(3)拓展探究已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE ∥AB 交B C 于点E (如图4).若在射线BA 上存在点F ,使BDE DCF S S △△=,请直接写出相应的BF 的长.解题思路:(1)(2)略(3)解:延长CD ,交BA 于点M ,过点E 作EO ⊥BD 于点O ,在等腰△BD E 中,易求EO =332.易证∠EDC =90°,又ED ∥AB ,所以CM ⊥AB ,因为BD =CD =4,要使BDE DCF S S △△=,只需要△BDE 中BD 上的高等于△DCF 中CD 边上的高,即FM =EO =332.在射线BA 上,满足条件的点F 有两个,分别在点M 上方和下方,所以BF =338334或. 特色1:取材——回归课本本题改编于人教版九年级上册P.59“23.1图形的旋转”习题第1题:“任意画一个△ABC ,以B 为中心,将这个三角形顺时针旋转60°,作出旋转之后的图形”.试题的几何背景和教材中的问题设置如出一辙,问题(1)中“当点D 恰好落在AB 边上”,其实就是△DEC 绕点C顺时针旋转60°的情况,不同的地方是教材中任意的三角形在考题中变成了特殊的直角三角形.本题的取材返璞归真,贴近基础,对初三的复习教学发挥了很好的导向作用.特色2:形态——动静结合本题是一道非常典型的旋转变换试题,旋转赋予了试题动态的背景,学生需要用运动和变化的观点去观察和研究图形,明确旋转前后哪些量发生了变化,哪些量没有改变.同时在运动过程中,考生要敏锐地捕捉暂时静止的某一瞬间的几何图形.问题(1)、(2)动感十足,图形一直在旋转,但是在问题(3)中,这种运动变化戛然而止,变成了一个静态的抽象的平面图形.其实问题(3)的图形是△DEC绕点C 顺时针旋转120°这一瞬间的情况.考生需要在“动”中求“静”,在“静”中探究“动”的规律,试题在动静之间很好地考查了学生空间想象能力和转化能力.特色3:立意——高屋建瓴本题展现了知识创生、发现的过程,提供了数学研究的思维脉络,承载了《课标(2011版)》对考生探究能力、发散性思维、创造性思维的目标要求.无论是谋篇布局还是问题的设计,命题者对考查学生数学思维活动经验、思想方法的执着和努力清晰可见,真正实现了试题从知识立意到能力立意的转变.从知识的角度,本题考查了三角形全等、图形旋转的性质、解直角三角形等基本知识,无论是对知识的覆盖面还是对知识的理解程度,本题的要求都很低.但是试题对学生的数学能力与素养要求非常高,尤其是问题(3),需要学生用运动、变化、联系、发展的观点来思考问题,需要学生从问题(1)、问题(2)的数学思维活动经验中获得解题策略和方向上的启发,在一定程度上对考生的推理能力、抽象能力、想象力和创造力形成了较为有效的考查.如果一个学生在平时的学习中,很少经历“探索的过程、思考的过程”,很少获得数学思维的熏陶,没有养成“戴一副数学的眼睛”思考问题的习惯,而是仅仅靠老师的传授获得知识,靠“题海”获得解题的技巧,学习停留在片段性的零碎知识层面,数学能力仅仅表现为对已有知识结论的记忆、模仿和套用,那么考生就很难顺利解决这个问题.本题对教师的课堂教学将产生积极影响,教师应该追求课堂的品味和境界,真正把教学浸放在思想和意义的长河中,坚持数学基本思想和方法的渗透,努力提高学生的思维品质,不断培育学生的理性精神.特色4:构思——匠心独运(1)从研究对象上.在旋转的过程中,所研究的三角形面积的大小在变化,而决定三角形面积大小的有两个变量:底边长和对应的高,这无疑增加了命题的难度.但是命题者另辟蹊径,对相关变量进行控制,在旋转的过程中,保持了三角形两个边长的不变,减少了一个变量,实现了继续探究的可能.(2)从问题(3)的设置上.这个问题综合能力强,思维含量高,是命题者别具匠心之作,更是本题的点睛之笔.在前面问题的基础上,△DEC绕点C顺时针旋转120°的图形就是问题(3)的情景(此时问题(2)中的图形具有以下性质和结论:点B、D、E在同一条直线上,∠BAC=60°,BC平分∠ABD,BC=CE,CD∥AB.理由如下:由题意可知,∠BAC=60°,设AC=1,则BC=3.又∠ACD=120°,∠BAC+∠ACD=180°,所以CD∥AB,∠BCD=30°.在等腰△ACD中,易求AD=3.在△ACD和△CDB中,AC=DC,BC=AD=3,∠BC D=∠DA C=30°,所以△ACD≌△CDB,由此可得∠CBD=30°(即BC平分∠ABD),∠BDC=∠ACD=120°.因为∠BDC+∠CDE=180°,所以点B、D、E在同一条直线上).在这一时刻问题(2)中的图形具有的性质恰好和问题(3)提供的条件完全相同,可见问题(3)是由问题(2)巧妙衍生而来,演变的过程和结果妙趣横生,让人叹为观止. 这种设计为问题解决提供了方向和策略.只是反映到图形上,图4相对于图3中的字母表示发生了改变,但数学本质关系没有变化.(3)从问题之间的关联上,三个问题难度由浅入深,层层递进,学生的思维需要拾级而上.三个问题所表现的功能泾渭分明,清晰可见,问题之间确立的关系起承转合,水到渠成.问题(1)谓“起”.问题的起源,起点低,容易上手,激发了学生进一步探究的信心.问题(2)谓“承”.承上启下,由问题(1)中的特殊位置自然过渡到一般情况,为问题(3)的惊艳登场做好铺垫.问题(3)谓“转”.峰回路转,问题考查的能力、基本思想和呈现方式都发生了很大变化.三个问题就像一幅画卷,优雅而缓缓地展开.。
2022年河南省中考数学试卷(解析版)

2022年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.12-的相反数是()A .12B .2C .2-D .12-【分析】直接利用相反数的定义得出即可.【解答】解:12-的相反数是:12.故选:A .2.2022年北京冬奥会的奖牌“同心”表达了“天地合⋅人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A .合B .同C .心D .人【分析】根据正方体的表面展开图找相对面的方法,一线隔一个,即可解答.【解答】解:在原正方体中,与“地”字所在面相对的面上的汉字是人,故选:D .3.如图,直线AB ,CD 相交于点O ,EO CD ⊥,垂足为O .若154∠=︒,则2∠的度数为()A .26︒B .36︒C .44︒D .54︒【分析】首先利用垂直的定义得到90COE ∠=︒,然后利用平角的定义即可求解.【解答】解:EO CD ⊥ ,90COE ∴∠=︒,12180COE ∠+∠+∠=︒ ,21801180549036COE ∴∠=︒-∠-∠=︒-︒-︒=︒.故选:B .4.下列运算正确的是()A .2-=B .22(1)1a a +=+C .235()a a =D .2322a a a ⋅=【分析】利用二次根式的减法的法则,完全平方公式,幂的乘方的法则,单项式乘单项式的法则对各项进行运算即可.【解答】解:A 、=,故A 不符合题意;B 、22(1)21a a a +=++,故B 不符合题意;C 、236()a a =,故C 不符合题意;D 、2322a a a ⋅=,故D 符合题意.故选:D .5.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为CD 的中点.若3OE =,则菱形ABCD 的周长为()A .6B .12C .24D .48【分析】由菱形的性质可得出AC BD ⊥,AB BC CD DA ===,再根据直角三角形斜边上的中线等于斜边的一半得出CD 的长,结合菱形的周长公式即可得出结论.【解答】解: 四边形ABCD 为菱形,AC BD ∴⊥,AB BC CD DA ===,COD ∴∆为直角三角形.3OE = ,点E 为线段CD 的中点,26CD OE ∴==.44624ABCD C CD ∴==⨯=菱形.故选:C .6.一元二次方程210x x +-=的根的情况是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .只有一个实数根【分析】根据根的判别式进行判断即可.【解答】解:在一元二次方程210x x +-=中,1a =,1b =,1c =-,∴△224141(1)1450b ac =-=-⨯⨯-=+=>,∴原方程有两个不相等的实数根.故选:A .7.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A .5分B .4分C .3分D .45%【分析】根据众数的定义求解即可.【解答】解:由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:B .8.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿1=万1⨯万,1兆1=万1⨯万1⨯亿.则1兆等于()A .810B .1210C .1610D .2410【分析】根据同底数幂的乘法先求出1亿,再求1兆即可.【解答】解:1亿441010=⨯810=,1兆448101010=⨯⨯44810++=1610=,故选:C .9.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,//AB x 轴,交y 轴于点P .将OAP ∆绕点O 顺时针旋转,每次旋转90︒,则第2022次旋转结束时,点A 的坐标为()A .1)-B .(1,-C .(,1)-D .【分析】由正六边形的性质可得A ,再根据由360904︒÷︒=可知,每4次为一个循环,由202245052÷=⋯⋯,可知点2022A 与点2A 重合,求出点2A 的坐标可得答案.【解答】解: 边长为2的正六边形ABCDEF 的中心与原点O 重合,2OA AB ∴==,60BAO ∠=︒,//AB x 轴,90APO ∴∠=︒,30AOP ∴∠=︒,AP ∴OP =,A ∴,将OAP ∆绕点O 顺时针旋转,每次旋转90︒,可知点2A 与D 重合,由360904︒÷︒=可知,每4次为一个循环,202245052∴÷=⋯⋯,∴点2022A 与点2A 重合,点2A 与点A 关于原点O 对称,2(1,A ∴-,∴第2022次旋转结束时,点A 的坐标为(1,-,故选:B .10.呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1)R ,1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确的是()A .呼气酒精浓度K 越大,1R 的阻值越小B .当0K =时,1R 的阻值为100C .当10K =时,该驾驶员为非酒驾状态D .当120R =时,该驾驶员为醉驾状态【分析】观察图2可直接判断A 、B ,由10K =可算出M 的值,从而判断C ,观察图2可得120R =时K 的值,从而算出M 的值,即可判断D .【解答】解:由图2可知,呼气酒精浓度K 越大,1R 的阻值越小,故A 正确,不符合题意;由图2知,0K =时,1R 的阻值为100,故B 正确,不符合题意;由图3知,当10K =时,32200101022(/100)M mg mL -=⨯⨯=,∴当10K =时,该驾驶员为酒驾状态,故C 不正确,符合题意;由图2知,当120R =时,40K =,32200401088(/100)M mg mL -∴=⨯⨯=,∴该驾驶员为醉驾状态,故D 正确,不符合题意;故选:C .二、填空题(每小题3分,共15分)11.请写出一个y 随x 的增大而增大的一次函数的表达式:答案不唯一,如y x =.【分析】根据一次函数的性质只要使一次项系数大于0即可.【解答】解:例如:y x =,或2y x =+等,答案不唯一.12.不等式组30,12x x -⎧⎪⎨>⎪⎩的解集为23x <.【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:3012x x -⎧⎪⎨>⎪⎩①②,解不等式①,得:3x ,解不等式②,得:2x >,∴该不等式组的解集是23x <,故答案为:23x <.13.为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为16.【分析】画树状图,共有12种可能的结果,其中恰好选中甲和丙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有12种可能的结果,其中恰好选中甲和丙的结果有2种,∴恰好选中甲和丙的概率为21126=,故答案为:16.14.如图,将扇形AOB 沿OB 方向平移,使点O 的中点O '处,得到扇形A O B '''.若90O ∠=︒,2OA =,则阴影部分的面积为32π+.【分析】如图,设O A ''交 AB 于点T ,连接OT .首先证明30OTO ∠'=︒,根据()OTO O A B OTB S S S S ∆''''=--阴扇形扇形求解即可.【解答】解:如图,设O A ''交 AB 于点T ,连接OT .OT OB = ,OO O B '='',2OT OO ∴=',90OO T ∠'=︒ ,30O TO ∴∠'=︒,60TOO ∠'=︒,()OTO O A B OTB S S S S ∆''''∴=--阴扇形扇形229026021(13603602ππ⋅⨯⋅⋅=--⨯3π=+.故答案为:3π+15.如图,在Rt ABC ∆中,90ACB ∠=︒,AC BC ==,点D 为AB 的中点,点P 在AC上,且1CP =,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ .当90ADQ ∠=︒时,AQ 的长为【分析】分两种情况:当点Q 在CD 上,当点Q 在DC 的延长线上,利用勾股定理分别进行计算即可解答.【解答】解:如图:90ACB ∠=︒ ,AC BC ==,4AB ∴==,点D 为AB 的中点,122CD AD AB ∴===,90ADC ∠=︒,90ADQ ∠=︒ ,∴点C 、D 、Q 在同一条直线上,由旋转得:1CQ CP CQ =='=,分两种情况:当点Q 在CD 上,在Rt ADQ ∆中,1DQ CD CQ =-=,AQ ∴==当点Q 在DC 的延长线上,在Rt ADQ ∆'中,3DQ CD CQ '=+'=,AQ ∴'=,综上所述:当90ADQ ∠=︒时,AQ 的长为,.三、解答题(本大题共8个小题,共75分)16.(10分)(1011()23-+;(2)化简:211(1x x x-÷-.【分析】(1)先算立方根、零指数幂、负整数指数幂,再算加减;(2)先通分,把除化为乘,再分解因式约分.【解答】解:(1)原式1312=-+52=;(2)原式(1)(1)1x x x x x +--=÷(1)(1)1x x x x x +-=⋅-1x =+.17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a .成绩频数分布表:成绩x (分)5060x <6070x <7080x <8090x <90100x 频数7912166b .成绩在7080x <这一组的是(单位:分):707172727477787878797979根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【分析】(1)根据中位数的定义求解即可,用不低于80分的人数除以被测试人数即可;(2)根据中位数的意义求解即可;(3)答案不唯一,合理均可.【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为787978.52+=(分),所以这组数据的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为166100%44%50+⨯=,故答案为:78.5,44%;(2)不正确,因为甲的成绩77分低于中位数78.5分,所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).18.(9分)如图,反比例函数(0)k y x x =>的图象经过点(2,4)A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证://CD AB .【分析】(1)直接把点A 的坐标代入求出k 即可;(2)利用尺规作出线段AC 的垂直平分线m 即可;(3)证明DCA BAC ∠=∠,可得结论.【解答】(1)解: 反比例函数(0)k y x x =>的图象经过点(2,4)A ,248k ∴=⨯=,∴反比例函数的解析式为8y x=;(2)解:如图,直线m 即为所求.(3)证明:AC 平分OAB ∠,OAC BAC ∴∠=∠,直线m 垂直平分线段AC ,DA DC ∴=,OAC DCA ∴∠=∠,DCA BAC ∴∠=∠,//CD AB ∴.19.(9分)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC 的高度,如图,在A 处用测角仪测得拂云阁顶端D 的仰角为34︒,沿AC 方向前进15m 到达B 处,又测得拂云阁顶端D 的仰角为45︒.已知测角仪的高度为1.5m ,测量点A ,B 与拂云阁DC 的底部C 在同一水平线上,求拂云阁DC 的高度(结果精确到1m .参考数据:sin 340.56︒≈,cos340.83︒≈,tan 340.67)︒≈.【分析】延长EF 交DC 于点H ,根据题意可得:90DHF ∠=︒,15EF AB ==米,1.5CH BF AE ===米,设FH x =米,在Rt DFH ∆中,利用锐角三角函数的定义求出FH 的长,然后在Rt DHE ∆中,利用锐角三角函数的定义列出关于x 的方程,进行计算即可解答.【解答】解:延长EF 交DC 于点H ,由题意得:90DHF ∠=︒,15EF AB ==米, 1.5CH BF AE ===米,设FH x =米,(15)EH EF FH x ∴=+=+米,在Rt DFH ∆中,45DFH ∠=︒,tan 45DH FH x ∴=⋅︒=(米),在Rt DHE ∆中,34DEH ∠=︒,tan 340.6715DH x EH x ∴︒==≈+,30.1x ∴≈,经检验:30.1x ≈是原方程的根,30.1 1.532DC DH CH ∴=+=+≈(米),∴拂云阁DC 的高度约为32米.20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A 种菜苗的价格是菜苗基地的54倍,用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A 种菜苗的价格.(2)菜苗基地每捆B 种菜苗的价格是30元.学校决定在菜苗基地购买A ,B 两种菜苗共100捆,且A 种菜苗的捆数不超过B 种菜苗的捆数.菜苗基地为支持该校活动,对A ,B 两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【分析】(1)设菜苗基地每捆A 种菜苗的价格是x 元,根据用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆,列方程可得菜苗基地每捆A 种菜苗的价格是20元;(2)设购买A 种菜苗m 捆,则购买B 种菜苗(100)m -捆,根据A 种菜苗的捆数不超过B 种菜苗的捆数,得m -≤100m ,即50m ≤,设本次购买花费w 元,有200.9300.9(100)92700w m m m =⨯+⨯-=-+,由一次函数性质可得本次购买最少花费2250元.【解答】解:(1)设菜苗基地每捆A 种菜苗的价格是x 元,根据题意得:300300354x x =+,解得20x =,经检验,20x =是原方程的解,答:菜苗基地每捆A 种菜苗的价格是20元;(2)设购买A 种菜苗m 捆,则购买B 种菜苗(100)m -捆,A 种菜苗的捆数不超过B 种菜苗的捆数,100m m ∴-,解得50m ,设本次购买花费w 元,200.9300.9(100)92700w m m m ∴=⨯+⨯-=-+,90-< ,w ∴随m 的增大而减小,50m ∴=时,w 取最小值,最小值为95027002250-⨯+=(元),答:本次购买最少花费2250元.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m ;建立如图所示的平面直角坐标系,并设抛物线的表达式为2()y a x h k =-+,其中()x m 是水柱距喷水头的水平距离,()y m 是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P 水平距离3m .身高1.6m 的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【分析】(1)由抛物线顶点(5,3.2),设抛物线的表达式为2(5) 3.2y a x =-+,用待定系数法可得抛物线的表达式为2171010y x x =-++;(2)当 1.6y =时,217 1.61010x x -++=,解得1x =或9x =,即得她与爸爸的水平距离为2m 或6m .【解答】解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为2(5) 3.2y a x =-+,将(0,0.7)代入得:0.725 3.2a =+,解得110a =-,22117(5) 3.2101010y x x x ∴=--+=-++,答:抛物线的表达式为2171010y x x =-++;(2)当 1.6y =时,217 1.61010x x -++=,解得1x =或9x =,∴她与爸爸的水平距离为312()m -=或936()m -=,答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m 或6m .22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环O 与水平地面相切于点C ,推杆AB 与铅垂线AD 的夹角为BAD ∠,点O ,A ,B ,C ,D 在同一平面内.当推杆AB 与铁环O 相切于点B 时,手上的力量通过切点B 传递到铁环上,会有较好的启动效果.(1)求证:90BOC BAD ∠+∠=︒.(2)实践中发现,切点B 只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A 距地面的距离AD 最小,测得3cos 5BAD ∠=.已知铁环O 的半径为25cm ,推杆AB 的长为75cm ,求此时AD 的长.【分析】(1)本小题难度不大,方法颇多,方法1:如图1,过点B 作//EF CD ,分别交AD 于点E ,交OC 于点F .首先证明90BOC OBF ∠+∠=︒,90ABE BAD ∠+∠=︒;再根据B 是切点得出90OBA ∠=︒.后面就很简单的证明出结论;方法2:如图2,延长OB 交CD 于点M .因为AB 为O 的切线,所以根据切线性质得到,90OBA ∠=︒,90ABM ∠=︒.再根据四边形、三角形的内角和即可证明;方法3:如图3,过点B 作//BN AD ,根据两直线平行,内错角相等和切线性质,可以很简单的证明问题;(2)利用(1)中图1的辅助线即可解答.首先根据条件75AB =,3cos 5BAD ∠=,得到45AE =.再利用(1)证明出的,OBF BAD ∠=∠,能得到四边形CDEF 为矩形,所以5DE CF ==,从而得到50AD AE ED cm =+=.【解答】(1)证明:方法1:如图1,过点B 作//EF CD ,分别交AD 于点E ,交OC 于点F .CD 与O 相切于点C ,90OCD ∴∠=︒.AD CD ⊥ ,90ADC ∴∠=︒.//EF CD ,90OFB AEB ∴∠=∠=︒,90BOC OBF ∴∠+∠=︒,90ABE BAD ∠+∠=︒,AB 为O 的切线,90OBA ∴∠=︒.90OBF ABE ∴∠+∠=︒,90OBF ∴∠=︒.90OBF ABE ∴∠+∠=︒,OBF BAD ∴∠=∠,90BOC BAD ∴∠+∠=︒;方法2:如图2,延长OB 交CD 于点M .CD 与O 相切于点C ,90OCM ∴∠=︒,90BOC BMC ∴∠+∠=︒,AD CD ⊥ ,90ADC ∴∠=︒.AB 为O 的切线,90OBA ∴∠=︒,90ABM ∴∠=︒.∴在四边形ABMD 中,180BAD BMD ∠+∠=︒.180BMC BMD ∠+∠=︒ ,BMC BAD ∴∠=∠.90BOC BAD ∴∠+∠=︒;方法3:如图3,过点B 作//BN AD ,NBA BAD ∴∠=∠.CD 与O 相切于点C ,90OCD ∴∠=︒,AD CD ⊥ ,90ADC ∴∠=︒.//AD OC ∴,//BN OC ∴,NBO BOC ∴∠=∠.AB 为OO 的切线,90OBA ∴∠=︒,90NBO NBA ∴∠+∠=︒,90BOC BAD ∴∠+∠=︒.(2)解:如图1,在Rt ABE ∆中,75AB = ,3cos 5BAD ∠=,45AE ∴=.由(1)知,OBF BAD ∠=∠,3cos 5OBF ∴∠=,在Rt OBF ∆中,25OB = ,15BF ∴=,20OF ∴=.25OC = ,5CF ∴=.90OCD ADC CFE ∠=∠=∠=︒ ,∴四边形CDEF 为矩形,5DE CF ∴==,50AD AE ED cm ∴=+=.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在矩形内部点M 处,把纸片展平,连接PM ,BM .根据以上操作,当点M 在EF 上时,写出图1中一个30︒的角:EMB ∠或CBM ∠或ABP ∠或CBM ∠(任写一个即可).(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD 按照(1)中的方式操作,并延长PM 交CD 于点Q ,连接BQ .①如图2,当点M 在EF 上时,MBQ ∠=︒,CBQ ∠=︒;②改变点P 在AD 上的位置(点P 不与点A ,D 重合),如图3,判断MBQ ∠与CBQ ∠的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD 的边长为8cm ,当1FQ cm =时,直接写出AP 的长.【分析】(1)由折叠的性质可得12AE BE AB ==,90AEF BEF ∠=∠=︒,AB BM =,ABP PBM ∠=∠,由锐角三角函数可求30EMB ∠=︒,即可求解;(2)①由“HL ”可证Rt BCQ Rt BMQ ∆≅∆,可得15CBQ MBQ ∠=∠=︒;②由“HL ”可证Rt BCQ Rt BMQ ∆≅∆,可得CBQ MBQ ∠=∠;(3)分两种情况讨论,由折叠的性质和勾股定理可求解.【解答】解:(1) 对折矩形纸片ABCD ,12AE BE AB ∴==,90AEF BEF ∠=∠=︒, 沿BP 折叠,使点A 落在矩形内部点M 处,AB BM ∴=,ABP PBM ∠=∠,1sin 2BE BME BM ∠== ,30EMB ∴∠=︒,60ABM ∴∠=︒,30CBM ABP CBM ∴∠=∠=∠=︒,故答案为:EMB ∠或CBM ∠或ABP ∠或CBM ∠(任写一个即可);(2)①由(1)可知30CBM ∠=︒,四边形ABCD 是正方形,AB BC ∴=,90BAD C ∠=∠=︒,由折叠可得:AB BM =,90BAD BMP ∠=∠=︒,BM BC ∴∠=,90BMQ C ∠=∠=︒,又BQ BQ = ,Rt BCQ Rt BMQ(HL)∴∆≅∆,15CBQ MBQ ∴∠=∠=︒,故答案为:15,15;②MBQ CBQ ∠=∠,理由如下:四边形ABCD 是正方形,AB BC ∴=,90BAD C ∠=∠=︒,由折叠可得:AB BM =,90BAD BMP ∠=∠=︒,BM BC ∴∠=,90BMQ C ∠=∠=︒,又BQ BQ = ,Rt BCQ Rt BMQ(HL)∴∆≅∆,CBQ MBQ ∴∠=∠;(3)由折叠的性质可得4DF CF cm ==,AP PQ =,Rt BCQ Rt BMQ ∆≅∆ ,CQ MQ ∴=,当点Q 在线段CF 上时,1FQ cm = ,3MQ CQ cm ∴==,5DQ cm =,222PQ PD DQ =+ ,22(3)(8)25AP AP ∴+=-+,4011AP ∴=,当点Q 在线段DF 上时,1FQ cm = ,5MQ CQ cm ∴==,3DQ cm =,222PQ PD DQ =+ ,22(5)(8)9AP AP ∴+=-+,2413AP ∴=,综上所述:AP 的长为4011cm 或2413cm .。
中考数学第21-22题(解答题中档题:锐角三角函数、反比例和一次函数综合)考前预测

押中考数学第21-22题(解答题中档题:锐角三角函数、反比例和一次函数综合)专题诠释:实数、整式与三视图是中考必考题型。
在历年的中考中,主要以选择题的形式出现,内容较为简单,因此是中考数学中必须做对的题型。
考法上上主要以识记和理解的考察为主,区分不同的定义和运算规律,练出手感,保证全对!知识点一:锐角三角函数〖押题冲关〗1.(2023·山东济宁·统考二模)酒驾猛于虎,但很多人不以为是,为了加强人们对酒驾危害的认识,交警部门加大了对酒驾的检查力度,某市交警在2023年2月28日这天对本市各大主要交通路口进行车辆检查,如图,AC是该市解放路的一段,AE,BF,CD都是南北方向的街道,与解放路AC的交叉路口分别是A,B,C.已知出警点D位于点A的北偏东45∘方向、点B的北偏东30∘方向上,BD=2km,∠DBC=30∘.(1)求A、B的距离;(2)第一组交警负责路口A,求该组从出警点D到路口A的路程(行驶路线为D−C−B−A).(结果保留根号)2.(2023·湖北襄阳·统考模拟预测)小军与小明放学后看见楼前的小广场上有一架无人机正在定点拍摄小区全景,此时如图所示,小军在一楼B处测得无人机C的仰角∠CBE=60°,在楼顶A处的小明测得无人机C的仰角∠CAD=28°,他们所在的楼高约为120米,求此时无人机C离地面BE的高度.(参考数据:√3≈1.73,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(1)求点B到点C之间的距离(结果保留根号);5.(2023·浙江绍兴·统考一模)某次科学实验中,小王将某个棱长为10cm正方体木块固定于水平木板OM上,OB=50cm,将木板OM绕一端点O旋转40°至OM′(即∠MOM′=40°)(如图为该操作的截面示意图).(1)求点C到C′竖直方向上升高度(即过点C,C′水平线之间的距离);(2)求点D到D′竖直方向上升高度(即过点D,D′水平线之间的距离).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,(1)(2)题中结果精确到个位)6.(2023·河南新乡·统考二模)图1是一款摆臂遮阳篷的实物图,图2是其侧面示意图.如图2,点A,O为墙壁上的固定点,AO=1.5m,摆臂OB可绕点O旋转,旋转过程中遮阳篷AB可自由伸缩,篷面始终保持平整,当摆臂OB与墙壁垂直时,身高为1.65m的同学(MN=1.65m)站在遮阳篷下距离墙角1.2m(EN=1.2m)处,刚好不被阳光照射到,测得此时AB与摆臂OB的夹角∠ABO=45°,光线与水平地面EF的夹角∠BNF=71°,求AE的高度.(结果精确到0.1m.参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90,√2≈1.41)7.(2023·四川成都·统考二模)如图是一座人行天桥的示意图,已知天桥的高度CD=6米,坡面BC的倾斜角∠CBD=45°,距B点8米处有一建筑物NM,为了方便行人推自行车过天桥,市政府决定降低坡面BC的坡度,把倾斜角由45°减至30°,即使得新坡面AC的倾斜角为∠CAD=30°.若新坡面底端A处与建筑物NM之间需要留下至少3米宽的人行道,那么该建筑物是否需要拆除?请说明理由.(结果精确到0.1米;参考数据:√2≈1.14,√3≈1.73)8.(2023·江苏宿迁·统考二模)如图,在坡角α为30°的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为18米,求大树AB的高.(结果精确到0.1米,√2≈1.414,√3≈1.732)9.(2023·四川成都·统考二模)如图,为了测量河对岸A,B两点间的距离,数学综合实践小组在河岸南侧选定观测点C,测得A,B均在C的东偏北60°方向上,沿正东方向行走60米至观测点D,测得B在D的西偏北30°方向上,A在D的西偏北69°方向上.求A,B两点间的距离是多少米(精确到个位)?(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,sin51°≈0.78,cos51°≈0.63,tan51°≈1.23,√3≈1.73)10.(2023·安徽滁州·统考二模)某学校数学活动小组决定利用所学的解直角三角形知识测量校园内一棵树AB的高度.如图,他们在地面上C处测得树顶A的仰角为30°,再往树的方向前进20m至D处,测得仰角为60°,点C,D,B在同一直线上,求树高AB.(身高忽略不计,结果保留根号)知识点二:反比例和一次函数综合模块二〖押题冲关〗(1)求一次函数的表达式:(1)求一次函数和反比例函数的解析式;(1)求m,n的值及反比例函数的解析式;(1)求直线和双曲线的解析式及点B的坐标;(1)求m的值;(1)求k的值;(2)求△ODE的面积.(x<0)上,点B在x轴上.将7.(2023·四川南充·统考二模)如图,点A(m,1)在双曲线y=kx线段AB平移到CD,点C仍在双曲线上,点D在y轴上,OB=2OD=2.(1)求m和k的值;(2)直线AC与x轴交于E,与y轴交于F.求证:OE=2OF.8.(2023·河南洛阳·东方二中校考二模)如图,在平面直角坐标系中,一次函数y=k1x+b的的图象的两个交点为A(−1,3)和B.图象与反比例函数y=k2x(1)求反比例函数的关系式;=2;(2)若一次函数y=k1x+b与x轴交于点C,且ABBC①求出k1与b的值;的解集为__________;②直接写出不等式k1x+b>k2x(3)若点F是直线OA上一点,F点的横坐标为m,连接AF,BF,△ABF的面积记为S,当S=2时,请直接写出m值__________.9.(2023·江苏苏州·校考一模)如图,在平面直角坐标系中,直线y1=k1x+b与反比例函的图象交于A、B两点,已知A(1,3m−4),B(m,1).数y2=k2x(1)求k1与k2的值;(2)直线DE在直线AB的下方且与AB平行,与x轴、y轴分别交于点D、E,点P是直线AB上的一动点,当△PDE的面积为1时,求直线DE的解析式.0.(2023·河南安阳·统考二模)如图,在平面直角坐标系中,一次函数y=kx+2(k≠0)的(x>0)的图象交于点A(a,3),与x轴交于点B(−4,0),与y轴交图象与反比例函数y=mx于点C.求:(1)k,m的值;(2)直线OP过原点,交反比例函数于点P,且OP∥AB,△PAC的面积.。
中考数学专卷2020届中考数学总复习(22)圆-精练精析(1)及答案解析

图形的性质——圆1一.选择题(共8小题)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D.1﹣2.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.cm B.cm C.cm或cm D.cm或cm3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.84.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x 的图象被⊙P截得的弦AB的长为,则a的值是()A.4 B.C.D.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3 B.3 C. D.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C.3 D.27.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.48.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3 B.6 C.6 D.12二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是_________ .10.正六边形的中心角等于_________ 度.11.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=_________ .12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为_________ .13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为_________ cm.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是_________ .15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为_________ .三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=_________ ;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.图形的性质——圆1 参考答案与试题解析一.选择题(共8小题) 1.如图,正方形ABCD 的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是( )A .B .1﹣C .﹣1D . 1﹣考点: 扇形面积的计算. 分析: 图中1、2、3、4图形的面积和为正方形的面积,1、2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和﹣正方形的面积=无阴影两部分的面积之差,即﹣1=.解答: 解:如图: 正方形的面积=S 1+S 2+S 3+S 4;① 两个扇形的面积=2S 3+S 1+S 2;② ②﹣①,得:S 3﹣S 4=S 扇形﹣S 正方形=﹣1=.故选:A .点评: 本题主要考查了扇形的面积计算公式及不规则图形的面积计算方法.找出正方形内四个图形面积之间的联系是解题的关键.2.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB=8cm ,且AB⊥CD,垂足为M ,则AC 的长为( )A . cmB .cmC .cm 或cmD . cm 或cm考点: 垂径定理;勾股定理. 专题: 分类讨论. 分析: 先根据题意画出图形,由于点C 的位置不能确定,故应分两种情况进行讨论.解答:解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B.4C.6D.8考点:垂径定理;勾股定理.专题:计算题.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.4.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A. 4 B.C.D.考点:垂径定理;一次函数图象上点的坐标特征;勾股定理.专题:计算题;压轴题.分析:PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3B.3C.D.考点:垂径定理;等边三角形的性质.专题:几何图形问题.分析:先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可.解答:解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵⊙O的面积为2π∴⊙O的半径为∵△ABC为正三角形,∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,∴BD=OB•sin∠BOD==,∴BC=2BD=,∴OD=OB•cos∠BOD=•cos60°=,∴△BOC的面积=•BC•OD=××=,∴△ABC的面积=3S△BOC=3×=.故选:C.点评:本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C3 D.2考点:垂径定理;圆周角定理.分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.解答:解:∵OA、OP是定值,∴在△OPA中,当∠OPA取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=,OP=3,∴PA==.故选B.点评:本题考查了解直角三角形.解答此题的关键是找出“当PA⊥OA时,PA取最小值”即“PA⊥OA时,∠OPA取最大值”这一隐含条件.7.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.4考点:垂径定理;等腰三角形的性质;勾股定理;解直角三角形.专题:分类讨论.分析:作AD⊥BC于D,由于AB=AC=5,根据等腰三角形的性质得AD垂直平分BC,根据垂径定理的推论得到点O在直线AD上,连结OB,在Rt△ABD中,根据正弦的定义计算出AD=4,根据勾股定理计算出BD=3,再在Rt△OBD中,根据勾股定理计算出OD=1,然后分类讨论:①当点A与点O在BC的两侧,有OA=AD+OD;②当点A与点O在BC的同侧,有OA=AD ﹣OD,即求得OA的长.解答:解:如图,作AD⊥BC于D,∵AB=AC=5,∴AD垂直平分BC,∴点O在直线AD上,连结OB,在Rt△ABD中,sinB==,∵AB=5,∴AD=4,∴BD==3,在Rt△OBD中,OB=,BD=3,∴OD==1,当点A与点O在BC的两侧时,OA=AD+OD=4+1=5;当点A与点O在BC的同侧时,OA=AD﹣OD=4﹣1=3,故OA的长为3或5.故选:A.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.也考查了等腰三角形的性质和勾股定理.8.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3B.6 C.6D.12考点:垂径定理;等边三角形的判定与性质;圆周角定理;弧长的计算;解直角三角形.专题:计算题.分析:连结OC交BD于E,设∠BOC=n°,根据弧长公式可计算出n=60,即∠BOC=60°,易得△OBC为等边三角形,根据等边三角形的性质得∠C=60°,∠OBC=60°,BC=OB=6,由于BC∥OD,则∠2=∠C=60°,再根据圆周角定理得∠1=∠2=30°,即BD平分∠OBC,根据等边三角形的性质得到BD⊥OC,接着根据垂径定理得BE=DE,在Rt△CBE中,利用含30度的直角三角形三边的关系得CE=BC=3,CE=CE=3,所以BD=2BE=6.解答:解:连结OC交BD于E,如图,设∠BOC=n°,根据题意得2π=,得n=60,即∠BOC=60°,而OB=OC,∴△OBC为等边三角形,∴∠C=60°,∠OBC=60°,BC=OB=6,∵BC∥OD,∴∠2=∠C=60°,∵∠1=∠2(圆周角定理),∴∠1=30°,∴BD平分∠OBC,BD⊥OC,∴BE=DE,在Rt△CBE中,CE=BC=3,∴BE=CE=3,∴BD=2BE=6.故选:C.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了弧长公式、等边三角形的判定与性质和圆周角定理.二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是32 .考点:垂径定理;勾股定理.分析:连接OD,先根据垂径定理得出PD=CD=4,再根据勾股定理求出OP的长,根据三角形的面积公式即可得出结论.解答:解:连接OD,∵⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,CD=8,∴PD=CD=4,∴OP===3,∴AP=OA+OP=5+3=8,∴S△ACD=CD•AP=×8×8=32.故答案为:32.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.正六边形的中心角等于60 度.考点:正多边形和圆.分析:根据正六边形的六条边都相等即可得出结论.解答:解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.点评:本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.11.(2014•扬州)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.考点:圆的认识;三角形内角和定理;等腰三角形的性质;圆周角定理.专题:几何图形问题.分析:如图,连接BE.由圆周角定理和三角形内角和定理求得∠ABE=25°,再由“同弧所对的圆周角是所对的圆心角的一半”进行答题.解答:解:如图,连接BE.∵BC为⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°,(圆周角定理)故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为.考点:垂径定理;轴对称的性质.分析:A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值解答:解:连接OA,OB,OC,作CH垂直于AB于H.根据垂径定理,得到BE=AB=4,CF=CD=3,∴OE===3,OF===4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7,则PA+PC的最小值为.故答案为:点评:正确理解BC的长是PA+PC的最小值,是解决本题的关键.13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为 2 cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解答:解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.考点:垂径定理;圆周角定理.专题:压轴题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故答案为:4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3 .考点:垂径定理;勾股定理.专题:分类讨论.分析:根据题意画出图形,连接OB,由垂径定理可知BD=BC,在Rt△OBD中,根据勾股定理求出OD的长,进而可得出结论.解答:解:如图所示:∵⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=,在Rt△OBD中,∵BD2+OD2=OB2,即()2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.点评:本题考查的是垂径定理,在解答此题时要进行分类讨论,不要漏解.三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.考点:垂径定理的应用;勾股定理.分析:(1)延长CO交DE于点F,连接OD,根据垂径定理求出BC的长,由sin∠COB=得出OB的长,根据DE∥AB可知∠ACD=∠CDE,∠DFO=∠BCO=90°.由OF过圆心可得出DF的长,再根据勾股定理求出OF的长,进而可得出CF的长;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中由勾股定理求出DF的长,由cot∠ACD=cot∠CDF即可得出结论.解答:解:(1)延长CO交DE于点F,连接OD∵OC⊥AB,OC过圆心,AB=24m,∴BC=AB=12m.在Rt△BCO中,sin∠COB==,∴OB=13mCO=5m.∵DE∥AB,∴∠ACD=∠CDE,∠DFO=∠BCO=90°.又∵OF过圆心,∴DF=DE=×4=2m.在Rt△DFO中,OF===7m,∴CF=CO+OF=12m,即当水位线DE=4m时,此时的水深为12m;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中,DF===4m.在Rt△CDF中,cot∠CDF==.∵DE∥AB,∴∠ACD=∠CDE,∴cot∠ACD=cot∠CDF=.答:若水位线以一定的速度下降,当水深8m时,此时∠ACD的余切值为.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.考点:切线的判定;勾股定理.专题:计算题;证明题.分析:(1)连接AD,OD,则∠ADB=90°,AD⊥BC;又因为AB=AC,所以BD=DC,OA=OB,OD∥AC,易证DF⊥OD,故DF为⊙O的切线;(2)连接BE交OD于G,由于AC=AB,AD⊥BCED⊥BD,故∠EAD=∠BAD,=,ED=BD,OE=OB;故OD垂直平分EB,EG=BG,因为AO=BO,所以OG=AE,在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2,代入数值即可求出AE的值.解答:(1)证明:连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC;∵AB=AC,∴BD=DC.∵OA=OB,∴OD∥AC.∵DF⊥AC,∴DF⊥OD.∴∠ODF=∠DFA=90°,∴DF为⊙O的切线.(2)解:连接BE交OD于G;∵AC=AB,AD⊥BC,ED=BD,∴∠EAD=∠BAD.∴.∴ED=BD,OE=OB.∴OD垂直平分EB.∴EG=BG.又AO=BO,∴OG=AE.在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2∴()2﹣(﹣OG)2=BO2﹣OG2解得:OG=.∴AE=2OG=.点评:本题比较复杂,涉及到切线的判定定理及勾股定理,等腰三角形的性质,具有很强的综合性.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.专题:几何综合题.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.考点:垂径定理;勾股定理.专题:几何图形问题.分析:过点O作OE⊥AB于点E,连接OB,由垂径定理可知AE=BE=AB,再根据勾股定理求出OE的长,由此可得出结论.解答:解:过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE=AB=×8=4cm,∵⊙O的直径为10cm,∴OB=×10=5cm,∴OE===3cm,∵垂线段最短,半径最长,∴3cm≤OP≤5cm.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.考点:垂径定理;圆周角定理;弧长的计算.专题:几何图形问题.分析:(1)先根据同弧所对的圆周角相等得出∠PBC=∠D,再由等量代换得出∠C=∠D,然后根据内错角相等两直线平行即可证明CB∥PD;(2)先由垂径定理及圆周角定理得出∠BOC=2∠PBC=45°,再根据邻补角定义求出∠AOC=135°,然后根据弧长的计算公式即可得出劣弧AC的长度.解答:解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠C=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.点评:本题考查了圆周角定理,平行线的判定,垂径定理,弧长的计算,难度适中.(2)中求出∠AOC=135°是解题的关键.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.考点:圆周角定理;平行线的性质;三角形中位线定理.专题:几何图形问题.分析:(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解答:解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.点评:本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.考点:圆周角定理;勾股定理;圆心角、弧、弦的关系;解直角三角形.专题:几何综合题.分析:(1)由AB为直径,OD∥BC,易得OD⊥AC,然后由垂径定理证得,=,继而证得结论;(2)由AB=10,cos∠ABC=,可求得OE的长,继而求得DE,AE的长,则可求得tan∠DAE,然后由圆周角定理,证得∠DBC=∠DAE,则可求得答案.解答:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OD⊥AC,∴=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=AB=5,∵OD∥BC,∴∠AOE=∠ABC,在Rt△AEO中,OE=OA•cos∠AOE=OA•cos∠ABC=5×=3,∴DE=OD﹣OE=5﹣3=2,∴AE===4,在Rt△AED中,tan∠DAE===,∵∠DBC=∠DAE,∴tan∠DBC=.点评:此题考查了圆周角定理、垂径定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=120°;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.考点:切线的性质;扇形面积的计算.专题:几何综合题.分析:(1)根据切线的性质可以证得∠OAP=∠OBP=90°,根据四边形内角和定理求解;(2)证明直角△OAP≌直角△OBP,根据全等三角形的对应边相等,即可证得;(3)首先求得△OPA的面积,即求得四边形OAPB的面积,然后求得扇形OAB的面积,即可求得阴影部分的面积.解答:(1)解:∵PA,PB分别与⊙O相切于点A,B,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°;(2)证明:连接OP.在Rt△OAP和Rt△OBP中,,∴Rt△OAP≌Rt△OBP,∴PA=PB;(3)解:∵Rt△OAP≌Rt△OBP,∴∠OPA=∠OPB=∠APB=30°,在Rt△OAP中,OA=3,∴AP=3,∴S△OPA=×3×3=,∴S阴影=2×﹣=9﹣3π.点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.。
初中毕业生学业考试数学试题第22题解析

初中毕业生学业考试数学试题第22题解析如图,抛物线22++=bx ax y 交x 轴于点A (-3 ,0)和点B (1 ,0),交y 轴于点C .(1)求这个抛物线的函数表达式;(2)点D 坐标为(-1 ,0),P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值;(3)点M 为抛物线对称轴上的点,问在抛物线上是否存在点N ,使△MNO 为等腰 直角三角形,且∠MNO 为直角.若存在,请直接写出点N 的坐标;若不存在, 请说明理由.【考点】二次函数综合题.【专题】压轴题;数形结合;分类讨论;运算能力. 【分析】(1)抛物线的表达式为:y=a (x+3)(x-1)=a (x2+2x-3)=ax2+2ax-3a ,即-3a=2,即可求解;(2)S 四边形ADCP =S △APO +S △CPO -S △ODC ,即可求解;(3)分点N 在x 轴上方、点N 在x 轴下方两种情况,分别求解.【点评】本题考查的是二次函数综合运用,涉及三角形全等、等腰直角三角形的性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.【解答】 解:(1)把A(-3 , 0),B(1 , 0)代入22++=bx ax y 中 ⎩⎨⎧+-=++=2390,20b a b a ……………………………………………………………….1分 解得⎪⎪⎩⎪⎪⎨⎧-=-=34,32b a(第22题图)∴ 234322+--=x x y …………………………………………………………….2分(2)解法一:设直线AC 的表达式为2+=kx y ,把A(-3 , 0)代入2+=kx y 得,32=k ∴232+=x y …………………………………………………………………..3分 过点P 作PQ ⊥x 轴,交AC 于Q,设P (m ,234322+--m m ),则Q (m ,232+m )∴PQ=(234322+--m m )-(232+m )=)3(322m m +-……………………………………………………………….4分 =-++2)23(32m 23 ∵032<-∴当m=-23时,PQ 有最大值23……………………………………………….5分 ADCPAC ADCP S S S ∆∆+=四边形=OC AD S S PQC PAQ •++∆∆21 =2221)(21)3(21⨯⨯+-++m PQ m PQ=PQ23+2当PQ 最大时,ADCP S 四边形最大∴ADCP S 四边形的最大值为417………………………………………………….6分解法二:连接PO设P 坐标为P (m ,234322+--m m )CDO PCO PAO ADCP S S S S ∆∆∆-+=四边形 …………………………………………..3分 CO DO x CO y AO P P ⨯⨯-⨯⨯+⨯⨯=212121 1221)(221)23432(3212⨯⨯--⨯⨯++--⨯⨯=m m m 232+--=m m ……………………………………………………………………4分 01<-=a∴ 函数有最大值 ……………………………………………………………..5分 当23-=m 时,最大值为417,即四边形ADCP 面积的最大值为417 ……….6分(3) N1(4737+-, 4733+-),N2(4731--, 4733+-) , N3(4737--, 4733--),N4(4731+-, 4733--),.…….10分。
近几年河南中考数学第22题

22.(10分)(2014河南)(1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE 填空:(1)∠AEB 的度数为 ;(2)线段AD 、BE 之间的数量关系是 。
(2)拓展探究如图2,△ACB 和△DCE 均为等边三角形,∠ACB=∠DCE=900, 点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE 。
请判断∠AEB 的度数及线段CM 、AE 、BE 之间的数量关系,并说明理由。
(3)解决问题如图3,在正方形ABCD 中,若点P 满足PD=1,且∠BPD=900,请直接写出点A 到BP 的距离。
22. (1)①60;②AD=BE. ……………………………………………………………2分(2)∠AEB =900;AE=2CM+BE. ………………………………………………4分 (注:若未给出本判断结果,但后续理由说明完全正确,不扣分)理由:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 900, ∴AC=BC, CD=CE, ∠ACB=∠DCB=∠DCE -∠DCB, 即∠ACD= ∠BCE∴△ACD ≌△BCE. ………………………………………………………………6分∴AD = BE, ∠BEC=∠ADC=1350.∴∠AEB=∠BEC -∠CED=1350-450=900.…………………………………7分 在等腰直角三角形DCE 中,CM 为斜边DE 上的高, ∴CM= DM= ME,∴DE=2CM.∴AE=DE+AD=2CM+BE ………………………………………………………8分(3)12或12…………………………………………………………10分 【提示】PD =1,∠BPD=900,∴BP 是以点D 为圆心、以1为半径的OD 的切线,点P 为切点.第一种情况:如图①,过点A 作AP 的垂线,交BP 于点P /,可证△APD ≌△AP /B,PD=P /B=1,CD=,∴BD=2,BP=,∴AM=12PP /=12(PB-BP /)=12第二种情况如图②,可得AM12PP /=12(PB+BP /22.(10分)(2013河南)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°. (1)操作发现如图2,固定△ABC ,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是_________;②设△BDC 的面积为S 1,△AEC 的面积为S 2,则S 1与S 2的数量关系是_________________. (2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的猜想.(3)拓展探究 已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=4,DE//AB交BC于点E (如图4).若在射线BA 上存在点F ,使S △DCF =S △BDE , 请直接写出....相应的BF 的长.【解析】试题分析:(1)①根据旋转的性质可得AC=CD,然后求出△ACD 是等边三角形,根据等边三角形的性质可得∠ACD=60º,然后根据内错角相等,两直线平行解答;②根据等边三角形的性质可得AC=AD,再根据直角三角形30º角所对的直角边等于斜边的一半求出AC=AB,然后求出AC=BE,再根据等边三角形的性质求出点C 到AB 的距离等于点D 到AC 的距离,然后根据等底等高的三角形的面积相等解答;(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用"角角边"证明△ACN 和△DCM 全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明; 试题解析:(1)①线段DE 与AC 的位置关系是平行 .②S 1与S 2的数量关系是相等.证明:如图2,过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .图4A (D )B (E ) C图1图2由①可知△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠ACB=90º,∠B=30º,图2∴AB=2AC.又∵AD=AC,∴BD=AC.∵S1=CF·BD,S2=AC·EM,图3 ∴S1=S2.证明:如图3,作DG⊥BC于点G,AH⊥CE交EC延长线于点H.∵∠DCE=∠ACB=90º∴∠DCG+∠ACE=180º.又∵∠ACH+∠ACE=180º,∴∠ACH=∠DCG.又∵∠CHA=∠CGD=90º,AC=CD,∴△AHC≌△DGC.∴AH=DG CE=CB,∴S1=S2.又∵CE=CB,∴S1=S2.(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF=S△BDE,过点D作DF2⊥BD,∵∠ABC=60°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=0.5×60°=30°,∴∠CDF1=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,∴△CDF1≌△CDF2(SAS),A BE FCGD图2∴点F 2也是所求的点,∵∠ABC =60°,点D 是角平分线上一点,DE ∥AB ,∴∠DBC =∠BDE =∠ABD =0.×60°=30°, 又∵BD =4,∴BE =∴BF 1=,BF 2=BF 1+F 1F 2=故BF 的长为或.22.(10分)(2012河南)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在□ABCD 中,点E 是BC 边的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若3AF EF =,求CDCG的值. (1)尝试探究在图1中,过点E 作EH ∥AB 交BG 于点H ,则AB 和EH 的数量关系是_______________,CG 和EH的数量关系是_________________,CDCG的值是 . (2)类比延伸如图2,在原题的条件下,若AF m EF =(m >0),则CDCG的值是 (用含m 的代数式表示),试写出解答过程. (3)拓展迁移如图3,梯形ABCD 中,DC ∥AB ,点E 是BC 的延长线上一点,AE 和BD 相交于点F.若,AB BCa b CD BE ==(a >0,b >0),则AF EF 的值是 (用含a 、b 的代数式表示).22.(1)AB=3EH ;CG=2EH ;32. (3分)(2)2m . …………………………(4分)作EH ∥AB 交BG 于点H ,则△EFH ∽△AFB .,AB AFm AB mEH EH EF===∴ ∴. ∵AB=CD ,∴CD=mEH . …………………...(5分) ∵EH ∥AB ∥CD ,∴△BEH ∽△BCG .........................................................................6.2,2CG BCCG EH EH BE ===∴∴. (分) (722)CD mEH m CG EH ==∴. (分) 图3F ACDE图1D GCF BA(3)ab .…………………………………………………..(10分) 【提示】过点E 作EH ∥AB 交BD 的延长线于点H .22.(2011河南)(10分)如图,在Rt △ABC 中,∠B=90°,C=30°.点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(t >0).过点D 作DF ⊥BC 于点F ,连接DE 、EF.(1)求证:AE=DF ; (2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由.(3)当t 为何值时,△DEF 为直角三角形?请说明理由.22.(1)在△DFC 中,∠DFC=90°,∠C=30°,DC=2t ,∴DF=t. 又∵AE=t ,∴AE=DF.……………………………………2分 (2)能.理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF.又AE=DF ,∴四边形AEFD 为平行四边形.…………………………………3分∵AB=BC ·tan30°=5,210.3AC AB =∴== 10 2.AD AC DC t ∴=-=-若使AEFD 为菱形,则需10.102,.3AE AD t t t ==-=即 即当103t =时,四边形AEFD 为菱形.…………………………………………5分 (3)①∠EDF=90°时,四边形EBFD 为矩形.在Rt △AED 中,∠ADE=∠C=30°,∴AD=2AE.即10-2t=2t ,52t =.………7分 ②∠DEF=90°时,由(2)知EF ∥AD ,∴∠ADE=∠DEF=90°. ∵∠A=90°-∠C=60°,∴AD=AE ·cos60°. 即1102, 4.2t t t -==………………………………………………………9分 ③∠EFD=90°时,此种情况不存在. 综上所述,当52t =或4时,△DEF 为直角三角形.……………………10分 22.(10分)(2010河南)(1)操作发现如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在举行ABCD 内部.小明将BG 延长交DC 于点F ,认为GF=DF ,你同意吗?说明理由.(2)问题解决保持(1)中的条件不变,若DC=2DF ,求ABAD的值; (3)类比探求保持(1)中条件不变,若DC=nDF ,求ABAD的值. AD=BC=的值;AD=AD=BC=(,整理得2+=,∴==洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?22.设购进电视机、冰箱各x台,则洗衣机为(15-2x)台…………………1分15-2x≤12 x,依题意得:2000x+2400x+1600(15-2x)≤32400 …………………5分解这个不等式组,得6≤x≤7∵x为正整数,∴x=6或7 …………………7分方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台…………………8分(2)方案1需补贴:(6×2100+6×2500+1×1700)×13%=4251(元);方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元);∴国家的财政收入最多需补贴农民4407元. …………………10分22.(10分)(2008河南)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本.(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的23,但又不少于B种笔记本数量的13,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;②请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?1)设能买A种笔记本x本,则能买B种笔记本(30-x)本依题意得:12x+8(30-x)=300,解得x=15.因此,能购买A,B两种笔记本各15本(2)①依题意得:w=12n+8(30-n),即w=4n+240,且n<2/3(30-n)和n≥1/3(30-n)解得7.5≤n<12所以,w(元)关于n(本)的函数关系式为:w=4n+240,自变量n的取值范围是7.5≤n<12,n为整数.②对于一次函数w=4n+240,∵w随n的增大而增大,且7.5≤n<12,n为整数,故当n为8 时,w的值最小此时,30-n=30-8=22,w=4×8+240=272(元).因此,当买A种笔记本8本,B种笔记本22本时,所花费用最少,为272元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴CM= DM= ME,∴DE=2CM.
∴AE=DE+AD=2CM+BE………………………………………………………8分
(3) 或 …………………………………………………………10分
【提示】PD =1,∠BPD=900,
∴BP是以点D为圆心、以1为半径的OD的切线,点P为切点.
22.(10分)(2015河南))如图1,在Rt△ABC中,∠B=900,BC=2AB=8,点D,E分别是边BC,AC的中点,连DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
①当α=00时, =;②当α=1800时, =.
(2)拓展探究
试判断:当00≤α≤3600时, 的大小有无变化?请仅就图2的情形给出证明.
2011——2016年河南中考数学第22题解析
22.(10分)(2016河南)(1)问题如图1,点A为线段BC外一动点,且BC=a,AB=b。
填空:当点A位于时线段AC的长取得最大值,且最大值为
(用含a,b的式子表示)
(2)应用
点A为线段B除外一动点,且BC=3,AB=1.如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.
(1)操作发现
如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是_________;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是_________________.
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
22. (1)①60;②AD=BE. ……………………………………………………………2分
(2)∠AEB=900;AE=2CM+BE. ………………………………………………4分
(注:若未给出本判断结果,但后续理由说明完全正确,不扣分)
理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 900,
(2)拓展探究
如图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=900, 点A、D、E在同一直线上,CM为△ DCE中DE边上的高,连接BE。请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由。
(3)解决 问题
如图3,在正方形ABCD中,CD= 。若点P满足PD=1,且∠BPD=900,请直接写出点A到BP的距离。
∴BD=AC=4 ;
如图5,当△EDC在BC下方,且A、D、E
三点共线时,△ADC是直角三角形,
由勾股定理得,AD=8, ∴AE=6,
根据 ,得BD=
22.(10分)(2014河南)(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE
填空:(1)∠AEB的度数为;(2)线段AD、BE之间的数量关系是。
①请找出图中与BE相等的线段,并说明理由
②直接写出线段BE长的最大值.
(3)拓展
如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=900.请直接写出线段AM长的最大值及此时点P的坐标。
解:(1)CB的延长线上,a+b;………………………………………2分
(3)解决问题
当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.
解:(1)① …………………………………………1分
② …………………………Rt△ABC中,BC=2AB=8,∴AB=4;AC= =4
又点D,E分别是边BC,AC的中点,∴CE∥AB,
∴AC=BC, CD=CE, ∠ACB=∠DCB=∠DCE-∠DCB, 即∠ACD= ∠BCE
∴△ACD≌△BCE. ………………………………………………………………6分
∴AD = BE, ∠BEC=∠ADC=1350.
∴∠AEB=∠BEC-∠CED=1350-450=900.…………………………………7分
∴ =
②当α=1800时,∴CE∥AB,
∴AE=4 +2 =6
∵BC=8;CD=4;∴BD=8+4=12
∴ =
(2)无变化。(若误判断,但后续证明正确,不扣分)…………………………3分
在图1中,∵点D,E分别是边BC,AC的中点,∴CE∥AB,
∴ ,∠EDC=∠B=900;
如图2,∵△EDC在旋转过程中形状大小不变,
∴ 仍然成立。…………………………………………………………4分
又∵∠ACE=∠BCD=α;∴△ACE∽△BCD,∴ ………………………6分
在Rt△ABC中,AC= =4 ,
∴ = = 。
∴ 的大小不变。………………………8分
(3)4 或 ………………………10分
提示:如图4,当△EDC在BC上方,
且A、D、E三点共线时,四边形ABCD是矩形,
第一种情况:如图①,过点A作AP的垂线,交BP于点P/,
可证△APD≌△AP/B,PD=P/B=1,
CD= ,∴BD=2,BP= ,∴AM= PP/= (PB-BP/)=
第二种情况如图②,可得AM PP/= (PB+BP/)=
22.(10分)(2013河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(3)AM的最大值为3+ ,点P的坐标为(2- , )……10分
【提示】如图3,构造△BNP≌△MAP,则NB=AM,由(1)知,当点N在BA的延长线上时,NB有最大值(如备用图)。易得△APN是等腰直角三角形,AP=2,∴AN= ,∴AM=NB=AB+AN=3+ ;
过点P作PE⊥x轴于点E,PE=AE= ,又A(2,0)∴P(2- , )
(2)①DC=BE,理由如下
∵△ABD和△ACE都是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=600,
∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB, ……………5分
∴△CAD≌△EAB(SAS),∴DC=BE ………………………………6分
②BE长的最大值是4. …………………………………………………8分