最新北师大版初中九年级数学上册单元测试题【含答案】_全册优秀名师资料

合集下载

【单元测试】北师大版九年级数学上册全章单元测试题(含答案)

【单元测试】北师大版九年级数学上册全章单元测试题(含答案)

北师大版九年级数学上册全章单元测试题目录【单元测试】北师大版九年级数学上册第1章特殊的平行四边行单元达标检测卷含答案【单元测试】北师大版九年级数学上册第2章一元二次方程单元测试【单元测试】北师大版九年级数学上册第3章概率的进一步认识单元测试【单元测试】北师大版九年级数学上册第4章图形的相似单元测试【单元测试】北师大版九年级数学上册第5章投影与视图单元测试【单元测试】北师大版九年级数学上册第6章反比例函数单元测试第一章达标检测卷(120分,90分钟) 总一、选择题(每题3分,共30分)1.如图,已知菱形ABCD 的边长为3,∠ABC=60°,则对角线AC 的长是( )A .12B .9C .6D .3(第1题)(第4题) (第6题)2.下列命题为真命题的是( ) A .四个角相等的四边形是矩形 B .对角线垂直的四边形是菱形C .对角线相等的四边形是矩形D .四边相等的四边形是正方形 3.若顺次连接四边形ABCD 四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是( )A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形4.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 面积的( )A.15B.14C.13D.3105.已知四边形ABCD 是平行四边形,下列结论中错误的有( )①当AB=BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD 时,它是正方形.A .1个B .2个C .3个D .4个6.如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A .8 2B .4 2C .8D .6 7.如图,每个小正方形的边长为1,A ,B ,C 是正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°8.如图,在菱形ABCD 中,点M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O ,连接OB.若∠DAC=28°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72°(第7题) (第8题)(第9题) (第10题)9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( ) A.AF=AE B.△ABE≌△AGF C.EF=2 5 D.AF=EF10.如图,在正方形ABCD中,点P是AB上一动点(点P不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )A.0个 B.1个 C.2个 D.3个二、填空题(每题3分,共24分)11.如图是一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为________时,两条对角线长度相等.12.如图,四边形ABC D是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.(第11题) (第12题) (第13题) 13.如图是根据四边形的不稳定性制作的边长为15 cm的可活动衣架,若墙上钉子间的距离AB=BC=15 cm,则∠1=________.14.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________.15.如图,矩形OBCD的顶点C的坐标为(1,3),则对角线BD的长等于________.(第15题) (第16题)(第17题) (第18题)16.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD于点E,则DE=________.17.如图,在矩形ABCD中,M,N分别是AD,BC的中点,E,F分别是线段BM,CM的中点.若AB=8,AD=12,则四边形ENFM的周长为________.18.如图,在边长为1的菱形 ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,…,按此规律所作的第n个菱形的边长是________.三、解答题(19,20题每题9分,21题 10分,22,23题每题12分,24题14分,共66分)19.如图,在四边形ABCD中,AD∥BC,AC的垂直平分线交AD,BC于点E,F.求证:四边形AECF是菱形.(第19题)20.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.(第20题)21.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.(第21题)22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.(第22题)23.如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的角∠EAF绕点A旋转,∠EAF 的两边分别交BC,CD于点E,F,且E,F不与B,C,D重合,连接EF.(1)求证:BE=CF.(2)在∠EAF绕点A旋转的过程中,四边形 AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.(第23题)24.如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?请说明理由.(3)当点O在边AC上运动时,四边形BCFE________是菱形(填“可能”或“不可能”).请说明理由.(第24题)答案一、1.D 2.A3.D 点拨:首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.4.B5.A 点拨:①当AB=BC 时,它是菱形,正确;②当AC ⊥BD 时,它是菱形,正确;③当∠ABC=90°时,它是矩形,正确;④当AC=BD 时,它是矩形,因此④是错误的.6.C 7.C 8.C9.D 点拨:如图,由折叠得∠1=∠2.∵AD ∥BC ,∴∠3=∠1.∴∠2=∠3.∴AE=AF.故选项A 正确.由折叠得CD=AG ,∠D=∠G=90°.∵AB=CD ,∴AB=AG.∵AE=AF ,∠B=90°,∴Rt △ABE ≌Rt △AGF(HL).故选项B 正确.设DF=x ,则GF=x ,AF=8-x.又AG=AB=4,∴在Rt △AGF 中,根据勾股定理得(8-x)2=42+x 2.解得x=3.∴AF=8-x=5.则AE=AF=5,∴BE=AE 2-AB 2=52-42=3.过点F 作FM ⊥BC 于点M ,则EM=5-3=2.在Rt △EFM 中,根据勾股定理得EF=EM 2+FM 2=22+42=20=25,则选项C 正确.∵AF=5,EF=25,∴AF ≠EF.故选项D 错误.(第9题)10.D 点拨:∵四边形ABCD 是正方形,∴∠PAE=∠MAE=45°.∵PM ⊥AC ,∴∠PEA=∠MEA.又∵AE=AE ,∴根据“ASA ”可得△APE ≌△AME.故①正确.由①得PE=ME ,∴PM=2PE.同理PN=2PF.又易知PF=BF ,四边形PEOF 是矩形,∴PN=2BF ,PM=2FO.∴PM +PN=2FO +2BF=2BO=BD.故②正确.在Rt △PFO 中,∵FO 2+PF 2=PO 2,而PE=FO ,∴PE 2+PF 2=PO 2.故③正确.二、11.90° 点拨:对角线相等的平行四边形是矩形.12.12 点拨:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12³6³8=24.∵O 是菱形两条对角线的交点,∴阴影部分的面积=12³24=12.13.120°(第14题)14.22.5° 点拨:如图,由四边形ABCD 是正方形,可知∠CAD=12∠BAD=45°. 由FE ⊥AC ,可知∠AEF=90°.在Rt △AEF 与Rt △ADF 中, AE=AD ,AF=AF ,∴Rt △AEF ≌Rt △ADF(HL).∴∠FAD=∠FAE=12∠CAD=12³45°=22.5°. 15.10 16.2-117.20 点拨:点N 是BC 的中点,点E ,F 分别是BM ,CM 的中点,由三角形的中位线定理可证EN ∥MC ,NF∥ME ,EN=12MC ,FN=12MB.又易知MB=MC ,所以四边形ENFM 是菱形.由点M 是AD 的中点,AD=12得AM=6.在Rt △ABM 中,由勾股定理得BM=10.因为点E 是BM 的中点,所以EM=5.所以四边形ENFM 的周长为20.18.(3)n -1三、19.证明:∵EF 垂直平分AC ,∴∠AOE=∠COF=90°,OA=OC.∵AD ∥BC ,∴∠OAE=∠OCF.∴△AOE ≌△COF(ASA).∴AE=CF.又∵AE ∥CF ,∴四边形AECF 是平行四边形.∵EF ⊥AC ,∴四边形AECF 是菱形.20.(1)证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形.∵四边形ABCD 为矩形,∴OD=OC.∴四边形OCED 为菱形.(2)解:∵四边形ABCD 为矩形,∴BO=DO=12BD. ∴S △OCD =S △OCB =12S △ABC =12³12³3³4=3.∴S 菱形OCED =2S △OCD =6. 21.(1)证明:在△BCE 与△DCF 中,⎩⎪⎨⎪⎧BC =DC ,∠BCE =∠DCF ,CE =CF ,∴△BCE ≌△DCF.(2)解:∵△BCE ≌△DCF ,∴∠EBC=∠FDC=30°.∵∠BCD=90°,∴∠BEC=60°.∵EC=FC ,∠ECF=90°,∴∠CEF=45°.∴∠BEF=105°.22.(1)证明:∵在矩形ABCD 中,AD ∥BC ,∠A=∠C=90°,∴∠ADB =∠DBC.根据折叠的性质得∠ADB=∠BDF ,∠F=∠A=90°,∴∠DBC=∠BDF ,∠C=∠F.∴BE=DE.在△DCE 和△BFE 中,⎩⎪⎨⎪⎧∠DEC =∠BEF ,∠C =∠F ,DE =BE ,∴△DCE ≌△BFE.(2)解:在Rt △BCD 中,∵CD=2,∠ADB=∠DBC=30°,∴BD=4.∴BC=2 3.在Rt △ECD 中,易得∠EDC=30°.∴DE=2EC.∴(2EC)2-EC 2=CD 2.∵CD=2,∴CE=233.∴BE=BC -EC=433.(第23题)23.(1)证明:如图,连接AC.∵四边形ABCD 为菱形,∠BAD=120°,∴∠ABE=∠ACF=60°,∠1+∠2=60°.∵∠3+∠2=∠EAF=60°,∴∠1=∠3.∵∠ABC=60°,AB=BC ,∴△ABC 为等边三角形.∴AC=AB.∴△ABE ≌△ACF.∴BE=CF.(2)解:四边形AECF 的面积不变.由(1)知△ABE ≌△ACF ,则S △ABE =S △ACF ,故S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC .如图,过A 作AM ⊥BC 于点M ,则BM=MC=2,∴AM=AB 2-BM 2=42-22=2 3.∴S △ABC =12BC ²AM=12³4³23=4 3.故S 四边形AECF =4 3. 24.解:(1)OE=OF.理由如下:∵CE 是∠ACB 的平分线,∴∠ACE=∠BCE.又∵MN ∥BC ,∴∠NEC=∠BCE.∴∠NEC=∠ACE.∴OE=OC.∵CF 是∠ACD 的平分线,∴∠OCF=∠FCD.又∵MN ∥BC ,∴∠OFC=∠FCD.∴∠OFC=∠OCF.∴OF=OC.∴OE=OF.(2)当点O 运动到AC 的中点,且△ABC 满足∠ACB 为直角时,四边形AECF 是正方形. 理由如下:∵当点O 运动到AC 的中点时,AO=CO ,又∵EO=FO ,∴四边形AECF 是平行四边形.∵FO=CO ,∴AO=CO=EO=FO.∴AO +CO=EO +FO ,即AC=EF.∴四边形AECF 是矩形.已知MN ∥BC ,当∠ACB=90°时,∠AOE=90°,∴AC ⊥EF.∴四边形AECF 是正方形.(3)不可能理由如下:连接BF ,∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECF=12∠ACB +12∠ACD=12(∠ACB +∠ACD)=90°.若四边形BCFE 是菱形,则BF ⊥EC.但在一个三角形中,不可能存在两个角为90°,故四边形BCFE 不可能为菱形.第二章一元二次方程单元测试一、单选题(共10题;共30分)1、关于x的一元二次方程(m-1)x2+x+m2-1=0有一根为0,则m的值为( )A、1或-1B、1C、-1D、2、方程x2+6x-5=0的左边配成完全平方后所得方程为 ( )A、(x+3)2 =14B、(x-3)2 =14C、(x+6)2=D、以上答案都不对3、一元二次方程2x2-3x=4的一次项系数是A、2B、-3C、4D、-44、用公式法解方程6x-8=5x2时,a、b、c的值分别是()A、5、6、-8B、5、-6、-8C、5、-6、8 D . 6、5、-85、九(1)班同学毕业的时候,每人都必须与其他任何一位同学合照一张双人照,全班共照相片780张,则九(1)班的人数是()A、39B、40C、50D、606、济宁市某经济开发区,今年一月份工业产值达10亿元,第一季度总产值为75亿元,二、三月平均每月增长率是多少,若设平均每月的增长率为x,根据题意,可列方程为()A、10(1+x)2=75B、10+10(1+x)+10(1+x)2=75C、10(1+x)+10(1+x)2=75D、10+10(1+x)2=757、2016年1月13日长城河报道,河北香河县中报“全国绿化模范县”通过审核,截止到2015年,香河县林地面积达到24.39万亩,森林覆盖率达到35.5%,若某县从2013到2015年经过两年的时间,使森林覆盖率增长21%,则该县这两年平均每年的森林覆盖的增长率为()A、9%B、10%C、11%D、12%8、根据下列表格中关于x的代数式ax2+bx+c的值与x的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解的范围是()A、5.14<x<5.15B、5.13<x<5.14C、5.12<x<5.13D、5.10<x<5.129、设x1, x2是方程x2+5x﹣3=0的两个根,则x12+x22的值是()A、19B、25C、31D、3010、下列关于x的方程中,是一元二次方程的是()A、y2+x=1B、x(x﹣1)=x2﹣2C、x2﹣1=0D、x2+ =1二、填空题(共8题;共25分)11、一元二次方程的求根公式是________.12、设a、b是方程的两个不等的根,则a2+2a+b的值为________.13、某小区2013年绿化面积为2000平方米,计划2015年绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是________.14、关于x的方程:(a﹣1)+x+a2﹣1=0,求当a=________时,方程是一元二次方程,当a=________时,方程是一元一次方程.15、已知若x1, x2是方程x2+3x+2=0的两根,则x1+x2=________16、某药品经过两次降价,每瓶零售价由168元降为128元,已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得________.17、如果(m﹣1)x2+2x﹣3=0是一元二次方程,则m的取值范围为________.18、若代数式x2﹣8x+12的值是21,则x的值是________三、解答题(共5题;共35分)19、小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于52cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于44cm2.”他的说法对吗?请说明理由.20、解下列方程:用配方法解方程:2x2+5x+3=0;21、若α、β是方程x2﹣2x﹣3=0的两个实数根,求的值.22、某花店将进货价为20元/盒的百合花,在市场参考价28~38元的范围内定价36元/盒销售,这样平均每天可售出40盒,经过市场调查发现,在进货价不变的情况下,若每盒下调1元,则平均每天可多销售10盒,要使每天的利润达到750元,应将每盒百合花在售价上下调多少元?23、已知关于x的一元二次方程x2﹣3x+m﹣3=0,若此方程的两根的倒数和为1,求m的值.四、综合题(共1题;共10分)24、用适当的方法解一元二次方程(1)x2+3x+1=0;(2)(x﹣1)(x+2)=2(x+2)第三章概率的进一步认识单元测试一、单选题(共10题;共30分)1、小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A、 B、 C、 D、2、一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为()A、60个B、50个C、40个D、30个3、一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小华在袋中放入10个除颜色外其它完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发现,摸到白球的频率是,则袋中红球约为()个.A、4B、25C、14D、354、做重复试验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A、0.22B、0.42C、0.50D、0.585、用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指()A、连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B、连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C、抛掷2n次硬币,恰好有n次“正面朝上”D、抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.56、一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是()A、袋子一定有三个白球B、袋子中白球占小球总数的十分之三C、再摸三次球,一定有一次是白球D、再摸1000次,摸出白球的次数会接近330次7、一个盒子有1个红球,1个白球,这两个球除颜色外其余都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,则两次都摸出红球的概率为()A、1B、C、D、8、经过某十字路口的汽车,可能直行,也可能左转或者右转,若这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆直行,一辆右转的概率是()A、 B、 C、 D、9、一个盒子装有除颜色外其它均相同的2个红球和1个白球,现从中任取2个球,则取到的是一个红球,一个白球的概率为()A、 B、 C、 D、10、(2014•海南)一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是()A、 B、 C、 D、二、填空题(共8题;共27分)11、在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有 ________个.12、一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是________ .13、某口袋中有红色、黄色、蓝色玻璃共60个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________ 个.14、一个口袋中有6个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,……,不断重复上述过程.小明共摸了100次 ,其中60次摸到白球.根据上述数据,小明可估计口袋中的白球大约有________ 个.15、“2015扬州鉴真国际半程马拉松”的赛事共有三项:A、“半程马拉松”、B、“10公里”、C、“迷你马拉松”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为________.(2)为估算本次赛事参加“迷你马拉松”的人数,小明对部分参赛选手作如下调查:请估算本次赛事参加“迷你马拉松”人数的概率为________.(精确到0.1)16、一个透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同,摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,则两次摸出的球恰好颜色不同的概率是________17、一个不透明的袋子中装有黑球两个,白球三个,这些小球除颜色外无其他区别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是黑球的概率为________.18、某校在甲、乙两名同学中选拔一人参加襄阳广播电台举办“国学风,少年颂”襄阳首届少年儿童经典诵读大赛.在相同的测试条件下,两人3次测试成绩(单位:分)如下:甲:79,86,82;乙:88,79,90.从甲、乙两人3次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率是________.三、解答题(共6题;共43分)19、在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球多少个?20、在一个口袋中有5个小球,其中有两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到小球的条件下,从袋中随机地取出一个小球.求取出的小球是红球的概率;把这5个小球中的两个都标号为1,其余分布标号为2、3、4,随机地取出一个小球后不放回,再随机地取出一个小球.利用树状图或列表的方法,求第二次取出小球标号大于第一次取出小球标号的概率.21、数学课堂上,为了学习构成任意三角形三边需要满足的条件.甲组准备3根木条,长度分别是3cm、8cm、13cm;乙组准备3根木条,长度分别是4cm、6cm、12cm.老师先从甲组再从乙组分别随机抽出一根木条,放在一起组成一组.(1)用画树状图法(或列表法)分析,并列出各组可能.(画树状图或列表以及列出可能时不用写单位)(2)现在老师也有一根木条,长度为5cm,与(1)中各组木条组成三角形的概率是多少?22、某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)23、在一个不透明的盒子里装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地完全相同,先从盒子里随机抽取一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字,请你用画树状图或列表的方法求两次取出小球上的数字和大于10的概率.24、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.第四章图形的相似单元测试一、单选题(共10题;共30分)1、如图,在△ABC中.∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A、1对B、2对C、3对D、4对2、如果线段a、b、c、d满足ad=bc,则下列各式中不成立的是()A、 B、 C、 D、3、如图,身高为1.6米的某同学想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2.0米,BC=8.0米,则旗杆的高度是()A、6.4米B、7.0米C、8.0米D、9.0米4、一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,且最短边长为6,则最长边长为()A、18B、12C、24D、305、线段4cm、16cm的比例中项为().A、20cmB、64cmC、±8cmD、8cm6、如果两个相似三角形的相似比是1:7,则它们的面积比等于()A、1:B、1:7C、1:3.5D、1:497、比例尺为1:1000的图纸上某区域面积400cm2,则实际面积为()A、4³B、4³C、1.6³D、2³8、如图,在△ABC中,AB=4,AC=3,DE∥BC交AB于点D,交AC于点E,若AD=3,则AE的长为()A、 B、 C、 D、9、(2015•黄陂区校级模拟)如图△ABC与△DEF是位似图形,位似比是1:2,已知DE=4,则AB的长是()A、2B、4C、8D、110、如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A、△PAB∽△PCAB、△PAB∽△PDAC、△ABC∽△DBAD、△ABC∽△DCA二、填空题(共8题;共24分)11、把一个正多边形放大到原来的2.5倍,则原图与新图的相似比为________12、如图,已知AD、BC相交于点O,AB∥CD∥EF,如果CE=2,EB=4,FD=1.5,那么AD=________ .13、若,则的值等于________14、如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为________.15、如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE的长等于________16、如图,直线a∥b∥c,度量线段AB≈1.89,BC≈3.80,DE≈2.02,则线段EF的长约为________.17、如图,在△ABC中,EF∥BC,= ,EF=3,则BC的值为________.18、在比例尺为1:2000的地图上,测得A、B两地间的图上距离为4.5厘米,则其实际距离为________米.三、解答题(共5题;共36分)19、如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.20、已知a、b、c是△ABC的三边长,且==≠0,求:(1)的值.(2)若△ABC的周长为90,求各边的长.21、如图,在四边形ABCD中,AD∥BC,∠A=∠BDC.(1)求证:△ABD∽△DCB;(2)若AB=12,AD=8,CD=15,求DB的长.22、如图,AD=2,AC=4,BC=6,∠B=36°,∠D=117°,△ABC∽△DAC.(1)求∠ACB的度数;(2)求CD的长.23、已知a:b:c=3:2:5,求的值.四、综合题(共1题;共10分)24、如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D、E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)若∠ABD=45°,AC=3时,求BF的长.第五章投影与视图单元测试一、单选题(共10题;共30分)1、给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关.A、1个B、2个C、3个D、4个2、“皮影戏”作为我国一种民间艺术,对它的叙述错误的是()A、它是用兽皮或纸板做成的人物剪影,来表演故事的戏曲B、表演时,要用灯光把剪影照在银幕上C、灯光下,做不同的手势可以形成不同的手影D、表演时,也可用阳光把剪影照在银幕上3、如图所示,晚上小亮在路灯下散步,在从A处走向B处的过程中,他在地上的影子()A、逐渐变短B、先变短后再变长C、逐渐变长D、先变长后再变短4、如果阳光斜射在地面上,一张矩形纸片在地面上的影子不可能是()A、矩形B、线段C、平行四边形D、一个点5、由几个相同的小正方形搭成的一个几何体如图所示,这个几何体的主视图是()A、 B、 C、 D、6、下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A、1234B、4312C、3421D、42317、下列为某两个物体的投影,其中是在太阳光下形成投影的是()A、 B、 C、 D、8、如图,是五个相同的小正方体搭成的几何体,其主视图是()A、 B、 C、 D、9、如图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()A、 B、 C、 D、10、图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A、主视图相同B、俯视图相同二、填空题(共8题;共33分)11、(2013秋•邢台期末)小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,则路灯灯泡距离地面的高度为________ 米.12、直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为________ ,点C的影子的坐标为________ .13、如图是两棵小树在同一时刻的影子,请问它们的影子是在________ 光线下形成的(填“灯光”或“太阳”).14、太阳光线下形成的投影是________ 投影.(平行或中心)15、如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长________ 米.16、请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是________17、如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)________ ①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是________ 米.18、离物体越近,视角越________ ,离物体越远,视角越________ .三、解答题(共6题;共37分)19、同一时刻,两根木棒的影子如图,请画出图中另一根木棒的影子.20、如图,身高1.6米的小明从距路灯的底部(点O)20米的点A沿AO方向行走14米到点C处,小明在A处,头顶B在路灯投影下形成的影子在M处.(1)已知灯杆垂直于路面,试标出路灯P的位置和小明在C处,头顶D在路灯投影下形成的影子N的位置.(2)若路灯(点P)距地面8米,小明从A到C时,身影的长度是变长了还是变短了?变长或变短了多少米?21、如图,是一个由长方体和圆柱组合而成的几何体.已知长方体的底面是正方形,其边长与圆柱底面圆的直径相等,圆柱的高与长方体的高也相等.(1)画出这个几何体的主视图、左视图、俯视图;(2)若圆柱底面圆的直径记为a,高记为b.现将该几何体露在外面的部分喷上油漆,求需要喷漆部分的面积.22、如图是七个棱长为1的立方块组成的一个几何体,画出其三视图并计算其表面积.。

北师大版九年级数学上册单元测试题全套

北师大版九年级数学上册单元测试题全套

北师大版九年级数学上册单元测试题全套(含答案)第21章 一元二次方程 测试题 (时间: 90分钟,满分:120分) (班级:_____ 姓名:_____ 得分:_____)一、选择题(每小题3分,共30分)1. 一元二次方程2x 2-3x -4=0的二次项系数是 ( ) A. 2 B. -3 C. 4 D. -42.把方程(x +(2x -1)2=0化为一元二次方程的一般形式是 ( )A .5x 2-4x -4=0B .x 2-5=0C .5x 2-2x +1=0D .5x 2-4x +6=03.方程x 2-2x-3=0经过配方法化为(x +a)2=b 的形式,正确的是 ( )A .()412=-xB .()412=+xC .()1612=-x D .()1612=+x4.方程()()121+=-+x x x 的解是 ( ) A .2B .3C .-1,2D .-1,35.下列方程中,没有实数根的方程是 ( ) A .212270x x -+=B .22320x x -+=C .223410x x +-=D .2230x x k --=(k 为任意实数)6.一个矩形的长比宽多2 cm ,其面积为2cm 8,则矩形的周长为 ( ) A .12 cm B .16 cm C .20 cm D .24 cm7.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得 ( ) A.168(1+x )2=128 B.168(1﹣x )2=128 C.168(1﹣2x )=128 D.168(1﹣x 2)=1288.一个两位数等于它的个位数的平方,且个位数比十位数大3,则这个两位数为 ( ) A .25B .36C .25或36D .-25或-369.从一块正方形的木板上锯掉 2 m 宽的长方形木条,剩下的面积是48㎡,则原来这块木板的面积是 ( ) A .100㎡B .64㎡C .121㎡D .144㎡10.三角形两边的长分别是8和6,第三边的长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是 ( )A .24B .24或C .48D . 二、填空题(每小题4分,共32分)11.当k 时,方程2223kx x x -=-是关于x 的一元二次方程.12.若0a b c ++=且0a ≠,则关于x 的一元二次方程20ax bx c ++=必有一定根,它是 .13.一元二次方程x(x-6)=0的两个实数根中较大的为 .14.某市某企业为节约用水,自建污水净化站.7月份净化污水3000吨,9月份增加到3630吨,则这两个月净化的污水量平均每月增长的百分率为 .15.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是-2,则另一个根是______.16.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x ,则可列方程____________________.17.方程x 2+px +q =0,甲同学因为看错了常数项,解得的根是6,-1;乙同学看错了一次项,解得的根是-2,-3,则原方程为 .18.如图,矩形ABCD 的周长是20 cm ,以AB ,AD 为边向外作正方形ABEF 和正方形ADGH ,若正方形ABEF 和ADGH 的面积之和为68 cm 2,那么矩形ABCD 的面积是_______cm 2.三、解答题(共58分)19.(每小题5分,共20分)选择适当的方法解下列方程: (1)28)32(72=-x ;(2);0982=-+x x (3)x x 52122=+;(4)()x x x -=-12)1(2.20.(8分)当m 为何值时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根?此时这两个实数根是多少?21.(8分)已知a ,b 是方程0122=-+x x 的两个根,求代数式))(11(22b a ab ba --的值.DC22.(10分)如图,△ABC 中,∠B=90°,点P 从点A 开始沿AB 边向B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.如果点P ,Q 分别从点A ,B 同时出发,经几秒钟,使△PBQ 的面积等于8cm 2?23.(12分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x 元. 据此规律,请回答:(1)商场日销售量增加 件,每件商品盈利 元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元? 参考答案一、1.A 2.A 3.A 4.D 5.B 6.A 7.B 8.C 9.B 10.B 二、11.3k ≠- 12.1 13.6 14.10% 15.116.2200200(1)200(1)1400x x ++++= 17.x 2-5x +6=0 18.16三、19.(1)1x =25,2x =21;(2)1x =1,2x =-9; (3)1x =235+,2x =235-;(4)1x =1,2x =31.20. 解:由题意,得∆=(-4)2-4(m -21)=0,即16-4m +2=0,解得m =29.当m =29时,方程有两个相等的实数根x 1=x 2=2.21. 解:由题意,得.1,2-=-=+ab b a 所以原式=()()()ab b a a b a b ab aba b 422-+=-=-∙-=().8422=+- 22.解:解:设x 秒时,点P 在AB 上,点Q 在BC 上,且使△PBD 的面积为8 cm 2,由题意,得82)6(21=⋅-x x . 解得x 1=2, x 2=4.经检验均是原方程的解,且符合题意. 所以经过2秒或4秒时△PBQ 的面积为8 cm 2.解:(1)2x 50-x(2)由题意,得(50-x )(30+2x )=2100. 化简,得x2-35x+300=0. 解得x1=15,x2=20.因为该商场为了尽快减少库存,所以降的越多,越吸引顾客,故选x=20. 答:每件商品降价20元,商场日盈利可达2100元.第22章 二次函数 测试题 时间:100分钟 满分:120分钟一、选择题(每小题3分,共24分)1.抛物线y=2(x ﹣3)2+1的顶点坐标是( ) A .(3,1) B .(3,﹣1)C .(﹣3,1)D .(﹣3,﹣1)2.关于抛物线y=x 2﹣2x+1,下列说法错误的是( ) A .开口向上 B .与x 轴有两个重合的交点 C .对称轴是直线x=1 D .当x >1时,y 随x 的增大而减小 3.二次函数y=ax 2+bx+c ,自变量x 与函数y 的对应值如表:A .抛物线的开口向下B .当x >﹣3时,y 随x 的增大而增大C .二次函数的最小值是﹣2D .抛物线的对称轴是x=﹣ 4.抛物线y=2x 2,y=﹣2x 2,共有的性质是( )A .开口向下B .对称轴是y 轴C .都有最高点D .y 随x 的增大而增大 5.已知点(x 1,y 1),(x 2,y 2)均在抛物线y=x 2﹣1上,下列说法中正确的是( )A .若y 1=y 2,则x 1=x 2B .若x 1=﹣x 2,则y 1=﹣y 2C .若0<x 1<x 2,则y 1>y 2D .若x 1<x 2<0,则y 1>y 26.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )A .B .C .D .7.如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b 2﹣4ac >0;③9a﹣3b+c <0;④b﹣4a=0;⑤方程ax 2+bx=0的两个根为x 1=0, x 2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤8.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( ) A .B .C .D .二、填空题(每小题3分,共21分)9.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .10.如果将抛物线y=x 2+2x ﹣1向上平移,使它经过点A (0,3),那么所得新抛物线的表达式是 . 11.已知点A (4,y 1),B (,y 2),C (﹣2,y 3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y 1、y 2、y 3的大小关系是 .12.二次函数y=x 2﹣2x ﹣3的图象如图所示,若线段AB 在x 轴上,且AB 为2个单位长度,以AB 为边作等边△ABC ,使点C 落在该函数y 轴右侧的图象上,则点C 的坐标为 .13.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3),D 是抛物线y=﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为 .第7题 第8题14.如图,抛物线y=﹣x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为 .15.如图,一段抛物线:y=﹣x (x ﹣2)(0≤x ≤2)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进行下去,直至得到C 6,若点P (11,m )在第6段抛物线C 6上,则m= .三、解答题(本大题8个小题,共75分)16.(8分)如图,已知抛物线y=x 2+bx+c 经过A (﹣1,0)、B (3,0)两点. (1)求抛物线的解析式和顶点坐标; (2)当0<x <3时,求y 的取值范围;(3)点P 为抛物线上一点,若S △PAB =10,求出此时点P 的坐标.17.(9分)如图,已知抛物线y=ax 2+bx+c 与x 轴的一个交点为A (3,0),与y 轴的交点为B (0,3),其顶点为C ,对称轴为x=1. (1)求抛物线的解析式;(2)已知点M 为y 轴上的一个动点,当△ABM 为等腰三角形时,求点M 的坐标.第14题 第15题18.(9分)如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.19.(9分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.20.(9分)如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.21.(10分)如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.(1)在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)(2)守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?22.(10分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x 天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?23.(11分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C (0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.24.(10分)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.25.(10分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.答案一、选择题(每小题3分,共18分)1-8: A D D B D C B C二、填空题(每小题3分,共27分)9.(1,4) 10. y=x2+2x+3 11. y3>y1>y2 12.(1+,3)或(2,﹣3)13.15 14.(1+,2)或(1﹣,2) 15.﹣1三.解答题16.解:(1)把A(﹣1,0)、B(3,0)分别代入y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4).(2)由图可得当0<x<3时,﹣4≤y<0.(3)∵A(﹣1,0)、B(3,0),∴AB=4.设P(x,y),则S△PAB=AB•|y|=2|y|=10,∴|y|=5,∴y=±5.①当y=5时,x2﹣2x﹣3=5,解得:x1=﹣2,x2=4,此时P点坐标为(﹣2,5)或(4,5);②当y=﹣5时,x2﹣2x﹣3=﹣5,方程无解;综上所述,P点坐标为(﹣2,5)或(4,5).17.解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).18.解:(1)∵抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,∴,解之得:a=﹣1,b=3,∴y=﹣x2+3x+4;(2)∵点D(m,m+1)在第一象限的抛物线上,∴把D的坐标代入(1)中的解析式得 m+1=﹣m2+3m+4,∴m=3或m=﹣1,∴m=3,∴D(3,4),∵y=﹣x2+3x+4=0,x=﹣1或x=4,∴B(4,0)∴OB=OC,∴△OBC是等腰直角三角形,∴∠CBA=45°设点D关于直线BC的对称点为点E∵C(0,4)∴CD∥AB,且CD=3∴∠ECB=∠DCB=45°∴E点在y轴上,且CE=CD=3∴OE=1 ∴E(0,1)即点D关于直线BC对称的点的坐标为(0,1);19.解:(1)∵二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.20.解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),则S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=8+4=12.21.解:(1)抛物线的顶点坐标是(4,3),设抛物线的解析式是:y=a(x﹣4)2+3,把(10,0)代入得36a+3=0,解得a=﹣,则抛物线是y=﹣(x﹣4)2+3,当x=0时,y=﹣×16+3=3﹣=<2.44米,故能射中球门;(2)当x=2时,y=﹣(2﹣4)2+3=>2.52,∴守门员乙不能阻止球员甲的此次射门,当y=2.52时,y=﹣(x﹣4)2+3=2.52,解得:x1=1.6,x2=6.4(舍去),∴2﹣1.6=0.4(m),答:他至少后退0.4m,才能阻止球员甲的射门.22.解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=741(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a≥0.1.答:第13天每只粽子至少应提价0.1元.23.解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).24.解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).25.解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象①AB为平行四边形的边时,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.②当点E在抛物线顶点时,点E(﹣1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF 是菱形,此时以A,B,E,F为顶点的平行四边形的面积=×6×=.(3)如图所示,①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN==,∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).②当M3为等腰三角形的顶角的顶点时,∵直线AC解析式为y=﹣x+2,线段AC的垂直平分线为y=x,∴点M3坐标为(﹣1,﹣1).③当点A为等腰三角形的顶角的顶点的三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣).第23章 旋转一、选择题(每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )2.将左图所示的图案按顺时针方向旋转o90后可以得到的图案是( )3.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在的平面内可作旋转中心的点共有 ( )A.1 个 B.2 个 C.3 个 D.4个4.如图,将△ABC 绕着点C 按顺时针方向旋转o20,B 点落在B '位置,A 点落在A '位置,若AC ⊥B A '',则∠BAC 的度数是( )A.o 50 B.o 60 C.o 70 D.o805.如图,△OAB 绕点O 逆时针旋转o80到△OCD 的位置,已知∠AOB =o45,则∠AOD 等于( ) A.o55 B.o45 C.o40 D.o356.如图,阴影部分组成的图案既是关于x 轴成轴对称的图形,又是关于坐标原点O 成中心对称的图形.若点A 的坐标是 (1, 3),则点M 和点N 的坐标分别为( ) A.)3,1(),3,1(---N MB.)3,1(),3,1(---N MC.)3,1(),3,1(--N MD.)3,1(),3,1(---N M7.直线3+=x y 上有一点P (3,2m ),则P 点关于原点的对称点P '为 ( ) A.P '(3,6) B.P '(-3,6) C.P '(-3,-6) D.P '(3,-6)8. 如图是一个中心对称图形,A 为对称中心,若∠C =o90, ∠B =o30,AC =1,则B B '的长为( ) A.4 B.33C.332 D.3349.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上一点,且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是( ) A.4 B.3.5 C.3 D.2.510.如图,图案由三个叶片组成,绕点O 旋转o 120后可以和自身重合,若每个叶片的面积为24cm ,∠AOB 为o120,则图中阴影部分的面积之和为. ( ) A.23cm B.24cm C.25cm D.26cm二、填空题(每小题4分,共32分)11.点P (2,3)绕着原点逆时针方向旋转o90与点P '重合,则P '的坐标为 . 12.已知a <0,则点P (2a -, a -+1)关于原点的对称点1P 在 象限.13.如图,将矩形ABCD 绕点A 顺时针旋转o 90后,得到矩形D C B A ''',如果CD =2DA =2,那么C C '=_________.14.如图,△COD 是△AOB 绕点O 顺时针方向旋转o40后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠D 的度数是 度.15.如图,四边形ABCD 中,∠BAD =∠C =o90,AB =AD ,AE ⊥BC 于E ,若线段AE =5,则A B C D S 四边形= .16.将两块直角三角尺的直角顶点重合为如图的位置, 若∠AOD =o110,则∠BOC = 度.17.如图,小亮从A 点出发,沿直线前进10米后向左转o30,再沿直线前进10米,又向左转o30,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.18.将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转o15后得到△C B A '',则图中阴影部分的面积是 2cm .三、解答题(共58分)19.(10分)如图,把△ABC 向右平移5个方格,再绕点B 顺时针方向旋转90°.(1)画出平移和旋转后的图形,并标明对应字母;(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由.20. (12分)画出△ABC 关于原点O 对称的△111C B A ,并求出点1A ,1B ,1C 的坐标.21.(12分)如图所示,△ABP 是由△ACE 绕A 点旋转得到的,若∠BAP =o40,∠B =o30,∠PACC BA=o20,求旋转角及∠CAE、∠E、∠BAE的度数.22.(12分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△ABP'.⑴求点P与点P'之间的距离;⑵∠APB的度数.23.(12分)如图1,在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=90,AB 与CE交于F,ED与AB、BC分别交于M、H.(1)求证: CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45时,试判断四边形ACDM是什么四边形?并证明你的结论.参考答案一、15.25 16.70 17.120 18.6325三、19.解:(1)如图(2)能,将△ABC 绕CB 、B C ''''延长线的交点顺时针旋转90度.20.解:△ABC 关于原点O 对称的△111C B A 如图, 点的坐标分别是)2,3(1-A ,)1,2(1B ,)3,2(1--C .21.解: 旋转角∠BAC =∠PAC +∠BAP =o 20+o 40=o60, ∵∠BAP =o40. ∴∠CAE =40°,∵∠B =o 30. ∴∠C =o30 . ∴∠E=110°. ∴∠BAE=100°.22.解 :(1)连接P P ',由题意可知P B '=PC =10,P A '=AP =6, ∠PAC =∠AB P ',而∠PAC +∠BAP =60°, ∴∠P PA '=60°. ∴△P AP '为等边三角形, ∴P P '=P A '=AP =6;(2)利用勾股定理的逆定理可知:∵222P B BP P P '=+',∴△P BP '为直角三角形.∵∠P BP '=90°∴∠APB =90°+60°=150°.23.(1)证明:在△ACB 和△ECD 中∵∠ACB=∠ECD= 90,∴∠1+∠ECB=∠2+∠ECB, ∴∠1=∠2. 又∵AC=CE=CB=CD, ∴∠A=∠D= 45,C"B"A''C'B'A'CBA∴△ACB ≌△ECD,∴CF=CH(2) 答: 四边形ACDM 是菱形证明: ∵∠ACB=∠ECD= 90, ∠BCE= 45∴∠1= 45, ∠2= 45又∵∠E=∠B= 45,∴∠1=∠E, ∠2=∠B∴AC ∥MD, CD ∥AM ,∴ACDM 是平行四边形又∵AC=CD, ∴ACDM 是菱形第24章 圆一、选择题(每小题4分,共24分)在每小题给出的四个选项中, 只有一项是符合题目要求的.1. 已知⊙O 的半径是6cm,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法判断2.如图,点A 、B 、C 在⊙O 上,∠ABC =50°,则∠AOC 的度数为( )A .120°B .100°C .50°D .25°3.如图在△ABC 中,∠B =90°, ∠A =30°,AC =4cm ,将△ABC 绕顶点C 顺时针方向旋转至△A B C ''的位置,且A 、C 、B ′三点在同一条直线上,则点A 所经过的最短路线的长为( )A. B. 8cm C. 163cm π D. 83cm π4.如图,ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( )A.126°B. 54°C. 30°D. 36°5.如图,已知⊙O 的半径为1,AB 与⊙O 相切于点A ,OB 与⊙O 交于点C ,CD ⊥OA ,垂足为D ,则sin ∠AOB 的值等于( )A .CDB .OAC .OD D .ABB′A′C B A (第3题图) A OB C (第2题图)(第4题图)(第13题图) (第14题图)6.用半径为3cm ,圆心角是120°的扇形围成一个圆锥的侧面,则该圆锥的底面半径为( )A. 2πcmB. 1cmC. πcmD. 1.5cm7. 如图,CD 是⊙O 的直径,弦AB ⊥CD 于点G ,直线EF 与⊙O 相切于点D ,则下列结论中不一定正确的是( )A. AG=BGB.AB//EFC.AD//BCD.∠ABC=∠ADC8. 若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A .6, B. 3 C .6,3 D.,二、填空题(每小题4分,共24分)请把答案填写在题中横线上.9.一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为_________.10.已知圆锥母线长为5cm ,底面直径为4cm ,则侧面展开图的圆心角度数是_________.11.Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,以C 为圆心,r 为半径作圆,若圆C 与直线AB 相切,则r 的值为_________.12.钟表的轴心到分针针尖的长为5cm ,那么经过40分钟,分针针尖转过的弧长是_________________cm.13.如图,AB 是⊙O 的直径,C 、D 是圆上的两点(不与A 、B 重合),已知BC =2,tan ∠ADC =1,则AB =__________.14. 如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E . B ,E是半圆弧(第7题图) (第5题图)的三等分点,弧BE 的长为32 ,则图中阴影部分的面积为 . 三、 解答题(本题共5小题,共44分)15.(7分)如图所示,某窗户由矩形和弓形组成.已知弓形的跨度AB =3m ,弓形的高EF =1m.现计划安装玻璃,请帮工程师求出⌒A B 所在圆O 的半径.16. (7分)如图△ABC 中,∠B = 60°,⊙O 是 △ABC 的外接圆,过点A 作⊙O 的切线,交CO 的延长线于点P ,OP 交⊙O 于点D .(1)求证:AP =AC (2) 若AC =3,求PC 的长.17.(10分)如图,已知四边形ABCD 内接于圆O ,连接BD ,∠BAD =105°,∠DBC =75°.(1)求证:BD =CD ;(2)若圆O 的半径为3,求BC 的长.18.(10分)如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点B 作⊙O 的切线DE ,与AC 的延长线交于点D ,作AE ⊥AC 交DE 于点E .(1)求证:∠BAD =∠E ;(2)若⊙O 的半径为5,AC =8,求BE 的长.19.(10分)如图,BC 是⊙O 的直径, A 是⊙O 上一点,过点C 作⊙O 的切线,交BA 的延长线于点D ,取CD 的中点E ,AE 的延长线与BC 的延长线交于点P .(1)求证:AP 是⊙O 的切线;(2)若OC =CP ,AB =6,求CD 的长.参考答案一、选择题:1.A.2.B.3.D4.D5.A6.B7.C8.B二、填空题:9.72°或108° 10. 144° 11.2.4 12.13.14. 32233π-. 三、解答题:15. 解:设⊙O 的半径为r ,则OF =r -1.由垂径定理,得BF =12AB =1.5,OF ⊥AB ,由OF 2 +BF 2= OB 2,得(r -1)2+1.52 = r 2,解得r =138.答:⌒A B 所在圆O 的半径为138.16.(1)连接OA, ∵60B ∠=︒,AP 为切线,∴ OA ⊥ AP, ∠AOC=120°,又∵OA=OC, ∴∠ ACP=30°∠ P= 30°, ∴ AP=AC 203π(第19题图)(2)先求OC=3,再证明△ OAC∽△ APC , PC AC =APOC ,得PC=33. 17. (1)证明:∵四边形ABCD 内接于圆O ,∴∠DCB +∠BAD =180°,∵∠BAD =105°,∴∠DCB =180°-105°=75°.∵∠DBC =75°,∴∠DCB =∠DBC =75°.∴BD =CD .(2)解:∵∠DCB =∠DBC =75°,∴∠BDC =30°.由圆周角定理,得,的度数为:60°,故BC =180n R π=603180π⨯=π. 答:BC 的长为π.18.证明:(1)∵⊙O 与DE 相切于点B ,AB 为⊙O 直径,∴∠ABE =90°.∴∠BAE +∠E =90°.又∵∠DAE =90°, ∴∠BAD +∠BAE =90°.∴∠BAD =∠E .(2)解;连接BC .'∵AB 为⊙O 直径, ∴∠ACB =90°.∵AC =8,AB =2×5=10,∴BC 又∵∠BCA =∠ABE =90°,∠BAD =∠E ,∴△ABC ∽△EAB .∴AC EB =BC AB . ∴8EB =610 ∴BE =403.19.(1)证明:连接AO ,AC .∵BC 是⊙O 的直径,∴∠BAC =90°∴∠CAD =90°∵点E 是CD 的中点,∴CE= CE= AE在等腰△EAC 中,∠ECA = ∠EAC∵OA =OC ∴∠OAC = ∠OCA∵CD 是⊙O 的切线,∴CD ⊥OC∴∠ECA + ∠OAC = 90°∴∠EAC + ∠OAC = 90°∴OA ⊥AP ,∴AP 是⊙O 的切线(2)解:由(1)知OA ⊥AP在Rt △OAP 中,∵∠OAP = 90°, OC = CP = OA 即OP = 2OA ,∴,∴,∴ ∴又∵在Rt △DAC 中,∠CAD = 90°, ∠ACD = 90°-∠ACO= 30°∴第25章 概率初步 一、选择题(共10小题,每小题3分,满分30分) 1.下列说法中正确的是( ) A .“任意画出一个等边三角形,它是轴对称图形”是随机事件 B .“任意画出一个平行四边形,它是中心对称图形”是必然事件C .“概率为0.0001的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次2.从分别写有数字:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值<2的概率是( )A .B .C .D . 3.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是( )A .B .C .D .5.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是( )A .B .C .D .6.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是( )A .B .C .D .1sin 2OA P OP ∠==30P ∠=60AOP ∠=2tan 60AB AC ==4cos AC CD ACD ===∠7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.8.甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定9.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.10.做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22 B.0.44 C.0.50 D.0.56二、填空题11.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.12.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.13.如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.15.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为.16.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.17.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.18.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.三、解答题(共46分)19.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是100℃;(3)a2+b2=﹣1(其中a,b都是实数);(4)水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解;(7)经过有信号灯的十字路口,遇见红灯.20.如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.22.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?23.在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.。

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案

北师大版九年级数学上册《第二章一元二次方程》单元测试卷及答案时间:60分钟,满分:100分一、选择题(每题3分,共24分)1.下列方程中,是一元二次方程的是()A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为()A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为()A.1 B.2 C.−1D.−24.方程x(x−2)=0的解是()A.0 B.2 C.−2D.0或25.若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是()A.m≥-1 B.m≤1C.m≥-1且m≠0 D.m≤1且m≠06.下列一元二次方程中,有两个不相等的实数根的是()A.x2−2x+3=0B.x2+6x+9=0C.4x2=3x+2D.3x2−x+2=07.一次同学聚会,每两人之间互赠1件礼物,共有礼物30件.设x人参加聚会,则可列方程为()A.12x(x+1)=30B.12x(x−1)=30C.x(x+1)=30 D.x(x−1)=308.已知m,n是一元二次方程x2+x−2023=0的两个实数根,则代数式m2+2m+n的值等于()A.2020 B.2021 C.2022 D.2023二、填空题(每题4分,共20分)9.已知关于x的方程(m+2)x m2−2+3x−1=0为一元二次方程,则m的值是.10.用配方法解一元二次方程x2+4x−3=0,配方后的方程为(x+2)2=n,则n的值为.11.一个等腰三角形的底边长为10,腰长是一元二次方程x2−11x+30=0的一个根,则这个三角形的周长是.12.若m,n是一元二次方程x2−3x−1=0的两个根,则m+n+3mn的值为13.某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价,据测算,每箱每降价1元平均每天可多售出20箱,若要使每天销售饮料获利1440元,则每箱应降价元.三、计算题(共10分)14.解方程:(1)x2−8x−9=0;(2)x2−x−1=0.四、解答题(共46分)15.已知关于x的一元二次方程x2−(2m+1)x+m(m+1)=0.(1)求证:无论m取何值,方程总有两个不相等的实数根:(2)若该方程的一个根为1,求m的值及另一个根.16.已知关于x的一元二次方程x2−2x−m=0有实数根.(1)求m的取值范围;(2)若两实数根分别为x1和x2,且x12+x22=6,求m的值.17.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?18.据某市车管部门统计,2020年底全市汽车拥有量为150万辆,而截至到2022年底,全市的汽车拥有量已达216万辆,假定汽车拥有量年平均增长率保持不变.(1)求年平均增长率;(2)如果不加控制,该市2024年底汽车拥有量将达多少万辆?参考答案1.B2.A3.D4.D5.D6.C7.D8.C9.210.711.2212.014.(1)解:x2−8x−9=0(x−9)(x+1)=0 x1=9,x2=−1;(2)解:x2−x−1=0x2−x=1x2−x+14=1+14x2−x+14=54(x−12)2=54x−12=±√52x1=√52+12=1+√52,x2=−√52+12=1−√52.15.(1)证明:由题意得=4m2+4m+1−4m2−4m=1>0∴无论m取何值,方程总有两个不相等的实数根:(2)解:∵关于x的一元二次方程x2−(2m+1)x+m(m+1)=0的一个根为1∴1−(2m+1)+m(m+1)=0∴m2−m=0解得m=0或m=1;当m=0时,原方程为x2−x=0,解得x=0或x=1;当m=1时,原方程为x2−3x+2=0,解得x=1或x=2;综上所述,当m=0时,方程的另一个根为x=0;当m=1时,方程的另一个根为x=2.16.(1)解:∵关于x的一元二次方程x2−2x−m=0有实数根∴△=b2﹣4ac=4+4m≥0解得:m≥﹣1;(2)解:∵x1和x2是方程x2−2x−m=0的两个实数根∵x1+x2=2,x1x2=﹣m∴x12+x22=(x1+x2)2﹣2x1•x2=6∴22+2m=617.(1)解:当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元;(2)解:设每件商品降价x元根据题意,得:(50-x)(30+2x)=2000整理,得:x2−35x+250=0解得:x1=10,x2=25∵商城要尽快减少库存∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.18.(1)解:设该市汽车拥有量的年平均增长率为x.根据题意,得150(1+x)2=216.解得:x=0.2或x=﹣2.2(不合题意,舍去).∴年平均增长率为20%.(2)解:216(1+20%)2=311.04(万辆).答:如果不加控制,该市2024年底汽车拥有量将达311.04万辆.。

北师大版九年级数学上册单元测试题全套及答案

北师大版九年级数学上册单元测试题全套及答案

最新北师大版九年级数学上册单元测试题全套及答案(最新北师大版,2017年秋配套试题)第一章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.菱形对称轴条数为( )A .1B .2C .3D .4 2.下列说法中,正确是( )A .相等角一定是对顶角B .四个角都相等四边形一定是正方形C .平行四边形对角线互相平分D .矩形对角线一定垂直3.平面直角坐标系中,四边形ABCD 顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD 是( )A .矩形B .菱形C .正方形D .平行四边形 4.下列命题是假命题是( )A .四个角相等四边形是矩形B .对角线相等平行四边形是矩形C .对角线垂直四边形是菱形D .对角线垂直平行四边形是菱形5.如图,矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿AE 对折,使得点B 落在边AD 上点B 1处,折痕与边BC 交于点E ,则CE 长为( )A .6 cmB .4 cmC .2 cmD .1 cm6.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( A ) A.245 B.125C .5D .4 ,第6题图) ,第7题图) 7.如图,每个小正方形边长为1,A ,B ,C 是小正方形顶点,则∠ABC 度数为( ) A .90° B .60° C .45° D .30°8.已知四边形ABCD 两条对角线AC 与BD 互相垂直,则下列结论正确是( ) A .当AC =BD 时,四边形ABCD 是矩形B .当AB =AD ,CB =CD 时,四边形ABCD 是菱形C .当AB =AD =BC 时,四边形ABCD 是菱形D .当AC =BD ,AD =AB 时,四边形ABCD 是正方形9.如图,矩形ABCD 中,AD =2,AB =3,过点A ,C 作相距为2平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 长是( )A.5B.136 C .1 D.56,第9题图) ,第10题图)10.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确是( )A .①②B .②③C .①③D .①④ 二、填空题(每小题3分,共18分)11.已知菱形两条对角线长分别为2 cm ,3 cm ,则它面积是___cm 2.12.如图,已知点P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 度数是___度. 13.如图所示,将△ABC 绕AC 中点O 顺时针旋转180°得到△CDA ,添加一个条件__ __,使四边形ABCD 为矩形.,第12题图),第13题图),第14题图),第15题图)14.已知矩形ABCD,AB=3 cm,AD=4 cm,过对角线BD中点O作BD垂直平分线EF,分别交AD,BC于点E,F,则AE长为_ cm.15.如图,菱形ABCD边长为4,过点A,C作对角线AC垂线,分别交CB和AD延长线于点E,F,AE=3,则四边形AECF周长为____.16.矩形OABC在平面直角坐标系中位置如图所示,点B坐标为(3,4),D是OA中点,点E在AB上,当△CDE周长最小时,则点E坐标为__(_)_.三、解答题(共72分)17.(10分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形周长和是86 cm,对角线长是13 cm,那么矩形周长是多少?18.(10分)如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.19.(10分)如图,已知菱形ABCD对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO大小.20.(10分)如图,已知在▱ABCD中,点E,F分别是边AB,CD中点,BD是对角线,AG∥BD交CB延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你结论.21.(10分)如图,已知菱形ABCD,AB=AC,点E,F分别是BC,AD中点,连接AE,CF.(1)求证:四边形AECF是矩形;(2)若AB=8,求菱形面积.22.(10分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至G,使OG=OD,连接EG,FG,判断四边形DEGF是否是菱形,并说明理由.23.(12分)如图,在矩形ABCD中,点M,N分别是AD,BC中点,点P,Q分别是BM,DN中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么特殊四边形?请说明理由.第二章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,关于x 一元二次方程是( )A .3(x +1)2=2(x +1) B.1x2+1x-2=0C .ax 2+bx +c =0D .x 2+2x =x 2-1 2.方程(x -2)(x +3)=0解是( )A .x =2B .x =-3C .x 1=-2,x 2=3D .x 1=2,x 2=-33.若x =-2是关于x 一元二次方程x 2+32ax -a 2=0一个根,则a 值为( )A .-1或4B .-1或-4C .1或-4D .1或44.用配方法解一元二次方程x 2-2x -3=0时,方程变形正确是( ) A .(x -1)2=2 B .(x -1)2=4 C .(x -1)2=1 D .(x -1)2=7 5.下列一元二次方程中,没有实数根是( )A .x 2+2x +1=0B .x 2+x +2=0C .x 2-1=0D .x 2-2x -1=0 6.解方程(x +1)(x +3)=5较为合适方法是( ) A .直接开平方法 B .配方法C .公式法或配方法D .分解因式法7.已知一元二次方程x 2-2x -1=0两个根分别是x 1,x 2,则x 12-x 1+x 2值为( ) A .-1 B .0 C .2 D .38.关于x 方程x 2-ax +2a =0两根平方和是5,则a 值是( ) A .-1或5 B .1 C .5 D .-1 9.某县政府2015年投资0.5亿元用于保障性住房建设,计划到2017年投资保障性住房建设资金为0.98亿元,如果从2015年到2017年投资此项目资金年增长率相同,那么年增长率是( )A .30%B .40%C .50%D .10%10.有一块长32 cm ,宽24 cm 长方形纸片,在每个角上截去相同正方形,再折起来做一个无盖盒子,已知盒子底面积是原纸片面积一半,则盒子高是( )A .2 cmB .3 cmC .4 cmD .5 cm 二、填空题(每小题3分,共18分)11.一元二次方程2x 2+6x =9二次项系数、一次项系数、常数项和为___. 12.方程(x +2)2=x +2解是____.13.若代数式4x 2-2x -5与2x 2+1值互为相反数,则x 值是__.14.写一个你喜欢实数k 值__ _,使关于x 一元二次方程(k +1)x 2+2x -1=0有两个不相等实数根. 15.某制药厂两年前生产1吨某种药品成本是100万元,随着生产技术进步,现在生产1吨这种药品成本为81万元.则这种药品成本年平均下降率为___.16.设m ,n 分别为一元二次方程x 2+2x -2018=0两个实数根,则m 2+3m +n =__. 三、解答题(共72分) 17.(12分)解方程:(1) x 2+4x -1=0; (2)x 2+3x +2=0;(3)3x 2-7x +4=0.18.(10分)如图,已知A ,B ,C 是数轴上异于原点O 三个点,且点O 为AB 中点,点B 为AC 中点.若点B 对应数是x ,点C 对应数是x 2-3x ,求x 值.19.(8分)一元二次方程x 2-2x -54=0某个根,也是一元二次方程x 2-(k +2)x +94=0根,求k 值.20.(10分)某种商品标价为400元/件,经过两次降价后要价为324元/件,并且两次降价百分率相同. (1)求该种商品每次降价百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售总利润不少于3 210元.问第一次降价后至少要售出该种商品多少件?21.(10分)小林准备进行如下操作试验:把一根长为40 cm 铁丝剪成两段,并把每一段各围成一个正方形. (1)要使这两个正方形面积之和等于58 cm 2,小林该怎么剪? (2)小峰对小林说:“这两个正方形面积之和不可能等于48 cm 2,”他说法对吗?请说明理由.22.(10分)某市电解金属锰厂从今年元月起安装了回收净化设备(安装时间不计),这样既保护环境,又节省原料成本,据统计使用回收净化设备后1~x 月利润月平均值W(万元)满足W =10 x +90.请问多少个月后利润和为1620万元?23.(12分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊资金不少于购买书桌、书架等设施资金3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与户数在200户基础上增加了a%(其中a>0).则每户平均集资资金在150元基础上减少了109a%,求a 值.第三章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.事件A :打开电视,它正在播广告;事件B :抛掷一个均匀骰子,朝上点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件概率分别记为P(A),P(B),P(C),则P(A),P(B),P(C)大小关系正确是( )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B ) C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )2.从-5,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数概率是( ) A.15 B.25 C.35 D.453.如图,在2×2正方形网格中有9个格点,已经取定点A 和B ,在余下7个点中任取一点C ,使△ABC 为直角三角形概率是( )A.12B.25C.37D.474.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取两个球数字之和大于6概率是( )A.12B.712C.58D.345.掷两枚普通正六面体骰子,所得点数之和为11概率为( ) A.118 B.136 C.112 D.1156.用图中两个可自由转动转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色概率是( )A.14B.34C.13D.12,第6题图) ,第7题图) 7.如图所示两个转盘中,指针落在每一个数上机会均等,那么两个指针同时落在偶数上概率是( ) A.1925 B.1025 C.625 D.525 8.有三张正面分别写有数字-1,1,2卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 值,然后再从剩余两张卡片中随机抽取一张,以其正面数字作为b 值,则点(a ,b)在第二象限概率是( )A.16B.13C.12D.239.从长为10 cm ,7 cm ,5 cm ,3 cm 四条线段中任选三条能够组成三角形概率是( ) A.14 B.13 C.12 D.3410.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中任意两点与点O 为顶点作三角形,所作三角形是等腰三角形概率是( )A.34B.13C.23D.12二、填空题(每小题3分,共18分)11.一个布袋中装有3个红球和4个白球,这些球除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球概率为___.12.在一个不透明袋子中有10个除颜色外均相同小球,通过多次摸球试验后,发现摸到白球频率约为40%,估计袋中白球有____个.13.有两把不同锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁概率是___.14.一个不透明袋子中装有黑、白小球各两个,这些球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出小球都是白球概率是__.15.若同时抛掷两枚质地均匀骰子,则事件“两枚骰子朝上点数互不相同”概率是__.16.已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜色分布百分比统计图.在这包糖果中任取一粒糖果,则取出糖果颜色为绿色或棕色概率是__.三、解答题(共72分) 17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表方法列出所有可能出现结果,并求小明穿上衣和裤子恰好都是蓝色概率.18.(10分)在一个不透明口袋中装有4张相同纸牌,它们分别标有数字1,2,3,4.随机地摸取一张纸牌记下数字然后放回,再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5概率; (2)甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平游戏吗?请说明理由.19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同卡片,甲袋中三张卡片上所标有三个数值为-7,-1, 3.乙袋中三张卡片所标数值为-2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出卡片上数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上数值,把x ,y 分别作为点A 横坐标和纵坐标.(1)用适当方法写出点A(x ,y)所有情况; (2)求点A 落在第三象限概率. (1)列表:20.(10分)分别把带有指针圆形转盘A,B分成4等份、3等份扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域数字之积为奇数,则欢欢胜;若指针所指两区域数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图方法,求欢欢获胜概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.21.(10分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放食品价格一样).食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是________事件;(可能,必然,不可能)(2)请用列表或画树状图方法,求出小张同学该天早餐刚好得到猪肉包和油饼概率.22.(10分)某景区7月1日~7月7日一周天气预报如图,小丽打算选择这期间一天或两天去该景区旅游.求下列事件概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续两天,恰好天气预报都是晴.23.(12分)有四张正面分别标有数字2,1,-3,-4不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上数字记为m,再随机地摸取一张,将卡片上数字记为n.(1)请画出树状图并写出(m,n)所有可能结果;(2)求所选出m,n能使一次函数y=mx+n图象经过第二、三、四象限概率.(1)①画树状图得:第四章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列说法正确是( )A .对应边都成比例多边形相似B .对应角都相等多边形相似C .边数相同正多边形相似D .矩形都相似2.已知△ABC ∽△DEF ,相似比为3∶1,且△ABC 周长为18,则△DEF 周长为( ) A .2 B .3 C .6 D .54 3.如图,已知BC ∥DE ,则下列说法不正确是( C )A .两个三角形是位似图形B .点A 是两个三角形位似中心C .AE ∶AD 是相似比 D .点B 与点E ,点C 与点D 是对应位似点 4.如图,身高为1.6 m 小红想测量学校旗杆高度,当她站在C 处时,她头顶端影子正好与旗杆顶端影子重合,并测得AC =2.0 m ,BC =8.0 m ,则旗杆高度是( C )A .6.4 mB .7.0 mC .8.0 mD .9.0 m,第3题图) ,第4题图) ,第5题图),第6题图)5.如图,为估算某河宽度,在河对岸选定一个目标点,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE =20 m ,CE =10 m ,CD =20 m ,则河宽度AB 等于( B )A .60 mB .40 mC .30 mD .20 m6.如图,矩形ABCD 面积是72,AE =12DC ,BF =12AD ,那么矩形EBFG 面积是( B )A .24B .18C .12D .9 7.如图,点A ,B ,C ,D 坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点三角形与△ABC 相似,则点E 坐标不可能是( B )A .(6,0)B .(6,3)C .(6,5)D .(4,2),第7题图) ,第8题图) ,第9题图),第10题图)8.如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③ADAB=OE OB ;④S △ODE S △ADC =13.其中正确个数有( B ) A .1个 B .2个 C .3个 D .4个9.如图,在△ABC 中,∠A =36°,AB =AC ,AB 垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD.下列结论错误是( C )A .∠C =2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 黄金分割点 10.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,点P 为AB 边上一动点,若△PAD 与△PBC 是相似三角形,则满足条件点P 个数是( C )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共18分)11.若x y =m n =45(y ≠n),则x -m y -n =__45__.12.如图是两个形状相同红绿灯图案,则根据图中给出部分数值,得到x 值是__16__.13.如图,在△ABC 中,点P 是AC 上一点,连接BP.要使△ABP ∽△ACB,则必须有∠ABP =__∠C __或∠APB =__∠ABC __或AB AP =__ACAB__.,第12题图) ,第13题图) ,第14题图) ,第15题图)14.如图,在矩形ABCD 中,AB =2,BC =3,点E 是AD 中点,CF ⊥BE 于点F ,则CF =__125__. 15.如图,一条河两岸有一段是平行,在河南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米点P 处看北岸,发现北岸相邻两根电线杆恰好被南岸两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为__22.5__米.16.如图,以点O 为位似中心,将△ABC 缩小后得△A′B′C′,已知OB =3OB′,则△A′B′C′与△ABC 面积之比为__1∶9__.三、解答题(共72分) 17.(10分)如图,点D 是△ABC 边AC 上一点,连接BD ,已知∠ABD =∠C ,AB =6,AD =4,求线段CD 长.在△ABD 和△ACB 中,∠ABD =∠C ,∠A =∠A ,∴△ABD ∽△ACB ,∴AB AC =ADAB,∵AB =6,AD =4,∴AC =AB2AD =364=9,则CD =AC -AD =9-4=518.(10分)一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似钢筋三角架,而只有长为30厘米和50厘米两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同截法有多少种?写出你设计方案,并说明理由.两种截法:①30厘米与60厘米两根钢筋为对应边,把50厘米钢筋按10厘米与25厘米两部分截,则有1020=2550=3060=12,从而两个三角形相似;②30厘米与50厘米两根钢筋为对应边,把50厘米钢筋截出12厘米和36厘米两部分,则有2012=5030=6036=53,从而两个三角形相似19.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点坐标分别为A(-1,2),B(-3,4),C(-2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到△A 1B 1C 1;(2)在网格内以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来2倍后△A 2B 2C 2.20.(10分)如图,矩形ABCD 为台球桌面.AD =260 cm ,AB =130 cm .球目前在E 点位置,AE =60 cm .如果小丁瞄准了BC 边上点F 将球打进去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF ∽△CDF ; (2)求CF 长.(1)∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD ,又∵∠B =∠C =90°,∴△BEF ∽△CDF(2)设CF =x ,则BF =260-x ,∵AB =130,AE =60,BE =70,由(1)得,△BEF ∽△CDF ,∴BE CD =BFCF,即70130=260-x x ,∴x =169,即CF =169 cm21.(10分)如图,在△ABC 中,AD 是中线,且CD 2=BE·BA.求证:ED·AB =AD·BD.∵AD 是中线,∴BD =CD ,又CD 2=BE ·BA ,∴BD 2=BE ·BA ,即BE BD =BDAB,又∠B =∠B ,∴△BED ∽△BDA ,∴ED AD =BDAB,∴ED ·AB =AD·BD22.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为点E ,连接DE ,点F 为线段DE 上一点,且∠AFE =∠B.(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求AE 长.(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC (2)∵四边形ABCD 是平行四边形,∴CD =AB =8.由(1)知△ADF ∽△DEC ,∴AD DE =AF CD ,∴DE =AD·CD AF =63×843=12.在Rt △ADE 中,由勾股定理得AE =DE2-AD2=122-(63)2=623.(12分)将一副三角尺如图①摆放(在Rt △ABC 中,∠ACB =90°,∠B =60°;在Rt △DEF 中,∠EDF =90°,∠E =45°),点D 为AB 中点,DE 交AC 于点P ,DF 经过点C. (1)求∠ADE 度数;(2)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时等腰直角三角尺记为△DE′F′,DE′交AC 于点M ,DF′交BC 于点N ,试判断PM CN 值是否随着α变化而变化?如果不变,请求出PMCN值;反之,请说明理由.(1)由题意知,CD 是Rt △ABC 斜边AB 上中线,∴AD =BD =CD ,∵在△BCD 中,BD =CD 且∠B =60°,∴△BCD 是等边三角形,∴∠BCD =∠BDC =60°,∴∠ADE =180°-∠BDC -∠EDF =180°-60°-90°=30° (2)PMCN值不会随着α变化而变化,理由如下:∵△APD 外角∠MPD =∠A +∠ADE =30°+30°=60°,∴∠MPD =∠BCD =60°,∵在△MPD 和△NCD 中,∠MPD =∠NCD =60°,∠PDM =∠CDN =α,∴△MPD ∽△NCD ,PM CN =PDCD,∵∠ACB =90°,∠BCD =60°,∴∠PCD =30°.在Rt △PCD中,∠PCD =30°,∴PD CD =13=33,∴PM CN =PD CD =33第五章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.将一包卷筒卫生纸按如图所示方式摆放在桌面上,它俯视图是( D )2.如图是由4个相同正方体组成几何体,则这个几何体俯视图是( A )3.如图是一个几何体实物图,则其主视图是( C )4.如图是一支架(一种小零件),支架两个台阶高度和宽度都是同一长度,则它三视图是( A )5.木棒长为1.2 m ,则它正投影长一定( D )A .大于1.2 mB .小于1.2 mC .等于1.2 mD .小于或等于1.2 m 6.下列四个几何体中,俯视图为四边形是( D )。

最新北师大版九年级数学上册单元测试题全套及答案

最新北师大版九年级数学上册单元测试题全套及答案

最新北师大版九年级数学上册单元测试题全套及答案(最新北师大版,2017年秋配套试题)第一章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.菱形的对称轴的条数为( )A .1B .2C .3D .4 2.下列说法中,正确的是( )A .相等的角一定是对顶角B .四个角都相等的四边形一定是正方形C .平行四边形的对角线互相平分D .矩形的对角线一定垂直3.平面直角坐标系中,四边形ABCD 的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD 是( )A .矩形B .菱形C .正方形D .平行四边形 4.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形5.如图,矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为( )A .6 cmB .4 cmC .2 cmD .1 cm6.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( A ) A.245 B.125C .5D .4 ,第6题图) ,第7题图) 7.如图,每个小正方形的边长为1,A ,B ,C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°8.已知四边形ABCD 的两条对角线AC 与BD 互相垂直,则下列结论正确的是( ) A .当AC =BD 时,四边形ABCD 是矩形B .当AB =AD ,CB =CD 时,四边形ABCD 是菱形C .当AB =AD =BC 时,四边形ABCD 是菱形D .当AC =BD ,AD =AB 时,四边形ABCD 是正方形9.如图,矩形ABCD 中,AD =2,AB =3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( )A. 5B.136 C .1 D.56,第9题图) ,第10题图)10.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF=2BE ;②PF=2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④ 二、填空题(每小题3分,共18分)11.已知菱形的两条对角线长分别为2 cm ,3 cm ,则它的面积是___cm 2.12.如图,已知点P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 的度数是___度.13.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA,添加一个条件____,使四边形ABCD 为矩形.,第12题图) ,第13题图) ,第14题图),第15题图)14.已知矩形ABCD ,AB =3 cm ,AD =4 cm ,过对角线BD 的中点O 作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F ,则AE 的长为_ cm.15.如图,菱形ABCD 的边长为4,过点A ,C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E ,F ,AE =3,则四边形AECF 的周长为____.16.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△C DE 的周长最小时,则点E 的坐标为__(_)_.三、解答题(共72分)17.(10分)如图,矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm ,对角线长是13 cm ,那么矩形的周长是多少?18.(10分)如图,在△ABC 中,AB =AC ,点D 为边BC 上一点,以AB ,BD 为邻边作▱ABDE ,连接AD ,EC.(1)求证:△ADC≌△ECD;(2)若BD =CD ,求证:四边形ADCE 是矩形.19.(10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.20.(10分)如图,已知在▱ABCD中,点E,F分别是边AB,CD的中点,BD是对角线,AG∥BD 交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你的结论.21.(10分)如图,已知菱形ABCD,AB=AC,点E,F分别是BC,AD的中点,连接AE,CF.(1)求证:四边形AECF是矩形;(2)若AB=8,求菱形的面积.22.(10分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至G,使OG=OD,连接EG,FG,判断四边形DEGF是否是菱形,并说明理由.23.(12分)如图,在矩形ABCD中,点M,N分别是AD,BC的中点,点P,Q分别是BM,DN 的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么特殊四边形?请说明理由.第二章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( )A .3(x +1)2=2(x +1) B.1x 2+1x-2=0C .ax 2+bx +c =0D .x 2+2x =x 2-1 2.方程(x -2)(x +3)=0的解是( )A .x =2B .x =-3C .x 1=-2,x 2=3D .x 1=2,x 2=-33.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( )A .-1或4B .-1或-4C .1或-4D .1或44.用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是( ) A .(x -1)2=2 B .(x -1)2=4 C .(x -1)2=1 D .(x -1)2=7 5.下列一元二次方程中,没有实数根的是( )A .x 2+2x +1=0B .x 2+x +2=0C .x 2-1=0D .x 2-2x -1=0 6.解方程(x +1)(x +3)=5较为合适的方法是( ) A .直接开平方法 B .配方法C .公式法或配方法D .分解因式法7.已知一元二次方程x 2-2x -1=0的两个根分别是x 1,x 2,则x 12-x 1+x 2的值为( ) A .-1 B .0 C .2 D .38.关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a 的值是( ) A .-1或5 B .1 C .5 D .-19.某县政府2015年投资0.5亿元用于保障性住房建设,计划到2017年投资保障性住房建设的资金为0.98亿元,如果从2015年到2017年投资此项目资金的年增长率相同,那么年增长率是( )A .30%B .40%C .50%D .10%10.有一块长32 cm ,宽24 cm 的长方形纸片,在每个角上截去相同的正方形,再折起来做一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是( )A .2 cmB .3 cmC .4 cmD .5 cm二、填空题(每小题3分,共18分)11.一元二次方程2x 2+6x =9的二次项系数、一次项系数、常数项和为___. 12.方程(x +2)2=x +2的解是____.13.若代数式4x 2-2x -5与2x 2+1的值互为相反数,则x 的值是__.14.写一个你喜欢的实数k 的值__ _,使关于x 的一元二次方程(k +1)x 2+2x -1=0有两个不相等的实数根.15.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.则这种药品的成本的年平均下降率为___.16.设m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根,则m 2+3m +n =__. 三、解答题(共72分) 17.(12分)解方程:(1) x 2+4x -1=0; (2)x 2+3x +2=0;(3)3x 2-7x +4=0.18.(10分)如图,已知A ,B ,C 是数轴上异于原点O 的三个点,且点O 为AB 的中点,点B 为AC 的中点.若点B 对应的数是x ,点C 对应的数是x 2-3x ,求x 的值.19.(8分)一元二次方程x 2-2x -54=0的某个根,也是一元二次方程x 2-(k +2)x +94=0的根,求k的值.20.(10分)某种商品的标价为400元/件,经过两次降价后的要价为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3 210元.问第一次降价后至少要售出该种商品多少件?21.(10分)小林准备进行如下操作试验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2,”他的说法对吗?请说明理由.22.(10分)某市电解金属锰厂从今年元月起安装了回收净化设备(安装时间不计),这样既保护环境,又节省原料成本,据统计使用回收净化设备后1~x月的利润的月平均值W(万元)满足W=10 x+90.请问多少个月后的利润和为1620万元?23.(12分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了109a%,求a的值.第三章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.事件A :打开电视,它正在播广告;事件B :抛掷一个均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A),P(B),P(C),则P(A),P(B),P(C)的大小关系正确的是( )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B ) C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )2.从-5,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是( ) A.15 B.25 C.35 D.453.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )A.12B.25C.37D.474.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取的两个球数字之和大于6的概率是( )A.12B.712C.58D.345.掷两枚普通正六面体骰子,所得点数之和为11的概率为( ) A.118 B.136 C.112 D.1156.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.12,第6题图) ,第7题图)7.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5258.有三正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三卡片背面朝上洗匀后随机抽取一,以其正面的数字作为a 的值,然后再从剩余的两卡片中随机抽取一,以其正面的数字作为b 的值,则点(a ,b)在第二象限的概率是( )A.16B.13C.12D.239.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条能够组成三角形的概率是( ) A.14 B.13 C.12 D.3410.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( )A.34B.13C.23D.12二、填空题(每小题3分,共18分)11.一个布袋中装有3个红球和4个白球,这些球除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为___.12.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有____个.13.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是___.14.一个不透明的袋子中装有黑、白小球各两个,这些球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率是__.15.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__.16.已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜色分布百分比的统计图.在这包糖果中任取一粒糖果,则取出的糖果的颜色为绿色或棕色的概率是__.三、解答题(共72分)17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.18.(10分)在一个不透明的口袋中装有4相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取一纸牌记下数字然后放回,再随机摸取一纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.19.(10分)甲、乙两个袋中均装有三除所标数值外完全相同的卡片,甲袋中的三卡片上所标有的三个数值为-7,-1,3.乙袋中的三卡片所标的数值为-2,1,6.先从甲袋中随机取出一卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况;(2)求点A落在第三象限的概率.(1)列表:20.(10分)分别把带有指针的圆形转盘A,B分成4等份、3等份的扇形区域,并在每一个小区域标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.21.(10分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样).食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小同学在该天早餐得到两个油饼”是________事件;(可能,必然,不可能)(2)请用列表或画树状图的方法,求出小同学该天早餐刚好得到猪肉包和油饼的概率.22.(10分)某景区7月1日~7月7日一周天气预报如图,小丽打算选择这期间一天或两天去该景区旅游.求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.23.(12分)有四正面分别标有数字2,1,-3,-4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四卡片中随机地摸取一不放回,将该卡片上的数字记为m,再随机地摸取一,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.(1)①画树状图得:第四章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列说确的是( )A .对应边都成比例的多边形相似B .对应角都相等的多边形相似C .边数相同的正多边形相似D .矩形都相似2.已知△ABC∽△DEF,相似比为3∶1,且△ABC 的周长为18,则△DEF 的周长为( ) A .2 B .3 C .6 D .54 3.如图,已知BC∥DE,则下列说法不正确的是( C )A .两个三角形是位似图形B .点A 是两个三角形的位似中心C .AE ∶AD 是相似比 D .点B 与点E ,点C 与点D 是对应位似点4.如图,身高为1.6 m 的小红想测量学校旗杆的高度,当她站在C 处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC =2.0 m ,BC =8.0 m ,则旗杆的高度是( C )A .6.4 mB .7.0 mC .8.0 mD .9.0 m,第3题图) ,第4题图) ,第5题图),第6题图)5.如图,为估算某河的宽度,在河对岸选定一个目标点,在近岸取点B ,C ,D ,使得AB⊥BC,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE =20 m ,CE =10 m ,CD =20 m ,则河的宽度AB 等于( B )A .60 mB .40 mC .30 mD .20 m6.如图,矩形ABCD 的面积是72,AE =12DC ,BF =12AD ,那么矩形EBFG 的面积是( B )A .24B .18C .12D .97.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( B )A .(6,0)B .(6,3)C .(6,5)D .(4,2),第7题图) ,第8题图) ,第9题图),第10题图)8.如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODE S △ADC =13.其中正确的个数有( B ) A .1个 B .2个 C .3个 D .4个9.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD.下列结论错误的是( C )A .∠C =2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点10.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,点P 为AB 边上一动点,若△PAD 与△PBC 是相似三角形,则满足条件的点P 的个数是( C )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共18分)11.若x y =m n =45(y≠n),则x -m y -n =__45__.12.如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x 的值是__16__. 13.如图,在△ABC 中,点P 是AC 上一点,连接BP.要使△ABP∽△ACB,则必须有∠ABP=__∠C __或∠APB =__∠ABC __或AB AP =__ACAB __.,第12题图) ,第13题图) ,第14题图) ,第15题图)14.如图,在矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF =__125__.15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为__22.5__米.16.如图,以点O 为位似中心,将△ABC 缩小后得△A′B′C′,已知OB =3OB′,则△A′B′C′与△ABC 的面积之比为__1∶9__.三、解答题(共72分)17.(10分)如图,点D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD=∠C,AB =6,AD =4,求线段CD 的长.在△ABD 和△ACB 中,∠ABD =∠C ,∠A =∠A ,∴△ABD ∽△ACB ,∴AB AC =ADAB,∵AB =6,AD =4,∴AC =AB 2AD =364=9,则CD =AC -AD =9-4=518.(10分)一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.两种截法:①30厘米与60厘米的两根钢筋为对应边,把50厘米的钢筋按10厘米与25厘米两部分截,则有1020=2550=3060=12,从而两个三角形相似;②30厘米与50厘米的两根钢筋为对应边,把50厘米的钢筋截出12厘米和36厘米两部分,则有2012=5030=6036=53,从而两个三角形相似19.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)在网格以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.20.(10分)如图,矩形ABCD 为台球桌面.AD =260 cm ,AB =130 cm .球目前在E 点位置,AE =60 cm .如果小丁瞄准了BC 边上的点F 将球打进去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF∽△CDF; (2)求CF 的长.(1)∵FG⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD ,又∵∠B =∠C =90°,∴△BEF ∽△CDF(2)设CF =x ,则BF =260-x ,∵AB =130,AE =60,BE =70,由(1)得,△BEF ∽△CDF ,∴BE CD =BFCF,即70130=260-x x ,∴x =169,即CF =169 cm21.(10分)如图,在△ABC 中,AD 是中线,且CD 2=BE·BA.求证:ED·AB=AD·BD.∵AD 是中线,∴BD =CD ,又CD 2=BE ·BA ,∴BD 2=BE ·BA ,即BE BD =BDAB,又∠B =∠B ,∴△BED∽△BDA ,∴ED AD =BDAB,∴ED ·AB =AD·BD22.(10分)如图,在平行四边形ABCD 中,过点A 作AE⊥BC,垂足为点E ,连接DE ,点F 为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB =8,AD =63,AF =43,求AE 的长.(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC (2)∵四边形ABCD 是平行四边形,∴CD =AB =8.由(1)知△ADF∽△DEC ,∴AD DE =AF CD ,∴DE =AD·CD AF =63×843=12.在Rt △ADE 中,由勾股定理得AE =DE 2-AD 2=122-(63)2=623.(12分)将一副三角尺如图①摆放(在Rt △ABC 中,∠ACB =90°,∠B =60°;在Rt △DEF 中,∠EDF =90°,∠E =45°),点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C.(1)求∠ADE 的度数;(2)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE ′交AC 于点M ,DF ′交BC 于点N ,试判断PMCN的值是否随着α的变化而变化?如果不变,请求出PMCN的值;反之,请说明理由.(1)由题意知,CD 是Rt △ABC 斜边AB 上的中线,∴AD =BD =CD ,∵在△BCD 中,BD =CD 且∠B =60°,∴△BCD 是等边三角形,∴∠BCD =∠BDC =60°,∴∠ADE =180°-∠BDC -∠EDF =180°-60°-90°=30° (2)PMCN的值不会随着α的变化而变化,理由如下:∵△APD 的外角∠MPD =∠A+∠ADE =30°+30°=60°,∴∠MPD =∠BCD =60°,∵在△MPD 和△NCD 中,∠MPD =∠NCD=60°,∠PDM =∠CDN =α,∴△MPD∽△NCD ,PM CN =PDCD,∵∠ACB =90°,∠BCD =60°,∴∠PCD=30°.在Rt△PCD中,∠PCD=30°,∴PDCD=13=33,∴PMCN=PDCD=33第五章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.将一包卷筒卫生纸按如图所示的方式摆放在桌面上,它的俯视图是( D )2.如图是由4个相同的正方体组成的几何体,则这个几何体的俯视图是( A )3.如图是一个几何体的实物图,则其主视图是( C )4.如图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度,则它的三视图是( A ) 5.木棒的长为1.2 m,则它的正投影的长一定( D )A.大于1.2 m B.小于1.2 m C.等于1.2 m D.小于或等于1.2 m6.下列四个几何体中,俯视图为四边形的是( D )7.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( A )8.小琳过14周岁生日,父母为她预定的生日蛋糕如图所示,当投影线由生日蛋糕的前方射到后方时,它的正投影应该是( B )9.有两个完全相同的长方体,按如图所示方式摆放,其主视图是( C )10.如图,小轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现他身后影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现他身前影子的顶部刚好接触到路灯BD 的底部,已知小轩同学的身高是1.5 m,两个路灯的高度都是9 m,则两路灯这间的距离是( D ) A.24 m B.25 m C.28 m D.30 m二、填空题(每小题3分,共18分)11.太形成的投影是__平行投影__,电动车灯所发出的光线形成的投影是__中心投影__.12.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有__①②③__.(填编号)13.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体可能是由__6或7或8__个小正方体搭成的.,第13题图) ,第15题图) ,第16题图)14.小刚和小明在太下行走,小刚身高1.5 m,他的影长为2.0 m,小刚比小明矮9 cm,此刻小明的影长是__2.12_m__.15.一个长方体的主视图和左视图如图(单位:cm),则其俯视图的面积是__6_cm2__.16.如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC=30°,窗户的高在教室地面上的影长MN=23米,窗户的下沿到教室地面的距离BC=1米(点M,N,C在同一直线上),则窗户的高AB为__2米__.三、解答题(共72分)17.(10分)根据下列主视图和俯视图,指出其对应的物体.a —D ,b —A ,c —B ,d —C18.(10分)如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数.请你画出它从正面和从左面看得到的平面图形.19.(10分)小亮在某一时刻测得小树高为1.5 m ,其影长为1.2 m ,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,它的一部分影子便落在了教学楼的墙上,经测量,地面部分影长为6.4 m ,墙上影长为2 m ,那么这棵大树高为多少米?设大树影长为x 米,大树高为y 米,则x -6.42=1.21.5,解得x =8.∵y 8=1.51.2∴y =10,答:这棵大树高为10米20.(10分)在长、宽都为4 m ,高为3 m 的房间的正中央的天花板上悬挂一只白炽灯泡,为了集中光线,加上了灯罩,如图所示,已知灯罩深8 cm ,灯泡离地面2 m ,为了使光线恰好照在墙脚,问灯罩的直径应为多少?(结果精确到0.01米)如图,由题意知,DE 为地面上墙脚的对角线连线.过点A 作AM ⊥DE 交DE 于点M ,交BC 于点N.∵DE∥BC ,∴△ABC ∽△ADE ,∴AN AM =BC DE .∵AN =0.08,AM =2,DE =42,∴BC =42×0.082≈0.23 m21.(10分)如图,某居民小区A ,B 两楼之间的距离MN =30 m ,两楼的高度都是20 m ,A 楼在B 楼正南,B 楼窗户朝南.B 楼一楼住户的窗台离小区地面的距离DN =2 m ,窗户高CD =1.8 m .当正午时刻太线与地面成30°角时,A 楼的影子是否影响B 楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.(参考数据:2=1.414,3=1.732,5=2.236)如图,设光线FE影响到B楼的E处,作GE⊥FM于点G,EG=MN=30,∠FEG=30°,FG=103,MG=FM-GF=20-103≈2.68.又DN=2,CD=1.8,∴DE=2.68-2=0.68<1.8.∴A楼的影子影响到B楼一楼采光,挡住该住户窗户0.68 m22.(10分)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积.(结果保留根号)根据该密封纸盒的三视图知道它是一个六棱柱.∵其高为12 cm,底面边长为5 cm,∴其侧面积为6×5×12=360(cm2),密封纸盒的上、下底面的面积和为:12×5×32×5×12=753(cm2),∴其表面积为(753+360)cm223.(12分)如图,王乐同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2 m,且恰好位于路灯A的正下方,接着他又走了6.5 m到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王乐身高1.8 m,路灯B高9 m).(1)标出王乐站在P处时,在路灯B下的影子;(2)计算王乐站在Q处时,在路灯A下的影长;(3)计算路灯A的高度.(1)线段CP为王乐在路灯B下的影子.(2)由题意得Rt△CEP∽Rt△CBD.∴EPBD=CPCD,∴1.89=22+6.5+QD,解得QD=1.5 m.所以王乐站在Q处时,在路灯A下的影长为1.5 m(3)路灯A的高度为12 m第六章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.反比例函数的图象经过点(-2,3),则此函数的图象也经过点( A )A .(2,-3)B .(-3,-3)C .(2,3)D .(-4,6) 2.如图,是我们学过的反比例函数的图象,它的函数表达式可能是( B )A .y =x 2B .y =4xC .y =-3xD .y =12x3.为了更好的保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m )满足关系式:V =Sh(V≠0),则S 关于h 的函数图象大致是( C )4.反比例函数y =k x 的图象经过点(-2,32),则它的图象位于( B )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限5.若在同一直角坐标系中,直线y =k 1x 与双曲线y =k 2x有两个交点,则有( C )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<06.反比例函数y =2x的图象上有两个点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是( D )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定7.在反比例函数y =4x的图象上,阴影部分的面积不等于4的是( B )8.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =kx(x>0)的图象经过顶点B ,则k 的值为( D )A .12B .20C .24D .32,第8题图) ,第9题图) ,第10题图)9.如图,函数y =-x 与函数y =-4x的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D ,则四边形ACBD 的面积为( D )A .2B .4C .6D .810.反比例函数y =mx的图象如图所示,以下结论:①常数m<-1;②在每个象限,y 随x 的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k ;④若P(x ,y)在图象上,则P′(-x ,-y)也在图象上.其中正确的是( C )A .①②B .②③C .③④D .①④ 二、填空题(每小题3分,共18分)11.反比例函数y =kx的图象经过点(1,-2),则k 的值为__-2__.12.已知正比例函数y =-2x 与反比例函数y =kx的图象的一个交点坐标为(-1,2),则另一个交点的坐标为__(1,-2)__.13.已知反比例函数y =kx(k≠0)的图象经过点(3,-1),则当1<y <3时,自变量x 的取值围是__-3<x <-1__.14.在某一电路中,保持电压不变,电流I(安)与电阻R(欧)成反比例,其图象如图所示,则这一电路的电压为__12__伏.,第14题图) ,第15题图) ,第16题图)15.如图,直线x =2与反比例函数y =2x ,y =-1x的图象分别交于A ,B 两点,若点P 是y 轴上任意一点,则△PAB 的面积是__32__.16.如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A ,C 分别在x 轴、y 轴上,反比例函数的图象与正方形的两边AB ,BC 分别交于点M ,N ,ND ⊥x 轴,垂足为D ,连接OM ,ON ,MN.下列结论:①△OCN≌△OAM;②ON=MN; ③四边形DAMN 与△MON 面积相等;④若∠MON =45°,MN =2,则点C 的坐标为(0,2+1).其中正确结论的序号是__①③④__.三、解答题(共72分)17.(10分)已知反比例函数的图象与直线y =2x 相交于点A(1,a),求这个反比例函数的表达式.将点A (1,a )代入直线y =2x 得a =2×1=2,∴点A 的坐标为(1,2),将A (1,2)代入y =kx中,可得反比例函数的表达式为y =2x。

(北师大版)九年级数学上册各章测试题及期中、期末测试题及答案(共10套)

(北师大版)九年级数学上册各章测试题及期中、期末测试题及答案(共10套)

(北师大版)九年级数学上册各章测试题及期中、期末测试题及答案(共10套)班级: 姓名: 考号:一、填空题(本大题有10小题,每小题3分,共30分.将答案填在题中横线上)1.在ABC ∆中,边AB 、BC 、AC 的垂直平分线相交于P ,则PA 、PB 、PC 的大小关系是 .2.如果等腰三角形的一个角是80°,那么顶角是 度.3.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为 .4. ABC ∆中,90=∠C ,AD 平分BAC ∠,交BC 于点D ,若7=DC ,则D 到AB 的距离是 .5.如图,ABC ∠=DCB ∠,需要补充一个直接条件才能使ABC ∆≌DCB ∆.甲、乙、丙、丁四位同学填写的条件分别是:甲“DC AB =”;乙“DB AC =”;丙“D A ∠=∠”;丁“A CB ∠=DBC ∠”.那么这四位同学填写错误的是 .6. 用反证法证明 “三角形中至少有一个角不小于60°时,假设“ ”,则与“ ”矛盾,所以原命题正确.7.补全“求作AOB ∠的平分线”的作法:①在OA 和OB 上分别截取OD 、OE ,使OD =OE .②分别以D 、E 为圆心,以 为半径画弧,两弧在AOB ∠内交于点C .③作射线OC 即为AOB ∠的平分线.8.一轮船以每小时20海里的速度沿正东方向航行.上午8时,该船在A 处测得某灯塔位于它的北偏东30°的B 处(如图),上午9时行到C 处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是 海里(结果保留根号).9.在ABC ∆中,A ∠=90°,AC AB =,BD 平分B ∠交AC 于D ,BC DE ⊥于E ,若10=BC ,则DEC ∆的周长是 .10.如图是2002年8月在北京召开的第24届国际数学家大会的会标,它是由4个相同的直角三角形拼和而成.若图中大小正方形的面积分别为522cm 和42cm ,则直角三角形的两条直角边的和是 cm .二、选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)11.两个直角三角形全等的条件是( )(A )一锐角对应相等; (B )两锐角对应相等; (C )一条边对应相等; (D )两条边对应相等.12.到ABC ∆的三个顶点距离相等的点是ABC ∆的( ).(A )三边垂直平分线的交点; (B )三条角平分线的交点; (C )三条高的交点; (D )三边中线的交点.13.如图,由21∠=∠,DC BC =,EC AC =,得ABC ∆≌EDC ∆的根据是( ) (A )SAS (B )ASA (C )AAS (D )SSS14.ABC ∆中,AC AB =,BD 平分ABC ∠交AC 边于点D ,75=∠BDC ,则A ∠的度数为( )(A )35° (B )40° (C )70° (D )110° 15.下列两个三角形中,一定全等的是( ) (A )有一个角是40°,腰相等的两个等腰三角形; (B )两个等边三角形;(C )有一个角是100°,底相等的两个等腰三角形; (D )有一条边相等,有一个内角相等的两个等腰三角形.C ∠1(A )锐角三角形; (B )钝角三角形; (C )直角三角形; (D )任意三角形.17.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请你计算后帮小明在标牌的“▇”填上适当的数字是( ).(A )3米 (B )4米 (C )5米 (D )6米18. 一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是( ). (A )等腰三角形; (B )等边三角形; (C )直角三角形; (D )等腰直角三角形.19.如图,已知AC 平分PAQ ∠,点B 、B '分别在边AP 、AQ 上,如果添加一个条件,即可推出AB =B A ',那么该条件不可以是( )(A)AC B B ⊥' (B)C B BC '= (C)ACB ∠=B AC '∠ (D) =20.如图,AO FD ⊥于D ,BO FE ⊥于E ,下列条件:①OF 是AOB ∠的平分线;②EF DF =;③EO DO =;④OFD ∠=OFE ∠.其中能够证明DOF ∆≌EOF ∆的条件的个数有( )(A)1个 (B)2个 (C)3个 (D)4个三、解答题(本大题有6小题,共60分.解答需写出必要的文字说明、演算步骤或证明过程) 21.(8分)已知:如图,A ∠=90=∠D ,BD AC =.求证:OC OB =.22.(8分)如图,OCB OBC ∠=∠,AOC AOB ∠=∠,请你写一个能用全部已知条件才能推出的结论,并证明你的结论.23.(10分)已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使CE=CD .求证:BD =DE .24.(10分)已知:如图,ABC ∆中,AC AB =,120=∠A .(1)用直尺和圆规作AB 的垂直平分线,分别交BC 、AB 于点M 、N (保留作图痕迹,不写作法). (2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.25. (本题满分12分)阅读下面的题目及分析过程,并按要求进行证明. 已知:如图,E 是BC 的中点,点A 在DE 上,且CDE BAE ∠=∠.求证:CD AB =.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证CD AB =,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.26.(12分)已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,可以说明:ACN ∆≌MCB ∆,从而得到结论:BM AN =.现要求:(1)将ACM ∆绕C 点按逆时针方向旋转180°,使A 点落在CB 上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹).(2)在(1)所得到的图形中,结论“BM AN =”是否还成立?若成立,请给予证明;若不成立,请说明理由.(3)在(1)所得到的图形中,设MA 的延长线与BN 相交于D 点,请你判断△ABD 与四边形MDNC 的形状,并说明你的结论的正确性.北师大版九年级数学上册第一章测试题参考答案一、DAABCDDCBD二、11.PC PB PA ==; 12.80或20; 13.75; 14.7; 15.乙;16.三角形的三个内角都小于60,三角形的内角和是 180;17.大于DE21的长为半径;18. 320;19.10;20. 10.三、21由A ∠=90=∠D ,BD AC =,BC BC =知BAC ∆≌CDB ∆,因此有DC AB =.又DOC AOB ∠=∠(对顶角),A ∠= 90=∠D ,所以BAC ∆≌CDB ∆,所以OD AO =.又BD AC =,所以BO BD AO AC -=-,即OC OB =.22.∵ ∠OBC =∠OCB ,∴ OB =OC .又∵ ∠AOB =∠AOC ,OA =OA , ∴ △AOB ≌△AOC ,∴AB =AC .23. BD 是正三角形ABC 的AC 边的中线得AC BD ⊥,BD 平分ABC ∠,30=∠DBE .由CE CD =知∠CDE =∠E .由∠ACE = 120°,得∠CDE +∠E =60°,所以∠CDE =∠E =300,则有BD = DE .24.(1)作图略;(2)连接AM ,则BM =AM .∵ AB =AC ,∠BAC =120°,∴ ∠B =∠C =30°于是∠MAB =∠B =30°,∠MAC =90°.∴ .21CM AM =故CMBM 21=,即CM =2BM .25.方法一:作BF ⊥DE 于点F ,CG ⊥DE 于点G . ∴ ∠F =∠CGE =90°.又∵ ∠BEF =∠CEG ,BE =CE ,∴ △BFE ≌△CGE .∴ BF =CG .在△ABF 和△DCG 中,∵ ∠F =∠DGC =90°,∠BAE =∠CDE ,BF =CG ,∴ △ABF ≌△DCG .∴ AB =CD .方法二:作CF ∥AB ,交DE 的延长线于点F .∴ ∠F =∠BAE .又∵ ∠ABE =∠D ,∴ ∠F =∠D .∴ CF =CD .∵ ∠F =∠BAE ,∠AEB =∠FEC ,BE =C E ,∴ △ABE ≌△FCE .∴ AB =CF . ∴ AB =CD .方法三:延长DE 至点F ,使EF =DE .又∵ BE =CE ,∠BEF =∠CED ,∴ △BEF ≌△CED . ∴ B F=CD ,∠D =∠F . 又∵ ∠BAE =∠D ,∴ ∠BAE =∠F . ∴ AB =BF .∴ AB =CD .26.(1)作图略.(2)结论“AN =BM ”还成立.证明:∵ CN =CB ,∠ACN =∠MCB =60°,CA =CM ,∴ △ACN ≌△MCB .∴ AN =BM . (3)△ABD 是等边三角形,四边形MDNC 是平行四边形.证明: ∵ ∠DAB =∠MAC =60°,∠DBA =60°∴ ∠ADB =60°.∴ △ABD 是等边三角形.∵ ∠ADB =∠AMC =60°,∴ ND ∥CM .∵ ∠ADB =∠BNC =60°,∴ MD ∥CN . ∴ 四边形MDNC 是平行四边形.北师大版九年级数学上册第二章测试题 班级: 姓名: 考号:一、选择题(每题3分,计30分)1.下列方程中,一元二次方程共有( ). ① ② ③ ④ ⑤A . 2个B .3个C .4个D . 5个 2.方程 的根为( ).A .B .C .D .3.若方程ABC ∆有解,则ABC ∆的取值范围是( ). A .ABC ∆ B .ABC ∆ C .ABC ∆ D .无法确定 4.若分式ABC∆的值为零,则x 的值为( ).A .3B .3或-3C .0D .-35.用配方法将二次三项式a 2+ 4a +5变形,结果是( ).A.(a –2)2+1B.(a +2)2+1C.(a –2)2-1D.(a +2)2-1 6.一元二次方程x 2-x+2=0的根的情况是( ).A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .只有一个实数根7.已知一个三角形的两边长是方程x 2-8x+15=0的两根,则第三边y 的取值范围是( ). A .y<8 B .3<y<5 c .2<y<8 D .无法确定8.方程x 2+4x=2的正根为( ).A .2-ABC ∆B .2+ABC ∆ C .-2-ABC ∆D .-2+ABC ∆9.有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,则原来的两位数中较大的数为( ). A .62 B .44 C .53 D .3510.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为( ).A .5%B .20%C .15%D .10% 二、填空题(每题3分,计30分)11.把方程(2x+1)(x —2)=5-3x 整理成一般形式后,得 ,其中常数项是 . 12.方程ABC ∆用 法较简便,方程的根为ABC ∆. 13.方程ABC ∆是一元二次方程,则ABC ∆.14.已知方程ABC ∆的一个根是2,则ABC ∆的值是 ,方程的另一个根为 . 15.当x=________时,代数式3x 2-6x 的值等于12.16.请你给出一个c 值, c= ,使方程x 2-3x+c=0无解. 17.已知x 2+4x -2=0,那么3x 2+12x +2002的值为 .18.菱形ABCD 的一条对角线长为6,边AB 的长是方程ABC ∆的一个根,则菱形ABCD 的周长为 .19.第二象限内一点A (x —1,x 2—2),关于x 轴的对称点为B ,且AB=6,则x=_________.20.两个正方形,小的正方形的边长是大的正方形的边长一半多4cm ,大的正方形的面积是小的正方形的面积2倍少32cm 2.则大、小两正方形的边长分别为____________. 三、解答题(共40分)21.(6分)用适当的方法解方程: (1) ABC ∆; (2) ABC∆.22.(5分)已知ABC ∆,且当ABC ∆时,ABC ∆,求ABC ∆的值.23.(5分)已知关于x 的方程x 2+kx -2=0的一个解与方程ABC∆解相同.(1)求k 的值;(2)求方程x 2+kx -2=0的另一个根.24.(8分)我们知道:对于任何实数ABC ∆,①∵ABC ∆≥0,∴ABC ∆+1>0; ②∵ABC ∆≥0,∴ABC ∆+ABC∆>0.模仿上述方法解答:求证:(1)对于任何实数ABC ∆,均有:ABC ∆>0;(2)不论ABC ∆为何实数,多项式ABC ∆的值总大于ABC ∆的值.25.(8分)若把一个正方形的一边增加2 cm ,把另一边增加1 cm ,所得的矩形比正方形面积多14 cm 2,求原来得正方形边长.26.(8分)三个连续正奇数,最大数与最小数的积比中间一个数的6倍多3,求这三个正奇数.四、拓广提高(共20分)27.(10分)某校2006年捐款1万元给希望工程,以后每年都捐款,计划到2008年共捐款4.75万元,问该校捐款的平均年增长率是多少?28.(10分)为了开阔学生视野,某校组织学生从学校出发,步行6km到科技展览馆参观.返回时比去时每小时少走1千米,结果返回时比去时多用了半小时.求学生返回时步行的速度.北师大版九年级数学上册第二章测试题参考答案1.B 2.C 3.B 4.D 5.B 6.C 7.C 8.D 9.C 10. D 二、填空题11.ABC ∆ 12.因式分解法,ABC∆ 13.—2 14.ABC ∆15.ABC ∆ 16.3等 17.200818.16 19.ABC ∆ 20.16cm ,12cm 三、解答题21.(1)ABC ∆,ABC∆;(2)ABC ∆ABC ∆,ABC ∆22.把x=1,y=0代入得ABC ∆ 23.(1)方程ABC∆的解为,x=2,把x=2代入方程x 2+kx -2=0得:4+2k-2=0,k=—1; (2)x 2—x -2=0的根为ABC ∆,所以方程x 2+kx -2=0的另一个根为—1. 24.(1)ABC ∆; (2)ABC∆即ABC ∆>ABC ∆.25.设原正方形的边长为x ,则ABC ∆. 所以,原来得正方形边长为4cm . 26.设中间一个正奇数为x ,则ABC ∆由于x 为正奇数,x=—1舍去,三个正奇数为5,7,9 四、拓广提高27.设该校捐款的平均年增长率是x ,则, 整理,得 , 解得 ,所以,该校捐款的平均年增长率是50%. 28.设返回的速度为xkm/h ,则ABC∆(舍去)所以,学生返回时步行的速度为3km/h .北师大版九年级数学上册第三章测试题 班级: 姓名: 考号:A 1 个B 2 个C 3 个D 4 个 2、四边形具有的性质是A 对边平行B 轴对称性C 稳定性D 不稳定性 3、一个多边形的每一个外角都等于720,则这个多边形的边数是A 四边B 五边C 六边D 七边 4、下列说法不正确的是A 平行四边形对边平行B 两组对边平行的四边形是平行四边形C 平行四边形对角相等D 一组对角相等的四边形是平行四边形 5、一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为 A ︒30 B ︒45 C ︒60 D ︒756、平行四边形的两条对角线将此平行四边形分成全等三角形的对数是A 2 对B 3对C 4对D 5 对7、 菱形具有而平行四边形不具有的性质是A .内角和是360°; B. 对角相等; C. 对边平行且相等; D. 对角线互相垂直. 8、 平行四边形各内角的平分线围成一个四边形,则这个四边形一定是 A. 矩形; B. 平行四边形; C. 菱形; D. 正方形9、 如图,在等腰梯形ABCD 中,AB ∥CD ,AD=BC= a cm ,∠A=60°,BD 平分∠ABC ,则这个梯形的周长是A. 4a cm ;B. 5a cm ;C.6a cm ;D. 7a cm ;10、等边三角形的一边上的高线长为cm 32,那么这个等边三角形的中位线长为 A cm 3 B cm 5.2 C cm 2 D cm 4 二、耐心填一填:(把答案填放相应的空格里。

(北师大版)九年级上册数学各章测试题及期中、期末测试题及答案(全共10套)

(北师大版)九年级上册数学各章测试题及期中、期末测试题及答案(全共10套)

北师大版九年级数学上册第一章测试题 班级: 姓名: 考号:一、填空题(本大题有10小题,每小题3分,共30分.将答案填在题中横线上)1.在ABC ∆中,边AB 、BC 、AC 的垂直平分线相交于P ,则PA 、PB 、PC 的大小关系是 .2.如果等腰三角形的一个角是80°,那么顶角是 度.3.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为 .4. ABC ∆中,90=∠C ,AD 平分BAC ∠,交BC 于点D ,若7=DC ,则D 到AB 的距离是 .5.如图,ABC ∠=DCB ∠,需要补充一个直接条件才能使ABC ∆≌DCB ∆.甲、乙、丙、丁四位同学填写的条件分别是:甲“DC AB =”;乙“DB AC =”;丙“D A ∠=∠”;丁“ACB ∠=DBC ∠”.那么这四位同学填写错误的是 .6. 用反证法证明 “三角形中至少有一个角不小于60°时,假设“ ”,则与“ ”矛盾,所以原命题正确.7.补全“求作AOB ∠的平分线”的作法:①在OA 和OB 上分别截取OD 、OE ,使OD =OE .②分别以D 、E 为圆心,以 为半径画弧,两弧在AOB ∠内交于点C .③作射线OC 即为AOB ∠的平分线.8.一轮船以每小时20海里的速度沿正东方向航行.上午8时,该船在A 处测得某灯塔位于它的北偏东30°的B 处(如图),上午9时行到C 处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是 海里(结果保留根号).9.在ABC ∆中,A ∠=90°,AC AB =,BD 平分B ∠交AC 于D ,BC DE ⊥于E ,若10=BC ,则DEC ∆的周长是 .10.如图是2002年8月在北京召开的第24届国际数学家大会的会标,它是由4个相同的直角三角形拼和而成.若图中大小正方形的面积分别为522cm 和42cm ,则直角三角形的两条直角边的和是 cm . 二、选择题(本大题有10小题,每小题3分,共30分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)11.两个直角三角形全等的条件是( )(A )一锐角对应相等; (B )两锐角对应相等; (C )一条边对应相等; (D )两条边对应相等. 12.到ABC ∆的三个顶点距离相等的点是ABC ∆的( ). (A )三边垂直平分线的交点; (B )三条角平分线的交点; (C )三条高的交点; (D )三边中线的交点. 13.如图,由21∠=∠,DC BC =,EC AC =,得ABC ∆≌EDC ∆的根据是( )(A )SAS (B )ASA (C )AAS (D )SSSA BC D(第15题)(第18题)(第20题)(第3题)14.ABC ∆中,AC AB =,BD 平分ABC ∠交AC 边于点D ,75=∠BDC ,则A∠的度数为( )(A )35° (B )40° (C )70° (D )110° 15.下列两个三角形中,一定全等的是( ) (A )有一个角是40°,腰相等的两个等腰三角形;(B )两个等边三角形; (C )有一个角是100°,底相等的两个等腰三角形;(D )有一条边相等,有一个内角相等的两个等腰三角形.16.适合条件A ∠=B ∠ =C ∠31的三角形一定是( )(A )锐角三角形; (B )钝角三角形; (C )直角三角形; (D )任意三角形. 17.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请你计算后帮小明在标牌的“▇”填上适当的数字是( ).(A )3米 (B )4米 (C )5米 (D )6米18. 一个三角形如果有两边的垂直平分线的交点在第三边上,那么这个三角形是( ).(A )等腰三角形; (B )等边三角形; (C )直角三角形; (D )等腰直角三角形.19.如图,已知AC 平分PAQ ∠,点B 、B '分别在边AP 、AQ 上,如果添加一个条件,即可推出AB =B A ',那么该条件不可以是( )(A)AC B B ⊥' (B)C B BC '=(C)ACB ∠=B AC '∠ (D)ABC ∠ =C B A '∠20.如图,AO FD ⊥于D ,BO FE ⊥于E ,下列条件:①OF 是AOB ∠的平分线;②EF DF =;③EO DO =;④OFD ∠=OFE ∠.其中能够证明DOF ∆≌EOF ∆的条件的个数有( )(A)1个 (B)2个 (C)3个 (D)4个三、解答题(本大题有6小题,共60分.解答需写出必要的文字说明、演算步骤或证明过程)21.(8分)已知:如图,A ∠=90=∠D ,BD AC =.求证:OC OB =.AB7(第7题)(第9题)(第10题)22.(8分)如图,OCB OBC ∠=∠,AOC AOB ∠=∠,请你写一个能用全部已知条件才能推出的结论,并证明你的结论.23.(10分)已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使 CE =CD .求证:BD =DE .24.(10分)已知:如图,ABC ∆中,AC AB =,120=∠A .(1)用直尺和圆规作AB 的垂直平分线,分别交BC 、AB 于点M 、N (保留作图痕迹,不写作法).(2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.AB COA B C25. (本题满分12分)阅读下面的题目及分析过程,并按要求进行证明. 已知:如图,E 是BC 的中点,点A 在DE 上,且CDE BAE ∠=∠. 求证:CD AB =. 分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证CD AB =,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.AB C D E F A B C D E EF =DE (3)F GA B C D E (1) AB C D ECF ∥AB (2) F26.(12分)已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,可以说明:ACN ∆≌MCB ∆,从而得到结论:BM AN =.现要求:(1)将ACM ∆绕C 点按逆时针方向旋转180°,使A 点落在CB 上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹).(2)在(1)所得到的图形中,结论“BM AN =”是否还成立?若成立,请给予证明;若不成立,请说明理由.(3)在(1)所得到的图形中,设MA 的延长线与BN 相交于D 点,请你判断△ABD 与四边形MDNC 的形状,并说明你的结论的正确性.A BC MNBC N参考答案一、DAABCDDCBD二、11.PC PB PA ==; 12. 80或 20; 13.75; 14.7; 15.乙;16.三角形的三个内角都小于 60,三角形的内角和是180;17.大于DE 21的长为半径;18. 320;19.10;20. 10.三、21由A ∠=90=∠D ,BD AC =,BC BC =知BAC ∆≌CDB ∆,因此有DC AB =.又DOC AOB ∠=∠(对顶角),A ∠=90=∠D ,所以BAC ∆≌CDB ∆,所以OD AO =.又BD AC =,所以BO BD AO AC -=-,即OC OB =.22.∵ ∠OBC =∠OCB ,∴ OB =OC .又∵ ∠AOB =∠AOC ,OA =OA , ∴ △AOB ≌△AOC ,∴AB =AC .23. BD 是正三角形ABC 的AC 边的中线得AC BD ⊥,BD 平分ABC ∠,30=∠DBE .由CE CD =知∠CDE =∠E .由∠ACE = 120°,得∠CDE +∠E =60°,所以∠CDE =∠E =300,则有BD = DE .24.(1)作图略;(2)连接AM ,则BM =AM .∵ AB =AC ,∠BAC =120°,∴ ∠B =∠C =30°于是 ∠MAB =∠B =30°,∠MAC =90°.∴ .21CM AM =故CM BM 21=,即CM =2BM .25.方法一:作BF ⊥DE 于点F ,CG ⊥DE 于点G . ∴ ∠F =∠CGE =90°.又∵ ∠BEF =∠CEG ,BE =CE ,∴ △BFE ≌△CGE .∴ BF =CG .在△ABF 和△DCG 中,∵ ∠F =∠DGC =90°,∠BAE =∠CDE ,BF =CG ,∴ △ABF ≌△DCG .∴ AB =CD .方法二:作CF ∥AB ,交DE 的延长线于点F .∴ ∠F =∠BAE .又∵ ∠ABE =∠D ,∴ ∠F =∠D .∴ CF =CD .∵ ∠F =∠BAE ,∠AEB =∠FEC ,BE =C E ,∴ △ABE ≌△FCE .∴ AB =CF . ∴ AB =CD .方法三:延长DE 至点F ,使EF =DE .又∵ BE =CE ,∠BEF =∠CED ,∴ △BEF ≌△CED . ∴ B F=CD ,∠D =∠F . 又∵ ∠BAE =∠D ,∴ ∠BAE =∠F . ∴ AB =BF .∴ AB =CD .26.(1)作图略.(2)结论“AN =BM ”还成立. 证明:∵ CN =CB ,∠ACN =∠MCB =60°,CA =CM ,∴ △ACN ≌△MCB .∴ AN =BM . (3)△ABD 是等边三角形,四边形MDNC 是平行四边形.证明: ∵ ∠DAB =∠MAC =60°,∠DBA =60°∴ ∠ADB =60°.∴ △ABD 是等边三角形.∵ ∠ADB =∠AMC =60°,∴ ND ∥CM .∵ ∠ADB =∠BNC =60°,∴ MD ∥CN . ∴ 四边形MDNC 是平行四边形.班级: 姓名: 考号:一、选择题(每题3分,计30分)1.下列方程中,一元二次方程共有( ).①2320x x += ②22340x xy -+= ③214x x -= ④21x =⑤2303xx -+= A . 2个 B .3个 C .4个 D . 5个 2.方程2(3)5(3)x x x -=-的根为( ). A . 52x =B .3x =C .125,32x x ==D . 125,32x x =-=- 3.若方程()a x =-24有解,则a 的取值范围是( ). A .0≤a B .0≥a C .0>a D .无法确定4.若分式2926x x --的值为零,则x 的值为( ).A .3B .3或-3C .0D .-35.用配方法将二次三项式a 2+ 4a +5变形,结果是( ).A.(a –2)2+1B.(a +2)2+1C.(a –2)2-1D.(a +2)2-1 6.一元二次方程x 2-x+2=0的根的情况是( ).A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .只有一个实数根7.已知一个三角形的两边长是方程x 2-8x+15=0的两根,则第三边y 的取值范围是( ). A .y<8 B .3<y<5 c .2<y<8 D .无法确定8.方程x 2+4x=2的正根为( ).A .2-6B .2+6C .-2-6D .-2+69.有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,则原来的两位数中较大的数为( ). A .62 B .44 C .53 D .3510.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为( ). A .5% B .20% C .15% D .10% 二、填空题(每题3分,计30分) 11.把方程(2x+1)(x —2)=5-3x 整理成一般形式后,得 ,其中常数项是 .12.方程22(2)250x x --=用 法较简便,方程的根为12____,____x x ==. 13.方程22(2)(3)20mm x m x --+--=是一元二次方程,则____m =.14.已知方程22155k x x =+-的一个根是2,则k 的值是 ,方程的另一个根为 .15.当x=________时,代数式3x 2-6x 的值等于12.16.请你给出一个c 值, c= ,使方程x 2-3x+c=0无解. 17.已知x 2+4x -2=0,那么3x 2+12x +2002的值为 .18.菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个根,则菱形ABCD 的周长为 . 19.第二象限内一点A (x —1,x 2—2),关于x 轴的对称点为B ,且AB=6,则x=_________. 20.两个正方形,小的正方形的边长是大的正方形的边长一半多4cm ,大的正方形的面积是小的正方形的面积2倍少32cm 2.则大、小两正方形的边长分别为____________. 三、解答题(共40分) 21.(6分)用适当的方法解方程: (1) 2)2)(113(=--x x ; (2) 4)2)(1(13)1(+-=-+x x x x .22.(5分)已知222a ax x y --=,且当1=x 时,0=y ,求a 的值.23.(5分)已知关于x 的方程x 2+kx -2=0的一个解与方程311=-+x x 解相同. (1)求k 的值;(2)求方程x 2+kx -2=0的另一个根.24.(8分)我们知道:对于任何实数x ,①∵2x ≥0,∴2x +1>0;②∵2)31(-x ≥0,∴2)31(-x +21>0. 模仿上述方法解答:求证:(1)对于任何实数x ,均有:3422++x x >0;(2)不论x 为何实数,多项式1532--x x 的值总大于2422--x x 的值.25.(8分)若把一个正方形的一边增加2 cm ,把另一边增加1 cm ,所得的矩形比正方形面积多14 cm 2,求原来得正方形边长. 26.(8分)三个连续正奇数,最大数与最小数的积比中间一个数的6倍多3,求这三个正奇数.四、拓广提高(共20分) 27.(10分)某校2006年捐款1万元给希望工程,以后每年都捐款,计划到2008年共捐款4.75万元,问该校捐款的平均年增长率是多少?28.(10分)为了开阔学生视野,某校组织学生从学校出发,步行6km到科技展览馆参观.返回时比去时每小时少走1千米,结果返回时比去时多用了半小时.求学生返回时步行的速度.北师大版九年级数学上册第二章测试题参考答案一、选择题1.B 2.C 3.B 4.D 5.B 6.C 7.C 8.D 9.C 10. D 二、填空题11.7,0722-=-x 12.因式分解法,21,31-13.—2 14.3,3±15.51± 16.3等 17.2008 18.16 19.5- 20.16cm ,12cm 三、解答题21.(1)020173,222116322=+-=+--x x x x x ,4,3521==x x ; (2),6331244),2)(1(312)1(422-+=-++-=-+x x x x x x x x062=-+x x ,3,221-==x x22.把x=1,y=0代入得2,1,20212-==--=a a a a 23.(1)方程311=-+x x 的解为,x=2,把x=2代入方程x 2+kx -2=0得:4+2k-2=0,k=—1; (2)x 2—x -2=0的根为1,221-==x x ,所以方程x 2+kx -2=0的另一个根为—1. 24.(1)01)1(234222>++=++x x x ;(2)043)21(1)242(1532222>+-=+-=-----x x x x x x x 即1532--x x >2422--x x .25.设原正方形的边长为x ,则4,14)1)(2(2=+=++x x x x . 所以,原来得正方形边长为4cm .26.设中间一个正奇数为x ,则1,7,36)2)(2(21-==+=-+x x x x x 由于x 为正奇数,x=—1舍去,三个正奇数为5,7,9 四、拓广提高27.设该校捐款的平均年增长率是x ,则75.4)1(1)1(112=+⨯++⨯+x x , 整理,得75.132=+x x ,解得),(5.3%,505.021舍去不合题意-===x x ,所以,该校捐款的平均年增长率是50%. 28.设返回的速度为xkm/h ,则4,3,012,62116212-===-+=++x x x x xx (舍去) 所以,学生返回时步行的速度为3km/h .北师大版九年级数学上册第三章测试题 班级: 姓名: 考号:A 1 个B 2 个C 3 个D 4 个 2、四边形具有的性质是A 对边平行B 轴对称性C 稳定性D 不稳定性 3、一个多边形的每一个外角都等于720,则这个多边形的边数是A 四边B 五边C 六边D 七边 4、下列说法不正确的是A 平行四边形对边平行B 两组对边平行的四边形是平行四边形C 平行四边形对角相等D 一组对角相等的四边形是平行四边形 5、一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为A ︒30B ︒45C ︒60D ︒756、平行四边形的两条对角线将此平行四边形分成全等三角形的对数是A 2 对B 3对C 4对D 5 对 7、 菱形具有而平行四边形不具有的性质是A .内角和是360°; B. 对角相等; C. 对边平行且相等; D. 对角线互相垂直.8、 平行四边形各内角的平分线围成一个四边形,则这个四边形一定是 A. 矩形; B.平行四边形; C.菱形; D.正方形9、 如图,在等腰梯形ABCD 中,AB∥CD ,AD=BC= a cm ,∠A=60°,BD 平分∠ABC ,则这个梯形的周长是A. 4a cm ;B. 5a cm ;C.6a cm ;D. 7a cm ;10、等边三角形的一边上的高线长为cm 32,那么这个等边三角形的中位线长为 A cm 3 B cm 5.2 C cm 2 D cm 4 二、耐心填一填:(把答案填放相应的空格里。

最新北师大版九年级数学上册单元测试题全套及答案

最新北师大版九年级数学上册单元测试题全套及答案

最新北师大版九年级数学上册单元测试题全套及答案(最新北师大版配套试题)第一章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.菱形的对称轴的条数为( )A .1B .2C .3D .4 2.下列说法中,正确的是( )A .相等的角一定是对顶角B .四个角都相等的四边形一定是正方形C .平行四边形的对角线互相平分D .矩形的对角线一定垂直3.平面直角坐标系中,四边形ABCD 的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD 是( )A .矩形B .菱形C .正方形D .平行四边形 4.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形5.如图,矩形纸片ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CE 的长为( )A .6 cmB .4 cmC .2 cmD .1 cm6.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( A ) A.245 B.125C .5D .4 ,第6题图) ,第7题图)7.如图,每个小正方形的边长为1,A ,B ,C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°8.已知四边形ABCD 的两条对角线AC 与BD 互相垂直,则下列结论正确的是( ) A .当AC =BD 时,四边形ABCD 是矩形B .当AB =AD ,CB =CD 时,四边形ABCD 是菱形C .当AB =AD =BC 时,四边形ABCD 是菱形 D .当AC =BD ,AD =AB 时,四边形ABCD 是正方形9.如图,矩形ABCD 中,AD =2,AB =3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( )A. 5B.136 C .1 D.56,第9题图) ,第10题图)10.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④ 二、填空题(每小题3分,共18分)11.已知菱形的两条对角线长分别为2 cm ,3 cm ,则它的面积是___cm 2.12.如图,已知点P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP 的度数是___度.13.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件____,使四边形ABCD 为矩形.,第12题图) ,第13题图) ,第14题图),第15题图)14.已知矩形ABCD ,AB =3 cm ,AD =4 cm ,过对角线BD 的中点O 作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F ,则AE 的长为_ cm.15.如图,菱形ABCD 的边长为4,过点A ,C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E ,F ,AE =3,则四边形AECF 的周长为____.16.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,则点E 的坐标为__(_)_.三、解答题(共72分)17.(10分)如图,矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm ,对角线长是13 cm ,那么矩形的周长是多少?18.(10分)如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.(1)求证:△ADC≌△ECD;(2)若BD=CD,求证:四边形ADCE是矩形.19.(10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.20.(10分)如图,已知在▱ABCD中,点E,F分别是边AB,CD的中点,BD是对角线,AG∥BD 交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?证明你的结论.21.(10分)如图,已知菱形ABCD,AB=AC,点E,F分别是BC,AD的中点,连接AE,CF.(1)求证:四边形AECF是矩形;(2)若AB=8,求菱形的面积.22.(10分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至G,使OG=OD,连接EG,FG,判断四边形DEGF是否是菱形,并说明理由.23.(12分)如图,在矩形ABCD 中,点M ,N 分别是AD ,BC 的中点,点P ,Q 分别是BM ,DN 的中点.(1)求证:△MBA ≌△NDC ;(2)四边形MPNQ 是什么特殊四边形?请说明理由.第二章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( ) A .3(x +1)2=2(x +1) B.1x 2+1x-2=0C .ax 2+bx +c =0D .x 2+2x =x 2-1 2.方程(x -2)(x +3)=0的解是( )A .x =2B .x =-3C .x 1=-2,x 2=3D .x 1=2,x 2=-3 3.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( )A .-1或4B .-1或-4C .1或-4D .1或44.用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是( ) A .(x -1)2=2 B .(x -1)2=4 C .(x -1)2=1 D .(x -1)2=7 5.下列一元二次方程中,没有实数根的是( )A .x 2+2x +1=0 B .x 2+x +2=0 C .x 2-1=0 D .x 2-2x -1=0 6.解方程(x +1)(x +3)=5较为合适的方法是( ) A .直接开平方法 B .配方法 C .公式法或配方法 D .分解因式法7.已知一元二次方程x 2-2x -1=0的两个根分别是x 1,x 2,则x 12-x 1+x 2的值为( ) A .-1 B .0 C .2 D .38.关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a 的值是( )A .-1或5B .1C .5D .-19.某县政府2015年投资0.5亿元用于保障性住房建设,计划到2017年投资保障性住房建设的资金为0.98亿元,如果从2015年到2017年投资此项目资金的年增长率相同,那么年增长率是( )A .30%B .40%C .50%D .10%10.有一块长32 cm ,宽24 cm 的长方形纸片,在每个角上截去相同的正方形,再折起来做一个无盖的盒子,已知盒子的底面积是原纸片面积的一半,则盒子的高是( )A .2 cmB .3 cmC .4 cmD .5 cm 二、填空题(每小题3分,共18分)11.一元二次方程2x 2+6x =9的二次项系数、一次项系数、常数项和为___. 12.方程(x +2)2=x +2的解是____.13.若代数式4x 2-2x -5与2x 2+1的值互为相反数,则x 的值是__.14.写一个你喜欢的实数k 的值__ _,使关于x 的一元二次方程(k +1)x 2+2x -1=0有两个不相等的实数根.15.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.则这种药品的成本的年平均下降率为___.16.设m ,n 分别为一元二次方程x 2+2x -2018=0的两个实数根,则m 2+3m +n =__. 三、解答题(共72分) 17.(12分)解方程:(1) x 2+4x -1=0; (2)x 2+3x +2=0;(3)3x 2-7x +4=0.18.(10分)如图,已知A ,B ,C 是数轴上异于原点O 的三个点,且点O 为AB 的中点,点B 为AC 的中点.若点B 对应的数是x ,点C 对应的数是x 2-3x ,求x 的值.19.(8分)一元二次方程x 2-2x -54=0的某个根,也是一元二次方程x 2-(k +2)x +94=0的根,求k的值.20.(10分)某种商品的标价为400元/件,经过两次降价后的要价为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3 210元.问第一次降价后至少要售出该种商品多少件?21.(10分)小林准备进行如下操作试验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2,”他的说法对吗?请说明理由.22.(10分)某市电解金属锰厂从今年元月起安装了回收净化设备(安装时间不计),这样既保护环境,又节省原料成本,据统计使用回收净化设备后1~x月的利润的月平均值W(万元)满足W=10 x+90.请问多少个月后的利润和为1620万元?23.(12分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了109a%,求a 的值.第三章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.事件A :打开电视,它正在播广告;事件B :抛掷一个均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A),P(B),P(C),则P(A),P(B),P(C)的大小关系正确的是( )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B ) C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )2.从-5,0,4,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是( ) A.15 B.25 C.35 D.453.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )A.12B.25C.37D.474.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取的两个球数字之和大于6的概率是( )A.12B.712C.58D.345.掷两枚普通正六面体骰子,所得点数之和为11的概率为( ) A.118 B.136 C.112 D.1156.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.12,第6题图) ,第7题图)7.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5258.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b 的值,则点(a ,b)在第二象限的概率是( )A.16B.13C.12D.239.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条能够组成三角形的概率是( ) A.14 B.13 C.12 D.3410.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( )A.34B.13C.23D.12二、填空题(每小题3分,共18分)11.一个布袋中装有3个红球和4个白球,这些球除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为___.12.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有____个.13.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是___.14.一个不透明的袋子中装有黑、白小球各两个,这些球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率是__.15.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__.16.已知一包糖果共有五种颜色(糖果仅有颜色差别),如图是这包糖果颜色分布百分比的统计图.在这包糖果中任取一粒糖果,则取出的糖果的颜色为绿色或棕色的概率是__.三、解答题(共72分)17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.18.(10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取一张纸牌记下数字然后放回,再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两人进行游戏,如果两次摸取纸牌上数字之和为奇数,则甲胜;如果两次摸取纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y 分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况;(2)求点A落在第三象限的概率.(1)列表:20.(10分)分别把带有指针的圆形转盘A,B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.21.(10分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样).食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是________事件;(可能,必然,不可能)(2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.22.(10分)某景区7月1日~7月7日一周天气预报如图,小丽打算选择这期间一天或两天去该景区旅游.求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.23.(12分)有四张正面分别标有数字2,1,-3,-4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.(1)①画树状图得:第四章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A .对应边都成比例的多边形相似B .对应角都相等的多边形相似C .边数相同的正多边形相似D .矩形都相似2.已知△ABC ∽△DEF ,相似比为3∶1,且△ABC 的周长为18,则△DEF 的周长为( ) A .2 B .3 C .6 D .54 3.如图,已知BC ∥DE ,则下列说法不正确的是( C )A .两个三角形是位似图形B .点A 是两个三角形的位似中心C .AE ∶AD 是相似比 D .点B 与点E ,点C 与点D 是对应位似点4.如图,身高为1.6 m 的小红想测量学校旗杆的高度,当她站在C 处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC =2.0 m ,BC =8.0 m ,则旗杆的高度是( C )A .6.4 mB .7.0 mC .8.0 mD .9.0 m,第3题图) ,第4题图) ,第5题图),第6题图)5.如图,为估算某河的宽度,在河对岸选定一个目标点,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE =20 m ,CE =10 m ,CD =20 m ,则河的宽度AB 等于( B )A .60 mB .40 mC .30 mD .20 m6.如图,矩形ABCD 的面积是72,AE =12DC ,BF =12AD ,那么矩形EBFG 的面积是( B )A .24B .18C .12D .97.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( B )A .(6,0)B .(6,3)C .(6,5)D .(4,2),第7题图) ,第8题图) ,第9题图),第10题图)8.如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODE S △ADC =13.其中正确的个数有( B ) A .1个 B .2个 C .3个 D .4个9.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD.下列结论错误的是( C )A .∠C =2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点10.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,点P 为AB 边上一动点,若△PAD 与△PBC 是相似三角形,则满足条件的点P 的个数是( C )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共18分) 11.若x y =m n =45(y ≠n),则x -m y -n =__45__.12.如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x 的值是__16__. 13.如图,在△ABC 中,点P 是AC 上一点,连接BP.要使△ABP ∽△ACB ,则必须有∠ABP =__∠C __或∠APB =__∠ABC __或AB AP =__ACAB__. ,第12题图) ,第13题图) ,第14题图) ,第15题图)14.如图,在矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF =__125__.15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为__22.5__米.16.如图,以点O 为位似中心,将△ABC 缩小后得△A ′B ′C ′,已知OB =3OB ′,则△A ′B ′C ′与△ABC 的面积之比为__1∶9__.三、解答题(共72分)17.(10分)如图,点D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD =∠C ,AB =6,AD =4,求线段CD 的长.在△ABD 和△ACB 中,∠ABD =∠C ,∠A =∠A ,∴△ABD ∽△ACB ,∴AB AC =ADAB ,∵AB =6,AD =4,∴AC =AB 2AD =364=9,则CD =AC -AD =9-4=518.(10分)一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.两种截法:①30厘米与60厘米的两根钢筋为对应边,把50厘米的钢筋按10厘米与25厘米两部分截,则有1020=2550=3060=12,从而两个三角形相似;②30厘米与50厘米的两根钢筋为对应边,把50厘米的钢筋截出12厘米和36厘米两部分,则有2012=5030=6036=53,从而两个三角形相似19.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)在网格内以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.20.(10分)如图,矩形ABCD 为台球桌面.AD =260 cm ,AB =130 cm .球目前在E 点位置,AE =60 cm .如果小丁瞄准了BC 边上的点F 将球打进去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF ∽△CDF ; (2)求CF 的长.(1)∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD ,又∵∠B =∠C =90°,∴△BEF ∽△CDF (2)设CF =x ,则BF =260-x ,∵AB =130,AE =60,BE =70,由(1)得,△BEF ∽△CDF ,∴BECD =BF CF ,即70130=260-x x,∴x =169,即CF =169 cm21.(10分)如图,在△ABC 中,AD 是中线,且CD 2=BE ·BA.求证:ED ·AB =AD ·BD.∵AD 是中线,∴BD =CD ,又CD 2=BE ·BA ,∴BD 2=BE ·BA ,即BE BD =BD AB ,又∠B =∠B ,∴△BED∽△BDA ,∴ED AD =BDAB,∴ED ·AB =AD ·BD22.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为点E ,连接DE ,点F 为线段DE 上一点,且∠AFE =∠B.(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求AE 的长.(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC (2)∵四边形ABCD 是平行四边形,∴CD =AB =8.由(1)知△ADF ∽△DEC ,∴AD DE =AF CD ,∴DE =AD ·CD AF =63×843=12.在Rt △ADE 中,由勾股定理得AE =DE 2-AD 2=122-(63)2=623.(12分)将一副三角尺如图①摆放(在Rt △ABC 中,∠ACB =90°,∠B =60°;在Rt △DEF 中,∠EDF =90°,∠E =45°),点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C.(1)求∠ADE 的度数;(2)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE ′F ′,DE ′交AC 于点M ,DF ′交BC 于点N ,试判断PM CN 的值是否随着α的变化而变化?如果不变,请求出PMCN 的值;反之,请说明理由.(1)由题意知,CD 是Rt △ABC 斜边AB 上的中线,∴AD =BD =CD ,∵在△BCD 中,BD =CD 且∠B =60°,∴△BCD 是等边三角形,∴∠BCD =∠BDC =60°,∴∠ADE =180°-∠BDC -∠EDF =180°-60°-90°=30° (2)PMCN 的值不会随着α的变化而变化,理由如下:∵△APD 的外角∠MPD =∠A +∠ADE =30°+30°=60°,∴∠MPD =∠BCD =60°,∵在△MPD 和△NCD 中,∠MPD =∠NCD =60°,∠PDM =∠CDN =α,∴△MPD ∽△NCD ,PM CN =PDCD ,∵∠ACB =90°,∠BCD =60°,∴∠PCD =30°.在Rt △PCD 中,∠PCD =30°,∴PD CD =13=33,∴PM CN =PD CD =33第五章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.将一包卷筒卫生纸按如图所示的方式摆放在桌面上,它的俯视图是( D )2.如图是由4个相同的正方体组成的几何体,则这个几何体的俯视图是( A )3.如图是一个几何体的实物图,则其主视图是( C )4.如图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度,则它的三视图是( A )5.木棒的长为1.2 m,则它的正投影的长一定( D )A.大于1.2 m B.小于1.2 m C.等于1.2 m D.小于或等于1.2 m 6.下列四个几何体中,俯视图为四边形的是( D )7.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( A )8.小琳过14周岁生日,父母为她预定的生日蛋糕如图所示,当投影线由生日蛋糕的前方射到后方时,它的正投影应该是( B )9.有两个完全相同的长方体,按如图所示方式摆放,其主视图是( C )10.如图,小轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现他身后影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现他身前影子的顶部刚好接触到路灯BD的底部,已知小轩同学的身高是1.5 m,两个路灯的高度都是9 m,则两路灯这间的距离是( D ) A.24 m B.25 m C.28 m D.30 m二、填空题(每小题3分,共18分)11.太阳光形成的投影是__平行投影__,电动车灯所发出的光线形成的投影是__中心投影__.12.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有__①②③__.(填编号)13.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体可能是由__6或7或8__个小正方体搭成的.,第13题图) ,第15题图) ,第16题图)14.小刚和小明在太阳光下行走,小刚身高1.5 m,他的影长为2.0 m,小刚比小明矮9 cm,此刻小明的影长是__2.12_m__.15.一个长方体的主视图和左视图如图(单位:cm),则其俯视图的面积是__6_cm2__.16.如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠AMC =30°,窗户的高在教室地面上的影长MN=23米,窗户的下沿到教室地面的距离BC=1米(点M,N,C在同一直线上),则窗户的高AB为__2米__.三、解答题(共72分)17.(10分)根据下列主视图和俯视图,指出其对应的物体.a—D,b—A,c—B,d—C18.(10分)如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数.请你画出它从正面和从左面看得到的平面图形.19.(10分)小亮在某一时刻测得小树高为1.5 m ,其影长为1.2 m ,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,它的一部分影子便落在了教学楼的墙上,经测量,地面部分影长为6.4 m ,墙上影长为2 m ,那么这棵大树高为多少米?设大树影长为x 米,大树高为y 米,则x -6.42=1.21.5,解得x =8.∵y 8=1.51.2∴y =10,答:这棵大树高为10米20.(10分)在长、宽都为4 m ,高为3 m 的房间的正中央的天花板上悬挂一只白炽灯泡,为了集中光线,加上了灯罩,如图所示,已知灯罩深8 cm ,灯泡离地面2 m ,为了使光线恰好照在墙脚,问灯罩的直径应为多少?(结果精确到0.01米)如图,由题意知,DE 为地面上墙脚的对角线连线.过点A 作AM ⊥DE 交DE 于点M ,交BC 于点N.∵DE ∥BC ,∴△ABC ∽△ADE ,∴AN AM =BC DE .∵AN =0.08,AM =2,DE =42,∴BC =42×0.082≈0.23 m21.(10分)如图,某居民小区内A ,B 两楼之间的距离MN =30 m ,两楼的高度都是20 m ,A 楼在B 楼正南,B 楼窗户朝南.B 楼内一楼住户的窗台离小区地面的距离DN =2 m ,窗户高CD =1.8 m .当正午时刻太阳光线与地面成30°角时,A 楼的影子是否影响B 楼的一楼住户采光?若影响,挡住该住户窗户多高?若不影响,请说明理由.(参考数据:2=1.414,3=1.732,5=2.236)如图,设光线FE 影响到B 楼的E 处,作GE⊥FM于点G,EG=MN=30,∠FEG=30°,FG=103,MG=FM-GF=20-103≈2.68.又DN=2,CD=1.8,∴DE=2.68-2=0.68<1.8.∴A楼的影子影响到B楼一楼采光,挡住该住户窗户0.68 m22.(10分)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积.(结果保留根号)根据该密封纸盒的三视图知道它是一个六棱柱.∵其高为12 cm,底面边长为5 cm,∴其侧面积为6×5×12=360(cm2),密封纸盒的上、下底面的面积和为:12×5×32×5×12=753(cm2),∴其表面积为(753+360)cm223.(12分)如图,王乐同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2 m,且恰好位于路灯A的正下方,接着他又走了6.5 m到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王乐身高1.8 m,路灯B高9 m).(1)标出王乐站在P处时,在路灯B下的影子;(2)计算王乐站在Q处时,在路灯A下的影长;(3)计算路灯A的高度.(1)线段CP为王乐在路灯B下的影子.(2)由题意得Rt△CEP∽Rt△CBD.∴EPBD =CPCD,∴1.89=22+6.5+QD ,解得QD =1.5 m .所以王乐站在Q 处时,在路灯A 下的影长为1.5 m (3)路灯A 的高度为12 m第六章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.反比例函数的图象经过点(-2,3),则此函数的图象也经过点( A )A .(2,-3)B .(-3,-3)C .(2,3)D .(-4,6) 2.如图,是我们学过的反比例函数的图象,它的函数表达式可能是( B )A .y =x 2B .y =4xC .y =-3xD .y =12x3.为了更好的保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m )满足关系式:V =Sh(V ≠0),则S 关于h 的函数图象大致是( C )4.反比例函数y =k x 的图象经过点(-2,32),则它的图象位于( B )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限5.若在同一直角坐标系中,直线y =k 1x 与双曲线y =k 2x 有两个交点,则有( C )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<06.反比例函数y =2x的图象上有两个点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是( D )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定 7.在反比例函数y =4x的图象上,阴影部分的面积不等于4的是( B )8.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =kx (x>0)的图象经过顶点B ,则k 的值为( D )A .12B .20C .24D .32,第8题图),第9题图) ,第10题图)9.如图,函数y =-x 与函数y =-4x 的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D ,则四边形ACBD 的面积为( D )A .2B .4C .6D .810.反比例函数y =mx 的图象如图所示,以下结论:①常数m<-1;②在每个象限内,y 随x 的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k ;④若P(x ,y)在图象上,则P ′(-x ,-y)也在图象上.其中正确的是( C )A .①②B .②③C .③④D .①④ 二、填空题(每小题3分,共18分)11.反比例函数y =kx的图象经过点(1,-2),则k 的值为__-2__.12.已知正比例函数y =-2x 与反比例函数y =kx 的图象的一个交点坐标为(-1,2),则另一个交点的坐标为__(1,-2)__.13.已知反比例函数y =kx (k ≠0)的图象经过点(3,-1),则当1<y <3时,自变量x 的取值范围是__-3<x <-1__.14.在某一电路中,保持电压不变,电流I(安)与电阻R(欧)成反比例,其图象如图所示,则这一电路的电压为__12__伏.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版初中九年级数学上册单元测试题【含答案】_全册北师大版初中九年级数学上册单元测试题【含答案】全册九年级数学第一章证明(?)班级姓名学号成绩一、判断题(每小题2分,共10分)下列各题正确的在括号内画“?”,错误的在括号内画“×”.1、两个全等三角形的对应边的比值为1 . ( )2、两个等腰三角形一定是全等的三角形. ( )3、等腰三角形的两条中线一定相等. ( )4、两个三角形若两角相等,则两角所对的边也相等. ( )5、在一个直角三角形中,若一边等于另一边的一半,那么,一个锐角一定等于30?.( )二、选择题(每小题3分,共30分)每小题只有一个正确答案,请将正确答案的番号填在括号内.1、在?ABC和?DEF中,已知AC=DF,BC=EF,要使?ABC??DEF,还需要的条件是( ) A、?A=?D B、?C=?F C、?B=?E D、?C=?D2、下列命题中是假命题的是( )A、两条中线相等的三角形是等腰三角形、两条高相等的三角形是等腰三角形 BC、两个内角不相等的三角形不是等腰三角形D、三角形的一个外角的平分线平行于这个三角形的一边,则这个三角形是等腰三角形 3、如图(一),已知AB=AC,BE=CE,D是AE上的一点,则下列结论不一定成立的是( )A、?1=?2B、AD=DEC、BD=CDD、?BDE=?CDE4、如图(二),已知AC和BD相交于O点,AD?BC,AD=BC,过O (一) 任作一条直线分别交AD、BC于点E、F,则下列结论:?OA=OC ?OE=OF ?AE=CF ?OB=OD,其中成立的个数是( )A、1B、2C、3D、45、若等腰三角形的周长是18,一条边的长是5,则其他两边的长是( ) (二)A、5,8B、6.5,6.5C、5,8或6.5,6.5D、8,6.5 6、下列长度的线段中,能构成直角三角形的一组是( )A、 ;B、6, 7, 8; 3,4,5C、12, 25, 27;D、 23,25,427、如图(三),AC=AD BC=BD,则下列结果正确的是( ) (三) A、?ABC=?CABB、OA=OBC、?ACD=?BDCD、AB?CD 8、如图(四),?ABC中,?A=30?,?C=90?AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是( )A、AD=DBB、DE=DCC、BC=AED、AD=BC (四)9、如图(五),在梯形ABCD中,?C=90?,M是BC的中点,DM平分?ADC,?CMD=35?,则?MAB是( )A、35?B、55?C、70?D、20?10、如图(六),在Rt?ABC中,AD平分?BAC,AC=BC, (五) AC?C=Rt?,那么,的值为( ) DC、 B、 A,,2,1?1(2,1)?12?1C、 D、 (六) 2?1三、填空题,(每空2分,共20分)1、如图(七),AD=BC,AC=BD AC与BD相交于O点,则图中全等三角形共有对. (七)2、如图(八),在?ABC和?DEF中,?A=?D,AC=DF,若根据“ASA”说明?ABC??DEF,则应添加条件 = . (八)或 ? .3、一个等腰三角形的底角为15?,腰长为4cm,那么,该三角形的面积等于 .4、等腰三角形一腰上的高与底边的夹角等于45?,则这个三角形的顶角等于 .5、命题“如果三角形的一个内角是钝角,则其余两个内角一定是锐角”的逆命题是.B 6、用反证法证明:“任意三角形中不能有两个内角是钝角”的第一步: 假设 . 7、如图(九),一个正方体的棱长为2cm,一只蚂蚁欲从A点处沿正方体侧A 面到B点处吃食物,那么它需要爬行的最短路径的长是 . 8、在Rt?ABC 中,?ACB=90?,AB=8cm, BC的垂直平分线DE交AB (九) 于D,则CD= .9、如图(十)的(1)中,ABCD是一张正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A角翻折,使得点A落在(2)中EF上,折痕交AE于点G,那么?ADG= .四、作图题(保留作图的痕迹,写出作法)(共6分) (十) 如图(十一),在?AOB 内,求作点P,使P点到OA,OB的距离相等,并且P点到M,N的距离也相等.(十一)五、解答题(5分)如图(十二),一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直, 则绳端离.求旗杆的高度. 旗杆底端的距离(BC)有5米(十二)六、证明题(第1,第2两小题各6分,第3小题8分,第4小题9分) 1、已知:如图(十三),AB?CD,F是AC的中点,FDE求证:是中点.(十三)2、已知:如图(十四),AB=AD, CB=CD,E,F分别是AB,AD的中点.求证:CE=CF .(十四)3、如图(十五),?ABC中,AD是?BAC的平分线,DE?AB于E,DF?AC于F.求证:(1)AD?EF ;(2)当有一点G从点D向A运动时,DE?AB于E,DF?AC于F,此时上面结论是否成立,(十五)4、如图(十六),?ABC、?DEC均为等边三角形,点M为线段AD的中点,点N为线段BE的中点,求证:?CNM为等边三角形.(十六)2010,2011学年度上期目标检测题九年级数学第二章一元二次方程班级姓名学号成绩一、填空题(每小题2分,共36分)21(一元二次方程的二次项系数是,一次项系数是, 3x,5(x,3)常数项是 .22(当m 时,是一元二次方程. (m,1)x,2mx,m,1,0222x,x,03(方程的根是,方程的根是 . (x,5),36,02x,,x,4(方程的两根为. (2x,3),5(2x,3)1225(是实数,且,则的值是 . a,4,|a,2a,8|,0aa2x,2x,36(已知与x,7的值相等,则的值是 . x2pp2222x,___,,(x,)7((1),(2). x,6x,9,(x,___)4222x,bx,4,08(如果,1是方程的一个根,则方程的另一个根是, b是 .2x,5x,6,09(若、为方程的两根,则的值是,的值是. xxx,xxx121212228cm10.用22cm长的铁丝,折成一个面积为的矩形,这个矩形的长是__ __.11.甲、乙两人同时从A地出发,骑自行车去B地,已知甲比乙每小时多走3千米,结果比乙早到0.5小时,若A、B两地相距30千米,则乙每小时千米. 二、选择题(每小题3分,共18分)每小题只有一个正确答案,请将正确答案的番号填在括号内. 2221、已知关于的方程,(1)ax+bx+c=0;(2)x-4x=8+x;(3)1+(x-1)(x+1)=0;22 (4)(k+1)x+ kx + 1= 0中,一元二次方程的个数为( )个 A、1 B、2 C、3D、42、如果是一元二次方程,则 ( ) 2(m,3)x,mx,1,0m,,3且m,0A、 B、 C、 D、 m,,3m,3m,0223、已知方程的两个根是互为相反数,则m的值是 ( ) x,2,,m,1x,3m,0A、 B、 C、 D、 m,,1m,,1m,1m,02x,8x,9,04、将方程左边变成完全平方式后,方程是( )2222A、 B、 C、 D、 (x,4),25(x,4),,9(x,4),,7(x,4),7225、如果有两个相等的实数根,那么的两根和是 ( )x,2x,m,0x,mx,2,0A、 ,2 B、 1 C、 ,1 D、 26、一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是 ( ) A、 5, B、 10, C、15, D、 20,三、按指定的方法解方程(每小题3分,共12分)22(x,2),25,0x,4x,5,01((直接开平方法) 2. (配方法)222x,7x,3,03((因式分解法) 4. (公式法) (x,2),10(x,2),25,0四、适当的方法解方程(每小题4分,共8分)22225x,36,01( 2. (2x,5),(x,4),0五、完成下列各题(每小题5分,共15分)22y,01、已知函数,当时,, 求的值. x,1y,2x,ax,aa2x,3x,42、若分式的值为零,求的值. x|x,3|,1123、关于的方程有实根. (1,2k)x,2(k,1)x,k,0x2(1)若方程只有一个实根,求出这个根;11,,,6k(2)若方程有两个不相等的实根,,且,求的值. xx12xx12六、应用问题(第1小题5分,第2小题6分,共11分)1、请求解我国古算经《九章算术》中的一个题:在一个方形池,每边长一丈,池中央长了一颗芦苇,露出水面恰好一尺,把芦苇的顶端收到岸边,芦苇顶端和岸边水面恰好相齐,问水深和芦苇的长度各是多少,(1丈=10尺)2、某科技公司研制成功一种新产品,决定向银行贷款200万元资金用于生产这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8,,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.2010,2011学年度上期目标检测题九年级数学第三章证明(?)班级姓名学号成绩一、选择题(每题4分,共40分)下列每小题只有一个正确答案,请将正确答案的番号填在括号内. A D 1、如图1,在 ABCD中,O为对角线AC、BD的交点,O 则图中共有相等的角( )A、4对B、5对C、6对D、8对B C 2、如图2,已知E、F分别为 ABCD的中点,图1 连接AE、CF所形成的四边形AECF的面 F A 积与 ABCD的面积的比为( ) DA、1:1B、1:2C、1:3D、1:43、过四边形ABCD的顶点A、B、C、D作BD、AC的平行线围成四边形EFGH,若EFGH B E C 是菱形,则四边形ABCD一定是( ) 图2 A、平行四边形 B、菱形C、矩形D、对角线相等的四边形AE,BC,AF,CD,、在菱形ABCD中,且E、F分别是BC、CD的中点, 4,EAF,那么( )0000755560 A、 B、 C、45 D、5、矩形的一条长边的中点与另一条长边构成等腰直角三角形,已知矩形的周长是36,则矩形一条对角线长是( )A、 B、5 C、 D、3 6554556、矩形的内角平分线能够组成一个( )A、矩形B、菱形C、正方形D、平行四边形 7、以正方形ABCD的一组邻边AD、CD向形外作等边三角形ADE、CDF,则下列结论中错误的是( ) 00,DEF,30,BFD,45,EBF,EF A、BD平分 B、 C、BD D、,APQ8、已知正方形ABCD的边长是10cm,是等边三角形,点P在BC上,点Q 在CD上,则BP的边长是( )20 A、cm B、3cm C、(20,103)cm D、(20,103)cm 5539、若两个三角形的两条中位线对应相等且两条中位线与一对应边的夹角相等,则这两个三角形的关系是( )A、全等B、周长相等C、不全等D、不确定 10、正方形具有而菱形不具有的性质是( )A、四个角都是直角B、两组对边分别相等0360C、内角和为 D、对角线平分对角二、填空题(每空1分,共11分)0601、平行四边形两邻边上的高分别为和,这两条高的夹角为,此平行四边2333形的周长为,面积为 .2、等腰梯形的腰与上底相等且等于下底的一半,则该梯形的腰与下底的夹角为 .3、三角形三条中位线围成的三角形的周长为19,则原三角形的周长为 .14、在中,D为AB的中点,E为AC上一点,,BE、CD交于点O,,ABCCE,AC3,则 . BE,5cmOE,5、顺次连接任意四边形各边中点的连线所成的四边形是 .6、将长为12,宽为5的矩形纸片ABCD沿对角线AC对折后,AD与BC交于点E,则DE 的长度为 .7、从矩形的一个顶点作一条对角线的垂线,这条垂线分这条对角线成1:3两部分,则矩形的两条对角线夹角为 .8、菱形两条对角线长度比为1:,则菱形较小的内角的度数为 . 39、正方形的一条对角线和一边所成的角是度.,AEF10、已知四边形ABCD是菱形,是正三角形,E、F分别在BC、CD上,且,EF,CD,BAD,则 .三、解答题(第1、2小题各10分,第3、4小题各5分,共30分)0,ACB,901、如图3,AB//CD,,E是AB的中点, D C CE=CD,DE和AC相交于点F.求证:(1)DE,AC; F(2),ACD,,ACE.A B E 图32、如图4,ABCD为平行四边形,DFEC和BCGH为正方形.求证:. AC,EGGC DHA BF E图43、证明:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4、从菱形钝角的顶点向对边作垂线,且垂线平分对边,求菱形各角的度数,四、(第1、2小题各6分,第3小题7分,共19分)1、如图5,正方形纸片ABCD的边BC上有一点E,AE=8cm,若把纸片对折,使点A与点E重合,则纸片折痕的长是多少,A DB C E图5DF,AE2、如图6,在矩形ABCD中,E是BC上一点且AE=AD,又于点F,证明:EC=EF.A DF B C E图62222PA,PC,PB,PD3、如图7,已知P是矩形ABCD的内的一点.求证:.A DPB C 图72010,2011学年度上期目标检测题九年级数学半期检测题(总分120分,100分钟完卷)班级姓名学号成绩一、选择题(每小题3分,共36分)每小题只有一个正确答案,请将正确答A 案的番号填在括号内.1、下列数据为长度的三条线段可以构成直角三角形的是( ) (A)3、5、6 (B)2、3、4F (C) 6、7、9 (D)9、12、15 D O 2、如图(一):AB=AC,D、E、F分别是三边中点,则图中全等三角形共有( )(A) 5对 (B) 6对 (C) 7对 (D) 8对 C B E 3、?ABC中,?A=150º,AB=10,AC=18,则?ABC的面积是( ) (一) (A)45 (B)90 (C)180 (D)不能确定4、已知?ABC中,?C=90º,?A=30º,BD平分?B交AC于点D,则点D( ))是AC的中点 (B)在AB的垂直平分线上 (A(C)在AB的中点 (D)不能确定225、关于的一元二次方程的一个根是0,则的值是( ) (a,1)x,x,a,1,0xa 1(A)1 (B) ,1 (C) 1或,1 (D) 22x,5x6、方程的根是( )(A)x,5 (B)x,0 (C) (D) x,0,x,5x,,5,x,012122x,4x,967、用配方法将二次三项式变形,结果为( )2222(A) (B) (C) (D) (x,2),100(x,2),100(x,2),100(x,2),1008、两个连续奇数的乘积是483,则这两个奇数分别是( )) 19和21 (B) 21和23 (C) 23和25 (D) 20和22 (A9、根据下列条件,能判定一个四边形是平行四边形的是( ) (A)两条对角线相等 (B)一组对边平行,另一组对边相等 (C)一组对角相等,一组邻角互补 (D)一组对角互补,一组对边相等、能判定一个四边形是矩形的条件是( ) 10(A)对角线相等 (B)对角线互相平分且相等 (C)一组对边平行且对角线相等 (D)一组对边相等且有一个角是直角 11、如果一个四边形要成为一个正方形,那么要增加的条件是( ) (A)对角线互相垂直且平分 (B)对角互补(C)对角线互相垂直、平分且相等 (D)对角线相等12、矩形的四个内角平分线围成的四边形( )(A)一定是正方形 (B)是矩形 (C)菱形 (D)只能是平行四边形二、填空题(每空2分,共38分)1、直角三角形两直角边分别是5cm和12cm,则斜边长是,斜边上的高是 cm.2、命题“对顶角相等”的逆命题是,这个逆命题是命题.3、有一个角是30º的直角三角形的三边的比是 . 4、如图( 二),?ABC中,AB=AC,?BAC=120º,A AD?AC,DC=8,则BD= . A 5、已知:如图(三),?ABC中,AB=AC,?A=40º, E AB的中垂线交AC于点D,交AB于点E, B C D D 则?C= ,?DBC= . (二) 22kx,3x,2x,46、若关于的方程是一元二次方程, xB C 则的取值范围是 . (三) k223x,4x,2ax,a,17、关于的方程,若常数项为0,则= . xa2x,3x,m8、如果是一个完全平方式,则= . m222229、已知,则 . (x,y,2),9x,y,2x,x,1,010、方程的根是 .x2211、已知,则的值是 . x,3xy,4y,0y12、如图(四),平行四边形ABCD中,AD=6cm ,AB=9cm,AE平分?DAB,则CE= cm. (四) 13、已知矩形ABCD的周长是24 cm,点M是CD 中点,?AMB=90?,则AB= cm,AD= cm.14、已知菱形周长为52,一条对角线长是24,则这个菱形的面积是 . 15、等腰梯形上底长与腰长相等,而一条对角线与一腰垂直,则梯形上底角的度数是 .三、解方程(每小题4分,共16分)2x,6x,8,01、(用配方法).24x,x,1,3x,22、(用公式法).x(x,5),4x,03、(用因式分解法).24、. x,(2,1)x,2,0四、解答题(每小题5分,共15分)1、为响应国家“退耕还林”的号召,改变我省水土流失严重的状况,2002年我省退耕还林1600亩,计划2004年退耕还林1936亩,问这两年平均每年退耕还林的增长率是多少,2、学校准备在图书管后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建较合适,3、如图(五),ΔABC中,AB=20,AC=12,AD是中线,且AD=8,求BC的长.AB C D (五)五、证明(计算)(每小题5分,共15分)1、已知:如图(六),点C、D在BE上,BC=DE,AB?EF,AD?CF.求证:AD=CF.E FDCA B (六)2、如图(七),正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF. 0(1)求证:?BCE??DCF;(2)若?BEC=60,求?EFD的度数.(七)3、已知:如图(八),在直角梯形ABCD中,AB?CD,AD?CD,AB=BC, 又AE?BC于E.求证:CD=CE.(八)2010,2011学年度上期目标检测题九年级数学第四章视图与投影班级姓名学号成绩一、选择题(每小题4分,共32分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题的括号内. 1、一个几何体的主视图和左视图都是相同的长方形,府视图为圆,则这个几何体为( ) A、圆柱B、圆锥 C、圆台 D、球 2、从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是( )A、先变长,后变短B、先变短,后变长C、方向改变,长短不变D、以上都不正确3、在相同的时刻,物高与影长成比例.如果高为1.5米人测竿的影长为2.5米,那么影长为30米的旗杆的高是( )A、20米B、16米C、18米D、15米 4、下列说法正确的是( )A、物体在阳光下的投影只与物体的高度有关B、小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C、物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D、物体在阳光照射下,影子的长度和方向都是固定不变的.5、关于盲区的说法正确的有( )(1)我们把视线看不到的地方称为盲区2)我们上山与下山时视野盲区是相同的 ((3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大 A、1 个 B、2个 C、3个 D、4个 6、如图1是空心圆柱体在指定方向上的视图,正确的是( )图17、如图2所示,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡距离地面3m,则地面上阴影部分的面积为( ) 图 2 2222A、0.36m B、0.81m C、2mD、3.24m ,,,,8、如图(三)是小明一天上学、放学时看到的一根电线杆的影子的府视图,按时间先后顺序进行排列正确的是( )(三)A、(1)(2)(3)(4)B、(4)(3)(1)(2)C、(4)(3)(2)(1)D、(2)(3)(4)(1)二、填空题(每小题3分,共21分)1、主视图、左视图、府视图都相同的几何体为 (写出两个).2、太阳光线形成的投影称为,手电筒、路灯、台灯的光线形成的投影称为 .3、我们把大型会场、体育看台、电影院建为阶梯形状,是为了 .4、为了测量一根电线杆的高度,取一根2米长的竹竿竖直放在阳光下,2米长的竹竿的影长为1米,并且在同一时刻测得电线杆的影长为7.3米,则电线杆的高为米.5、如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我们可以确定这个几何体是 .6、将一个三角板放在太阳光下,它所形成的投影是,也可能是 .7、身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影 .三、解答题(本题7个小题,共47分)1、某糖果厂为儿童设计一种新型的装糖果的不倒翁(如图4所示)请你为包装厂设计出它的主视图、左视图和府视图.图 42、画出图5中三棱柱的主视图、左视图、俯视图.图 53、画出图6中空心圆柱的主视图、左视图、俯视图.6 图4、如图7所示,屋顶上有一只小猫,院子里有一只小老鼠,若小猫看见了小老鼠,则小老鼠就会有危险,试画出小老鼠在墙的左端的安全区.图 75、如图8为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=30m,现需了解甲楼对乙楼的采光的影响情况,(1)当太阳光与水平线的夹角为30?角时,求甲楼的影子在乙楼上有多高(精确到0.1m,1.73);(2)若要甲楼的影子刚好不落在乙楼的3,墙上,此时太阳与水平线的夹角为多少度,图 86、阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子[如图(9)所示],已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度(即AB的值)9 图7、一位同学想利用有关知识测旗杆的高度,他在某一时刻测得高为0.5m的小木棒的影长为0.3m,但当他马上测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子CD=1.0m,又测地面部分的影长BC=3.0m,你能根据上述数据帮他测出旗杆的高度吗,图 102010,2011学年度上期目标检测题九年级数学第五章反比例函数班级姓名学号成绩一、填空题(每小题3分,共30分)1、近视眼镜的度数y(度)与镜片焦距x成反比例.已知400度近视眼镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式是 .k、如果反比例函数的图象过点(2,-3),那么= . 2ky,x3、已知y与x成反比例,并且当x=2时,y=-1,则当y=3时,x的值是 .4、已知y与(2x+1)成反比例,且当x=1时,y=2,那么当x=0,y的值是 .4、若点A(6,y)和B(5,y)在反比例函数y,,的图象上,则y与y的大小关51212x系是 .36、已知函数,当x,0时,函数图象在第象限,y随x的增大而 .y,x2m,m,17、若函数y,(m,1)x是反比例函数,则m的值是 .2y,,8、直线y=-5x+b与双曲线相交于 x点P(-2,m),则b= .9、如图1,点A在反比例函数图象上,过点A作AB垂直于x轴,垂足为B,若S=2,则这个反比例函数的解析式为 ?AOB. 图 14y,,10、如图2,函数y=-kx(k?0)与的图 x象交于点A、B,过点A作AC垂直于y轴,垂足为C,则?BOC的面积为 . 图 2 二、选择题(每小题3分,共30分)下列每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内. 1、如果反比例函数的图象经过点P(-2,-1),那么这个反比例函数的表达式为( )2112y,,A、 B、 C、 D、 y,xy,,xy,xx222、已知y与x成反比例,当x=3时,y=4,那么当y=3时,x的值等于( ) A、4 B、-4 C、3 D、-353、若点A(-1,y),B(2,y),C(3,y)都在反比例函数的图象上,则下列关y,123x系式正确的是( )A、y,y,yB、y,y,yC、y,y,yD、y,y,y 123213321132m,54、反比例函数的图象的两个分支分别在第二、四象限内,那么m的取值范y,x围是( )A、m,0B、m,0C、m,5D、m,5 5、已知反比例函数的图象经过点(1,2),则它的图象也一定经过( ) A、(-1,-2) B、(-1,2) C、(1,-2) D、(-2,1) k6、若一次函数与反比例函数的图象都经过点(-2,1),则b的值是( )y,kx,by,xA、3B、-3C、5D、-5k27、若直线y=kx(k?0)和双曲线(k?0)在同一坐标系内的图象无交点,则,y112xk、k的关系是( ) 12A、k与k异号B、k与k同号C、k与k互为倒数D、k与k的值相等121212128、已知点A是反比例函数图象上一点,它到原点的距离为5,到x轴的距离为3,若点A在第二象限内,则这个反比例函数的表达式为( ) 112112y,A、y, B、 C、 D、y,, y,,xx12x12x6、如果点P为反比例函数的图像上的一点,PQ垂直于x轴,垂足为Q,那么9y,x?POQ的面积为( )A、12B、6C、3D、1.5k10、已知反比例函数(k?0),当x,0时,y随x的增大而增大,那么一次函数y,xy=kx-k的图象经过( )A、第一、第二、三象限B、第一、二、三象限C、第一、三、四象限D、第二、三、四象限三、解答题(本题6个小题,共40分)1、(6分)已知矩形的面积为6,求它的长y与宽x之间的函数关系式,并在直角坐标系中作出这个函数的图象.332、(6分)一定质量的氧气,它的密度ρ(kg/m)是它的体积(m)的反比例函数,当v333=10m时,ρ=1.43kg/m. (1)求ρ与的函数关系式;(2)求当=2m时,氧气vvv的密度ρ.33、(7分)某蓄水池的排水管每时排水8m,6小时(h)可将满水池全部排空. (1)蓄水池的容积是多少, 3(2)如果增加排水管,使每时的排水量达到Q(m),那么将满池水排空所需的时间t(h)将如何变化,(3)写出t与,之间的关系式(4)如果准备在,h内将满池水排空,那么每时的排水量至少为多少, 3(5)已知排水管的最大排水量为每时12m,那么最少多长时间可将满池水全部排空,4、(,分)某商场出售一批进价为,元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(个)之间有如下关系:日销售单价x(元) 3 4 5 6日销售量y(个) 20 15 12 10 (,)根据表中数据,在直角坐标系中描出实数对(x,y)的对应点; (,)猜测并确定y与x之间的函数关系式,并画出图象;(,)设经营此贺卡的销售利润为,元,求出,与x之间的函数关系式.若物价局规定此贺卡的售价最高不能超过10元,个,请你求出当日销售单价x定为多少时,才能获得最大日销售利润,k,、(,分)如图,,点,是双曲线与直线y=-x-(k+1)在第二象限内的交点, y,x3,,?x轴于B,且,,. ?ABO2(,)求这两个函数的解析式;(,)求直线与双曲线的两个交点,、,的坐标AOC的面积. 和?图 3k,、(,分)已知反比例函数y,和一次函数y=2x-1,其中一次函数的图象经过2x (a,b),(a+1,b+k)两点.(1)求反比例函数的解析式;(2)如图4,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标; (3)利用(2)的结果,请问:在x轴上是否存在点P,使?AOP为等腰三角形,若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.图 42010,2011学年度上期目标检测题九年级数学第六章频率与概率班级姓名学号成绩一、选择题(每小题4分,共40分)下列每个小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内. 1、一个事件发生的概率不可能是( )13A、0 B、1 C、 D、 222、下列说法正确的是( )A、投掷一枚图钉,钉尖朝上、朝下的概率一样1B、统一发票有“中奖”和“不中奖”两种情形,所以中奖的概率是 21C、投掷一枚均匀的硬币,正面朝上的概率是 21D、投掷一枚均匀的骰子,每一种点数出现的概率都是,所以每投6次,一定会出6现一次“1点”.、关于频率和概率的关系,下列说法正确的是( ) 3A、频率等于概率B、当实验次数很大时,频率稳定在概率附近C、当实验次数很大时,概率稳定在频率附近D、实验得到的频率与概率不可能相等4、小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率是( )A、38%B、60%C、约63%D、无法确定 5、随机掷一枚均匀的硬币两次,两次都是正面的概率是( )111A、 B、 C、 D、无法确定 2346、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球.由此估计口袋中大约有多少个白球( )A、10个B、20个C、30个D、无法确定 7、某商场举办有奖销售活动,办法如下:凡购物满100元者得奖券一张,多购多得.每10000张奖券为一个开奖单位,设特等奖1个,一等奖50个,二等奖100个,那么买100元商品的中奖概率是( ) 150100151A、 B、 C、 D、 100001000010000100008、柜子里有2双鞋,随机取出两只刚好配成一双鞋的概率是( )1111A、 B、 C、 D、 23469、某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则) 正确的说法是(A、至少有两名学生生日相同B、不可能有两名学生生日相同C、可能有两名学生生日相同,但可能性不大D、可能有两名学生生日相同,且可能性很大10、某城市有10000辆自行车,其牌照编号为00001到10000,则某人偶然遇到一辆自行车,其牌照编号大于9000的概率是( )1919A、 B、 C、 D、 1010100100二、填空题(每小题3分,共24分)1、在装有6个红球、4个白球的袋中摸出一个球,是红球的概率是 .2、某电视台综艺节目组接到热线电话3000个.现要从中抽取“幸运观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”的概率是 . 3、袋中装有一个红球和一个黄球,它们除了颜色外都相同.随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是 .4、小明和小华在玩纸牌游戏,有两组牌,每组各有2张,分别都是1、2,每人每次从每组牌中抽出一张,两张牌的和为3的概率为 .5、一个口袋中有15个黑球和若干个白球,从口袋中一次摸出10个球,求出黑球数与10的比值,不断重复上述过程,总共摸了10次,黑球数与10的比值的平均数为1/5,因此可估计口袋中大约有个白球.6、转盘甲被分成完全相等的三个扇形,颜色分别是红、蓝、绿,转盘乙被分成完全相等的两个扇形,颜色分别是红、蓝,任意转动这两个转盘,一个转盘转出蓝色,一个转盘转出红色(即配成紫色)的概率是 .7、一个密码锁的密码由四个数字组成,每个数字都是0,9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开.小亮忘了密码的前面两个数字,他随意按下前两个数字,则他一次就能打开锁的概率是 . 8、某市民政部门今年元宵节期间举行了“即开式社会福利彩票”销售活动,设置彩票3000万张(每张彩票2元),在这些彩票中,设置了如下的奖项:奖金/万元50 15 8 4 ……数量/个20 20 20 180 …… 如果花2元钱购买1张彩票,那么能得到8万元以上(包括8万元)大奖的概率是 .三、解答题(本题有5个小题,共36分)1、(7分)有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,抽到红桃、黑桃、梅花、方块的频率依次为20%、32%、45%、3%,试估计四种花色的牌各有多少张,2、(7分)一则广告称:本次抽奖活动的中奖率为50%,其中一等奖的中奖率为10%,1,那么我抽二张就会有一张中奖,抽10张就会小明看到这则广告后,想:“50%=2。

相关文档
最新文档