8086简介
8086工作原理

8086工作原理8086是一款经典的16位微处理器,由Intel公司于1978年设计和推出。
它被广泛应用于个人电脑中,并成为后来x86架构的基础。
8086微处理器采用了复杂指令集计算机(CISC)架构,具有16位的数据总线和20位的地址总线。
它的工作原理可以概括为指令译码、操作执行和数据传输。
首先,当8086微处理器接收到指令时,它会进行指令译码。
它会读取指令的操作码,并根据操作码来解析指令的含义和操作对象。
8086具有多种指令格式,包括数据传输、逻辑运算、算术运算、比较和跳转等。
指令译码过程是将指令转换为对应的操作和地址。
接下来,8086微处理器会执行指令的操作。
根据指令的类型,可以有不同的操作方式。
例如,对于数据传输指令,8086会根据指定的源地址和目标地址将数据从一个位置传输到另一个位置。
对于算术运算指令,8086会执行相应的加法、减法、乘法或除法运算,并将结果存储在指定的位置。
对于逻辑运算和比较指令,8086会对数据进行相应的操作,并根据操作结果跳转到指定的地址。
最后,8086微处理器会进行数据传输。
它有多种数据传输方式,包括内部和外部数据传输。
对于内部数据传输,8086可以将数据从一个寄存器传输到另一个寄存器,或者将数据从寄存器传输到内存,反之亦然。
对于外部数据传输,8086可以将数据从外部设备(如键盘、鼠标、磁盘等)读取到寄存器或内存中,或者将数据从寄存器或内存传输到外部设备。
8086微处理器还具有一些特殊的工作原理。
例如,它支持中断和异常处理机制,可以在发生特定事件时中断当前指令的执行,并转到相应的中断服务程序进行处理。
此外,8086还具有多种工作模式,包括实模式和保护模式。
实模式是8086最初的工作模式,可以直接访问1MB的内存。
保护模式是后来新增的工作模式,可以支持更大的内存访问,并提供更强的内存保护和特权级机制。
总之,8086微处理器是一款经典的16位微处理器,采用复杂指令集计算机架构。
微机原理第3章8086指令系统

微机原理第3章8086指令系统8086是Intel公司推出的一种16位微处理器,是x86架构的第一代处理器。
8086指令系统是8086微处理器所支持的指令集合,本章将介绍8086指令系统的基本特性和指令编码格式。
8086指令系统采用变长指令编码格式,指令长度可以是1个字节到多个字节,提供了多种寻址方式和丰富的操作类型。
8086指令系统共支持256条标准指令,可以执行各种算术逻辑运算、数据传输和控制流操作。
8086指令由操作码和操作数组成。
操作码指示了执行的具体操作,操作数则是操作码所针对的数据。
8086指令系统提供了多种寻址方式,包括立即寻址、直接寻址、寄存器寻址、寄存器间接寻址、寄存器相对寻址和基址变址寻址等。
立即寻址是将常数或数据直接作为操作数,如MOVAX,1000H,表示将立即数1000H传送到AX寄存器。
直接寻址是通过指定一个内存单元的地址来作为操作数,如MOVAL,[BX],表示将BX寄存器指向的内存单元的内容传送到AL寄存器。
寄存器寻址是直接将一个寄存器作为操作数,如MOVAX,BX,表示将BX寄存器的内容传送到AX寄存器。
除了寻址方式,8086指令系统还提供了多种操作类型,如算术逻辑运算、数据传输和控制流操作等。
算术逻辑运算可以进行加、减、乘、除等数学运算,如ADD、SUB、MUL、DIV等指令。
数据传输可以进行数据的读取和存储操作,如MOV、PUSH、POP等指令。
控制流操作可以用于程序的跳转和条件判断,如JMP、JZ、JC等指令。
8086指令系统还支持多种数据类型的操作,包括字节、字和双字等。
字节操作是对8位数据进行操作,字操作是对16位数据进行操作,双字操作是对32位数据进行操作。
指令的操作数大小可以根据需要选择合适的寄存器或内存单元。
总之,8086指令系统是8086微处理器所支持的指令集合,提供了多种寻址方式和操作类型,支持多种数据类型的操作。
通过掌握8086指令系统,可以编写出高效、精确的8086汇编程序,实现各种功能和算法。
8086系统设计资料

8086系统设计资料8086是Intel公司于1978年推出的一款16位微处理器,是x86架构之祖。
它是Intel公司首次推出的16位微处理器,被广泛应用于个人电脑、工控设备、嵌入式系统等领域。
8086具有丰富的指令集、强大的计算能力和灵活的扩展性,为当时计算机技术的发展做出了巨大贡献。
8086微处理器的主要特点包括以下几个方面:1.16位寄存器:8086具有16位的数据总线和地址总线,寄存器长度也为16位,包括通用寄存器AX、BX、CX、DX、堆栈指针SP、基址指针BP、源变址寄存器SI、目的变址寄存器DI等,可以进行高效的16位运算。
2.分段存储结构:8086采用了分段存储结构,将逻辑地址转换为线性地址的过程称为地址转换。
通过段基址寄存器和偏移地址寄存器的配合,可以访问1MB的内存空间,满足大型程序的需求。
3.复杂指令集:8086拥有丰富的指令集,包括数据传送指令、逻辑运算指令、算术运算指令、跳转指令等,在处理各种计算任务时具有很高的灵活性和效率。
4.可重入性:8086支持可重入性编程,在多任务环境下能够有效地避免资源竞争和死锁等问题,提高系统的稳定性和可靠性。
在设计8086系统时,需要考虑以下几个重要方面:1.硬件设计:8086系统的硬件设计包括主板设计、输入输出接口设计、存储系统设计等。
主板设计要考虑到数据高速传输的要求,尽量减小数据传输延迟和损失。
输入输出接口设计要与外设兼容,并考虑到系统的扩展性。
存储系统设计要满足程序和数据的快速存取需求,提高系统的整体性能。
2.中断系统设计:8086支持外设中断、软件中断和异常中断,中断系统设计要确保多任务并发执行时,能够有效地响应各种中断请求,保证系统的稳定性和可靠性。
3.内存管理设计:8086的内存管理包括段式内存管理和分页式内存管理,设计者需要根据系统需求选择合适的内存管理机制,并合理分配内存空间,提高系统的内存利用率和性能。
4.系统调度设计:8086系统在多任务环境下需要进行任务调度和资源管理,设计者需要考虑任务的优先级、进程的执行顺序等因素,确保系统能够高效地进行任务切换和资源分配。
8086cpu

8086 CPU简介8086 是英特尔(Intel)公司于 1978 年推出的 16 位微处理器。
它是最早的 x86 微处理器之一,被广泛应用于个人电脑(PC)的起步阶段,对于计算机技术的发展和普及起到了重要的推动作用。
本文将介绍 8086 CPU 的基本特征、工作原理和应用领域。
8086 CPU 的特点1.16 位架构: 8086 CPU 是一种 16 位微处理器,相对于 8 位微处理器,它能够处理更多的数据,提高计算机的处理能力。
2.寻址能力强: 8086 CPU 支持 1MB 的物理内存寻址,这在当时是非常先进的。
它通过分段的方式来实现 1MB 内存的寻址,其中代码段和数据段的概念对于内存管理非常重要。
3.复杂指令集: 8086 CPU 拥有丰富的指令集,包括算术运算、逻辑运算、条件分支、循环等指令。
这使得编程人员能够更灵活地进行程序设计。
4.支持多种工作模式: 8086 CPU 支持实模式和保护模式两种工作模式,实模式是与早期的 8080 和 8085 微处理器兼容的模式,保护模式则是为了在用户程序和操作系统之间提供更高的安全性和稳定性。
8086 CPU 的工作原理8086 CPU 主要包括以下几个部分:1.总线接口单元(BIU):负责处理与外部器件之间的数据传输,例如内存读写、I/O 设备访问等。
2.执行单元(EU):负责指令的解码和执行,包括算术逻辑运算、数据传输等操作。
3.时钟发生器(CLK):生成 CPU 的时钟信号,控制CPU 的工作频率。
8086 CPU 的工作过程如下:1.取指令(Fetch): BIU 从指令队列(Instrution Queue)中读取指令,并将其送往指令寄存器(Instruction Register)中进行解码。
2.解码指令(Decode): EU 解码指令,并将执行所需的数据从寄存器堆或内存中读取出来。
3.执行指令(Execute): EU 执行指令中的操作,包括算术运算、逻辑运算、数据传输等。
8086指令系统总结

8086指令系统总结8086是一种x86架构的微处理器,由Intel公司于1978年推出。
它是16位的,拥有20位的物理寻址能力,可以访问1MB的内存空间。
8086指令系统是其所支持的一系列指令集合,下面将对8086指令系统进行详细总结。
数据传输指令是8086指令系统中的基础指令之一,用于将数据从一个位置传输到另一个位置。
其中包括mov指令、xchg指令、push指令和pop指令等。
mov指令用于将数据从一个存储位置复制到另一个存储位置;xchg指令用于交换两个存储位置中的数据;push指令用于将数据压入栈顶;pop指令用于将栈顶的数据弹出。
算术运算指令是用于进行各种算术运算的指令。
8086支持包括加法、减法、乘法和除法等多种算术运算指令。
例如,add指令用于将两个操作数相加,sub指令用于将第二个操作数从第一个操作数中减去,mul指令用于将两个操作数相乘,div指令用于将第一个操作数除以第一个操作数,并将结果保存在指定的寄存器中。
逻辑运算指令用于进行逻辑运算,包括与、或、非、异或等运算。
例如,and指令用于对两个操作数进行按位与运算,or指令用于对两个操作数进行按位或运算,not指令用于对一个操作数进行按位非运算,xor指令用于对两个操作数进行按位异或运算。
控制转移指令用于控制程序的执行流程。
包括无条件转移指令、条件转移指令和循环指令。
无条件转移指令用于无条件地跳转到指定的地址,例如jmp指令;条件转移指令用于根据一些条件是否成立来进行跳转,例如je指令(跳转到指定地址,如果上一次比较操作相等);循环指令用于循环执行指定的指令块,例如loop指令。
I/O指令用于进行输入输出操作,包括从外部设备读取数据和将数据写入外部设备。
例如,in指令用于将输入端口的数据读取到指定的寄存器中,out指令用于将指定的寄存器中的数据写入到输出端口。
此外,8086还支持一些特殊的指令,如访问标志寄存器的指令,控制指令(如hlt指令、nop指令)和字符串指令(如movsb指令、cmpsb指令)等。
(完整版)第二课Intel8086微处理器简介

微型计算机主要是由微处理器(CPU)、主存储器、外部设备及互联部件组成,总线(数据总线、地址总线、控制总线)在部件之间提供通信。
Intel 8086微处理器按功能可分为两大部分:执行部件和总线接口部件执行部件主要由寄存器组、算逻部件、标志寄存器组成含有8个16位的标志寄存器,这些标志寄存器属于CPU的专用存储器,按其用途可分为两组:数据寄存器组和指示器变址寄存器组数据寄存器组(AX、BX、CX、DX)数据寄存器主要用来保存操作数和运算结果等信息。
AX:累加器,其作用为乘除运算,字的输入输出,中间结果的缓存BX:基址寄存器,其作用为存储器的指针使用CX:计数寄存器,其作用为串操作和循环控制DX:数据寄存器,其作用为字的乘除运算,间接的输入输出,也可以用作存放I/O的端口地址高8位H组:AH、BH、CH、DH低8位L组:AL、BL、CL、DL指示器变址寄存器(SI、DI、SP、BP)它们一般存放操作数的偏移地址,用作指示器或者变址寄存器。
SP:堆栈指示器,其作用为存取堆栈的指针DI:存储器指针,其作用为串指令目的操作数指针(目的变址寄存器)BP:堆栈操作数的基址寄存器SI:源变址寄存器。
当SI、DI和BP不用做指示器和变址寄存器时,也可以将他们当作数据寄存器使用,用来保存操作数和运算结果,但是这时只能呢个用来做16位寄存器而不能是8位的。
由于SP是专用的堆栈指示器,所以他不能做数据寄存器使用。
总线接口部件由于执行部件所提供的存储器地址是16位的,而8086访问1M空间却需要20位的地址,为了形成这20位地址,在总线接口部件中设立了4个段寄存器(CS、DS、ES和SS)CS:代码段寄存器,指示当前代码段,即它规定了现行程序所在的存储区首址DS:数据段寄存器ES:附加数据段寄存器SS:堆栈段寄存器,每个段可达64K字节。
在总线接口部件中,还有一个很重要的寄存器——指令指示器(IP),他总是保存着下一次将要从主存中取出的指令的偏移地址,其值为该指令到所在段段首址的字节距离。
8086结构组成

8086结构组成一、简介8086是英特尔(Intel)公司于1978年推出的16位微处理器,是第一款具有高度通用性的微处理器。
8086结构包括各种功能部件,如寄存器组、运算单元、控制单元等。
本文将详细介绍8086的结构组成和各个组成部分的功能。
二、8086结构组成1. 寄存器组8086包含了多个寄存器,用于存储各种数据和地址信息。
寄存器组包括通用寄存器、指令指针寄存器、段寄存器等。
1.1 通用寄存器8086拥有四个16位的通用寄存器:AX、BX、CX、DX。
这些寄存器可以用于存储数据、地址以及进行运算。
1.2 指令指针寄存器指令指针寄存器IP存储当前执行指令的地址,可以进行程序的跳转和控制。
1.3 段寄存器8086采用段寄存器和偏移地址的方式来定位内存中的数据。
段寄存器包括代码段寄存器CS、数据段寄存器DS、堆栈段寄存器SS和附加段寄存器ES。
2. 运算单元8086拥有一个功能强大的运算单元,可以执行各种运算和逻辑操作。
运算单元包括算术逻辑单元ALU、标志寄存器FLAGS等部件。
2.1 算术逻辑单元(ALU)ALU是8086中重要的组成部分,负责执行各种算术和逻辑运算,如加法、减法、与、或等。
2.2 标志寄存器(FLAGS)FLAGS寄存器用于存储运算结果的状态信息,包括进位标志、零标志、溢出标志等。
这些标志位可以帮助程序进行条件分支和判断。
3. 控制单元控制单元是8086中负责控制和协调各个部件工作的组成部分。
主要包括指令译码器、时钟发生器等。
3.1 指令译码器指令译码器用于解析指令,将指令转化为相应的控制信号,控制其他部件的工作。
3.2 时钟发生器时钟发生器为8086提供稳定的时钟信号,用于同步各个部件的工作,确保指令能够按序执行。
4. 外部接口8086能够与外部设备进行通信,包括输入输出接口和存储器接口。
4.1 输入输出接口输入输出接口负责将内部数据和外部设备进行数据交换,通过输入输出指令控制。
8086系统结构与8086CPU详解

8086系统结构与8086CPU详解8086是Intel公司于1978年推出的16位微处理器,是第一个被广泛应用于个人电脑的微处理器。
指令执行单元是8086的核心部分,它包括指令队列和执行单元。
指令队列用于存储将要执行的指令,执行单元根据指令队列中的指令来执行相应的操作。
8086采用流水线执行模式,使指令的执行更高效。
8086有14个寄存器,其中有4个通用寄存器AX、BX、CX和DX,其分别可以作为数据寄存器、地址寄存器、指针寄存器和变址寄存器使用。
AX寄存器可以拆分为两个独立的8位寄存器AH和AL,分别用于存储高8位和低8位数据。
除了通用寄存器外,8086还有4个段寄存器CS、DS、ES和SS,用于存储程序的代码段、数据段和堆栈段的物理地址。
内存管理单元用于实现8086的内存管理功能。
8086采用分段分页的内存管理模式,通过段寄存器和偏移地址来访问内存。
段寄存器存储段的起始地址,偏移地址表示从段起始地址开始的偏移量。
通过这种方式,8086可以寻址1MB的内存空间。
8086使用外部总线与其他设备进行通信。
它包括地址总线、数据总线和控制总线。
地址总线用于传输地址信息,数据总线用于传输数据,控制总线用于传输控制信号。
8086的地址总线宽度为20位,可以寻址1MB的内存空间。
除了系统结构,了解8086的CPU结构也是很重要的。
8086包括指令流水线、ALU、寄存器组、时钟和控制单元等部分。
指令流水线用于提高指令执行的效率,将指令的执行过程分为取指令、译码、执行和写回四个阶段,并行地执行不同的指令。
ALU(算术逻辑单元)用于进行算术和逻辑运算。
寄存器组包括通用寄存器和段寄存器,用于存储数据和地址信息。
8086的时钟是由外部提供的,它通过时钟和控制单元来对指令的执行进行控制。
总的来说,8086的系统结构和CPU结构共同组成了一个完整的微处理器系统。
通过了解其结构,可以更好地理解8086的工作原理和性能特点,为编程和系统设计提供指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章8086微处理器【回顾】微型计算机及微机系统的组成、结构与工作过程,CPU的基本概念与一般结构。
本讲重点8086微处理器的一般性能特点,内部编程结构的两大组成部分及在信息处理中的相互协调关系,处理器状态字PSW及各个标志位,8086微机系统的存储器组织。
一、8086微处理器1.引言8086微处理器是Intel公司推出的第三代CPU芯片,它们的内部结构基本相同,都采用16位结构进行操作及存储器寻址,但外部性能有所差异,两种处理器都封装在相同的40脚双列直插组件(DIP)中。
2.8086微处理器的一般性能特点:16位的内部结构,16位双向数据信号线;20位地址信号线,可寻址1M字节存储单元;较强的指令系统;利用第16位的地址总线来进行I/O端口寻址,可寻址64K个I/O端口;中断功能强,可处理内部软件中断和外部中断,中断源可达256个;单一的+5V电源,单相时钟5MHz。
另外,Intel公司同期推出的Intel8088微处理器一种准16位微处理器,其内部寄存器,内部操作等均按16位处理器设计,与Intel8088微处理器基本上相同,不同的是其对外的数据线只有8位,目的是为了方便地与8位I/O接口芯片相兼容。
3.8086CPU的编程结构编程结构:是指从程序员和使用者的角度看到的结构,亦可称为功能结构。
如图2-1所示是8086CPU的内部功能结构。
从功能上来看,8086CPU可分为两部分,即总线接口部件BIU(Bus Interface Unit)和执行部件EU(Execution Unit)。
(1) 执行部件(EU)功能:负责指令的执行。
组成:包括①ALU(算术逻辑单元)、②通用寄存器组和③标志寄存器等,主要进行8位及16位的各种运算。
图2-1 8086/8088CPU内部功能结构图(2) 总线接口部件(BIU)功能:负责与存储器及I/O接口之间的数据传送操作。
具体来看,完成取指令送指令队列,配合执行部件的动作,从内存单元或I/O端口取操作数,或者将操作结果送内存单元或者I/O端口。
组成:它由①段寄存器(DS、CS、ES、SS)、②16位指令指针寄存器IP(指向下一条要取出的指令代码)、③20位地址加法器(用来产生20位地址)和④6字节(8088为4字节)指令队列缓冲器组成。
(3) 8086 BIU的特点①8086的指令队列分别为6/4个字节,在执行指令的同时,可从内存中取出后续的指令代码,放在指令队列中,可以提高CPU的工作效率。
②地址加法器用来产生20位物理地址。
8086可用20位地址寻址1M字节的内存空间,而CPU内部的寄存器都是16 位,因此需要由一个附加的机构来计算出20位的物理地址,这个机构就是20位的地址加法器。
例如:CS=0FE00H,IP=0400H,则表示要取指令代码的物理地址为0FE400H。
(4) BIU与EU的动作协调原则:总线接口部件(BIU)和执行部件(EU)按以下流水线技术原则协调工作,共同完成所要求的信息处理任务:①每当8086的指令队列中有两个空字节,或BIU就会自动把指令取到指令队列中。
其取指的顺序是按指令在程序中出现的前后顺序。
②每当EU准备执行一条指令时,它会从BIU部件的指令队列前部取出指令的代码,然后用几个时钟周期去执行指令。
在执行指令的过程中,如果必须访问存储器或者I/O端口,那么EU就会请求BIU,进入总线周期,完成访问内存或者I/O端口的操作;如果此时BIU正好处于空闲状态,会立即响应EU的总线请求。
如BIU正将某个指令字节取到指令队列中,则BIU将首先完成这个取指令的总线周期,然后再去响应EU发出的访问总线的请求。
③当指令队列已满,且EU又没有总线访问请求时,BIU便进入空闲状态。
④在执行转移指令、调用指令和返回指令时,由于待执行指令的顺序发生了变化,则指令队列中已经装入的字节被自动消除,BIU会接着往指令队列装入转向的另一程序段中的指令代码。
从上述BIU与EU的动作管理原则中,不难看出,它们两者的工作是不同步的,正是这种既相互独立又相互配合的关系,使得8086可以在执行指令的同时,进行取指令代码的操作,也就是说BIU与EU是一种并行工作方式,改变了以往计算机取指令→译码→执行指令的串行工作方式,大大提高了工作效率,这正是8086获得成功的原因之一。
(5) 8086 CPU内部寄存器8086 内部的寄存器可以分为通用寄存器和专用寄存器两大类,专用寄存器包括指针寄存器、变址寄存器等。
①通用寄存器8086 有4个16位的通用寄存器(AX、BX、CX、DX),可以存放16位的操作数,也可分为8个8位的寄存器(AL、AH;BL、BH;CL、CH;DL、DH)来使用。
其中AX称为累加器,BX称为基址寄存器,CX称为计数寄存器,DX称为数据寄存器,这些寄存器在具体使用上有一定的差别,如表2-1所示。
②指针寄存器系统中有两个16位的指针寄存器SP和BP,其中SP是堆栈指针寄存器,由它和堆栈段寄存器SS一起来确定堆栈在内存中的位臵;BP是基数指针寄存器,通常用于存放基地址。
③变址寄存器系统中有两个16位的变址寄存器SI和DI,其中SI是源变址寄存器,DI是目的变址寄存器,都用于指令的变址寻址方式。
④控制寄存器IP、标志寄存器是系统中的两个16位控制寄存器,其中IP是指令指针寄存器,用来控制CPU的指令执行顺序,它和代码段寄存器CS一起可以确定当前所要取的指令的内存地址。
顺序执行程序时,CPU每取一个指令字节,IP自动加1,指向下一个要读取的字节;当IP单独改变时,会发生段内的程序转移;当CS和IP同时改变时,会产生段间的程序转移。
标志寄存器的内容被称为处理器状态字PSW,用来存放8086 CPU在工作过程中的状态。
表2-1 内部寄存器主要用途寄存器用途AX 字乘法,字除法,字I/OAL 字节乘,字节除,字节I/O,十进制算术运算AH 字节乘,字节除BX 转移CX 串操作,循环次数CL 变量移位,循环控制DX 字节乘,字节除,间接I/O⑤段寄存器系统中共有4个16位段寄存器,即代码段寄存器CS、数据段寄存器DS、堆栈段寄存器SS和附加段寄存器ES。
这些段寄存器的内容与有效的地址偏移量一起,可确定内存的物理地址。
通常CS划定并控制程序区,DS和ES控制数据区,SS控制堆栈区。
(6) 处理器状态字PSW8086 内部标志寄存器的内容,又称为处理器状态字PSW。
其中共有9个标志位,可分成两类:一类为状态标志,一类为控制标志。
其中状态标志表示前一步操作(如加、减等)执行以后,ALU所处的状态,后续操作可以根据这些状态标志进行判断,实现转移;控制标志则可以通过指令人为设臵,用以对某一种特定的功能起控制作用(如中断屏蔽等),反映了人们对微机系统工作方式的可控制性。
图2-2 标志寄存器PSW中各标志位的安排如图2-2所示,这些标志位的含义如下:①状态标志:6个✧CF—进位标志位,做加法时最高位出现进位或做减法时最高位出现借位,该位臵1,反之为0。
✧PF—奇偶标志位,当运算结果的低8位中l的个数为偶数时,则该位臵1,反之为0。
✧AF—半进位标志位,做字节加法时,当低四位有向高四位的进位,或在做减法时,低四位有向高四位的借位时,该标志位就臵1。
通常用于对BCD算术运算结果的调整。
(例:1101 1000+1010 1110=1 1000 0110其中AF=1,CF=1)✧ZF—零标志位,运算结果为0时,该标志位臵1,否则清0。
✧SF—符号标志位,当运算结果的最高位为1,该标志位臵1,否则清0。
即与运算结果的最高位相同。
✧OF—溢出标志位,OF溢出的判断方法如下:加法运算:若两个加数的最高位为0,而和的最高位为1,则产生上溢出;若两个加数的最高位为1,而和的最高位为0,则产生下溢出;两个加数的最高位不相同时,不可能产生溢出。
减法运算:若被减数的最高位为0,减数的最高位为1,而差的最高位为1,则产生上溢出;若被减数的最高位为1,减数的最高位为0,而差的最高位为0,则产生下溢出;被减数及减数的最高位相同时,不可能产生溢出。
如果所进行的运算是带符号数的运算,则溢出标志恰好能够反映运算结果是否超出了8位或16位带符号数所能表达的范围,即字节运算大于十127或小于-128时,字运算大于十32767或小于-32768时,该位臵1,反之为0。
【例1】0101 0100 0011 1001+0100 0101 0110 10101001 1001 1010 0011CF=0、AF=1、PF=1、ZF=0、SF=1、OF=1(两正数相加结果为负)一般来讲,不是每次运算后所有的标志都改变,只是在某些操作之后,才对其中某个标志进行检查。
②控制标志:3个✧TF—陷阱标志位(单步标志位、跟踪标志)。
当该位臵1时,将使8086/8088进入单步工作方式,通常用于程序的调试。
✧IF—中断允许标志位,若该位臵1,则处理器可以响应可屏蔽中断,否则就不能响应可屏蔽中断。
✧DF—方向标志位,若该位臵1,则串操作指令的地址修改为自动减量方向,反之,为自动增量方向。
二、存储器组织1. 存储容量8086有20根地址总线,因此,它可以直接寻址的存储器单元数为220=1Mbyte2. 物理地址8086可直接寻址1Mbyte的存储空间,其地址区域为00000H—FFFFFH,与存储单元一一对应的20位地址,我们称之为存储单元的物理地址。
3. 存储器的分段及段地址由于CPU内部的寄存器都是16位的,为了能够提供20位的物理地址,系统中采用了存储器分段的方法。
规定存储器的一个段为64KB,由段寄存器来确定存储单元的段地址,由指令提供该单元相对于相应段起始地址的16位偏移量。
这样,系统的整个存储空间可分为16个互不重叠的逻辑段,如图2-3所示。
存储器的每个段的容量为64KB,并允许在整个存储空间内浮动,即段与段之间可以部分重叠、完全重叠、连续排列,非常灵活,如图2-4所示。
图2-3 存储空间段结构图2-4 分段逻辑结构4. 偏移地址偏移地址是某存储单元相对其所在段起始位臵的偏移字节数,或简称偏移量。
它是一个16位的地址,根据指令的不同,它可以来自于CPU中不同的16位寄存器(IP、SP、BP、SI、DI、BX等)。
5. 物理地址的形成物理地址是由段地址与偏移地址共同决定的,段地址来自于段寄存器(CS、DS、ES、SS),是十六位地址,由段地址及偏移地址计算物理地址的表达式如下:物理地址=段地址×16+偏移地址例如:系统启动后,指令的物理地址由CS的内容与IP的内容共同决定,由于系统启动的CS=0FFFFH,IP=0000H,所以初始指令的物理地址为0FFFF0H,我们可以在0FFFF0H 单元开始的几个单元中,固化一条无条件转移指令的代码,即转移到系统初始化程序部分。