初中数学找规律题

合集下载

初中数学找规律练习题(有答案)

初中数学找规律练习题(有答案)

精心整理一、简答题1、已知a、b互为相反数,c、d互为倒数,m的倒数等于它本身,则的值是多少?(4分)2、先阅读,再解题:因为,?,?……所以.参照上述解法计算:3、目前市场上有一种数码照相机,售价为3800元/架,预计今后几年内平均每年比上一年降价4%.3年后这种数码相机的售价估计为每架多少元(精确到1元)?4、已知a、b互为相反数,m、n互为倒数,x绝对值为2,求的值5、如果规定符号“﹡”的意义是﹡=,求2﹡﹡4的值。

6、某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,问他九月份的收入为多少元?7、王叔叔家的装修工程接近尾声,油漆工程结束了,经统计,油漆工共做50工时,用了150升油漆,已知油漆每升128元,共粉刷120平方米,在结算工钱时,有以下几种结算方案:(1)按工时算,每6工时300元。

(2)按油漆费用来算,油漆费用的15%为工钱;(3)按粉刷面积来算,每6平方米132元。

请你帮王叔叔算一下,用哪种方案最省钱?8、定义一种新的运算:观察下列式子1⊙3=1×4+3=7;3⊙(-1)=3×4+(-1)=11;5⊙4=5×4+4=24;4⊙(-3)=4×4+(-3)=13.⑴请你想一想:a⊙b=??????????;⑵请你判断a⊙b??????b⊙a(填入“=”或“≠”)???⑶若a=-2,b=-4,求(2a-b)⊙(a-2b)的值.9、阅读下列材料:1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),3×4=(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×(n+1)=________;(3)1×2×3+2×3×4+3×4×5=________.10、从2004年8月1日起,浙江省城乡居民生活用电执行新的电价政策:安装“一户一表”的居民用户,按所抄见电量(每家用户电表所表示的用电量)实行阶梯式累进加价,收费标准如下:月用电量不超过50千瓦时的部分超过50千瓦时不超过200千瓦时的部分超过200千瓦时的部分收费标准(元/千瓦时)0.53 0.56 0.63 ????例:若某户月用电300千瓦时,需交电费为????(元)(1)若10月份许老师家用电量为130千瓦时,则10月份许老师家应付电费多少元??(2)已知许老师家10月份的用电量为千瓦时,请完成下列填空(用代数式表示):①若千瓦时,则10月份许老师家应付电费为?????????????元;②若千瓦时,则10月份许老师家应付电费为???????元;③若千瓦时,则10月份许老师家应付电费为??????????元。

(完整版)七年级找规律经典题汇总带答案

(完整版)七年级找规律经典题汇总带答案

……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。

初中数学找规律

初中数学找规律

中考数学——找规律班级___________________座号_____________一、棋牌游戏问题1.4X 扑克牌如图(1)所示放在桌子上,小敏把其中一X 旋转180º后得到如图(2)所示,那么她所旋转的牌从左数起是( )A .第一XB .第二XC .第三XD .第四X2.)小明背对小亮,让小亮按下列四个步骤操作:第一步 分发左、中、右三堆牌,每堆牌不少于两X ,且各堆牌的X 数相同; 第二步 从左边一堆拿出两X ,放入中间一堆; 第三步 从右边一堆拿出一X ,放入中间一堆;第四步 左边一堆有几X 牌,就从中间一堆拿几X 牌放入左边一堆. 这时,小明准确说出了中间一堆牌现有的X 数.你认为中间一堆牌的X 数是.4.(2004年XXXX )图(4)是跳棋盘,其中格点上的黑色点为棋子, 剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A 为已方一枚棋子,欲将棋子A 跳进对方区域(阴影部分的格点),则跳行的最少步数为( ) A .2步 B .3步 C .4步 D .5步 二、空间想象问题1.(2004年XX )把正方体摆放成如图(5)的形状,若从上至下依次为第1层,第2层,第3层,……,则第n 层有___个正方体.2.(2004年XX 日照)如图(6),都是由边长为1的正方体叠成的图形。

图3相帅炮例如第①个图形的表面积为6个平方单位,第②个图形的表面积为18个平方单位,第③个图形的表面积是36个平方单位。

依此规律,则第⑤个图形的表面积个平方单位。

3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图(7),是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的.4..观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图(8)①中:共有1个小立方体,其中1个看得见,0个看不见;如图(8)②中:共有8个小立方体,其中7个看得见,1个看不见;如图(8)③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见...的小立方体有个.5.图(1)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。

中考数学复习专题——找规律(含答案)

中考数学复习专题——找规律(含答案)

中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 2个图 3个图 …6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。

8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。

(完整word版)七年级数学找规律练习题和答案

(完整word版)七年级数学找规律练习题和答案

找规律练习题1 •用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第X 1=1,第二个数为X 2=3,第三个数开始依次记为 X 3, X 4,…,X n ;从第二个数开始,每个数是它相中有白色地砖 块。

2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。

在一个边长为1的正方形纸版上, 形彩色纸片(n 1 规律,计算丄 2为大于1 1 1 48的整数) 1 班1 1 依次贴上面积为 1 , 1 ,2 4 。

请你用“数形结合”的思想, 8 ”如图, 1 丄的矩 2n 依数形变化的 邻两个数和的一半。

(如: X 2=^l X3 )2 (1)求第三、第四、第五个数,并写出计算过程; (2)根据(1)的结果,推测X 8= (3)探索这一列数的规律,猜想第 k 个数X k = . ( k 是大于2的整数) 4•将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线) .继续对折,对折时每次折痕与上次的折痕保持平行,连 续对折三次后,可以得到 7条折痕,那么对折四次可以得到 ________________ 条折痕.如果对折n 次,可以得到 ______________ 条折 痕• 1 1 1 1 1 1 1 ■ ■ 1 4 1 | 1 1 1 1 1 111 1 1 V 1 1 1 1 1 1 1 hL1 V 1 1 a ii k i 1119 1 l> V i i I I I I l> 1 1 I l> I 1 I I I i 1 >1 1 ■ KPI ■ ・ W P a L h h F 1I 4 1 il >1 I ii ■l >l 4 I A I 第一次对折第二次对折第三友对折5.观察下面一列有规律的数 1 2 _5 _6_ 3,8,15,24,35,48 根据这个规律可知第 n 个数是(n 是正整数) 6.古希腊数学家把数 1, 3, 6, 10, 15, 21 ,……,叫做三角形数,它有一定的规律性,则第 形数的差为 _____________________ 。

七年级数学找规律经典题型

七年级数学找规律经典题型

七年级数学找规律经典题型一、数字规律1. 数列规律例1:观察数列1,3,5,7,9,…,求第n个数。

解析:首先观察这个数列,发现相邻两个数的差值都是2。

第1个数是1 = 2×1 1;第2个数是3 = 2×2 1;第3个数是5 = 2×3 1;第4个数是7 = 2×4 1;第5个数是9 = 2×5 1。

所以可以得出第n个数为2n 1。

例2:观察数列2,4,8,16,32,…,求第n个数。

解析:这个数列中,后一个数都是前一个数的2倍。

第1个数是2 = 2^1;第2个数是4 = 2^2;第3个数是8 = 2^3;第4个数是16 = 2^4;第5个数是32 = 2^5。

所以第n个数为2^n。

2. 数字循环规律例:有一组数按照1, 1,1, 1,…的规律排列,求第n个数。

解析:观察这组数字,发现数字是1和 1交替出现。

当n为奇数时,第n个数为1;当n为偶数时,第n个数为 1。

可以用(-1)^(n + 1)来表示,当n = 1时,(-1)^(1+1)=1;当n = 2时,(-1)^(2 + 1)= 1。

二、图形规律1. 图形数量规律例1:用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴棒,…,求搭n个三角形需要多少根火柴棒。

解析:搭1个三角形需要3根火柴棒,即2×1+1;搭2个三角形时,第二个三角形和第一个三角形共用一条边,所以需要3 + 2 = 5根火柴棒,即2×2+1;搭3个三角形时,第三个三角形和前面的三角形共用两条边,所以需要3+2×2 = 7根火柴棒,即2×3 + 1。

所以搭n个三角形需要2n+1根火柴棒。

例2:观察下列图形的点数规律:第1个图形有1个点;第2个图形有1 + 3 = 4个点;第3个图形有1+3 + 5 = 9个点;第4个图形有1+3+5 + 7 = 16个点;求第n个图形的点数。

初中数学找规律专题练习

初中数学找规律专题练习

找规律专题练习1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,2、如以下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按 同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去; (1)填表:(2)如果剪n 次,共剪出多少个小正方形?(3)如果剪了 100次,共剪出多少个小正方形? (4)观察图形,你还能得出什么规律?3、小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住局部的整数的和是4、填表并答复以下问题x0.010.11101001000( 100 1 2x(1)根据上表结果,描述所求得的一列数的变化规律 (2)当x 非常大时,学的值接近于什么数? x5、现有黑色三角形“▲和△〞共200个,根据一定规律排列如下:那么黑色三角形有 个,白色三角形有 个7、用火柴棒按如下方式搭三角形:(1)填写下表:反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第 64根细面条.次后可拉出第一次捏合第三次捏合剪的次数 1 2 3 4 5正方形个数第二次捏合 6、仔细观察以下图形.当梯形的个数是n 时,图形的周长是12的规律填空: 502, 第n 个式子呢?①张桌子拼在一起可坐 ________ 入.3张桌子拼在一起可坐 _________ 人,n 张桌子拼在一起可坐 __________ 人. ②一家餐厅有40张这样的长方形桌子,根据上图方式每 5张桌子拼成1张大桌子,那么40张桌子可 拼成8张大桌子,共可坐 ____________ 人.③假设在②中,改成每8张桌子拼成1张大桌子,那么共可坐 __________________ 人. 12、用计算器计算以下各式,并将结果填写在横线上.① 1X7X15873= ______________ ② 2X7 X15873= _____________ ③ 3X7 X15873= _____________ ④ 4X7 X15873= _____________你发现了什么规律?把你发现的规律用简练的语言写出来;13、观察以下顺序排列的等式:9 >0+1=19 >1+2=11 9>2+3=21 9>3+4=31 9X4+5=41猜测:第n 个等式(n 为正整数)应为.14、 一个两位数的个位数是a,十位数字是b,请用代数式表示这个两位数是15、观察以下各式:31=3, 32 =9, 33=27, 34=81, 35=243, 36=729…你能从中发现底数为 3的事的9、一列数:1,- -2 , 3,- -4, 5, —6, 7,…将这列数排成第1行 1第2行 一23第3行 —45 一 6第4行 7 一 8 9 -10第5行 11 -1213 —141510、观察以下算式:1 5 4 32 , 2 6 4 42 ,3 74 52 , 4 8 4 62 ,请你在察规律之后并用你得到(2)照这样的规律搭下去,搭n 个这样的三角形需要 _______________ 根火柴棒8、把编号为1, 2, 3, 4,…的假设干盆花按右图所示摆放,花盆中 蓝、紫的颜色依次循环排列,那么第 8行从左边数第6盆花的颜色为 色.根据上述规律排下去,那么第10行从左边数第5个数等于的花按红、黄、卜列形式:个位数有什么规律吗?根据你发现的规律答复:3 2004的个位数字是16、观察以下各式,你会发现什么规律?3X5=15,而 15=42 1 0 5X7=35,而 35= 62 111X13=143,而 143= 122 1将你猜测到的规律用只含一个字母的式子表示出来:.17、问题:你能比拟20052006和20062005的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比拟n n+1和(n+1)n 的大小(n为正整数),我们从n=1,n=2,n=3 ••…这些简单的情况入手,从中发现规律,经过归纳,猜出结论.(1)通过计算,比拟以下各组数字大小① 12 22 ② 23 32 ③ 34 43④ 45 54⑤ 54 65⑥ 67 7(2)把第(1)题的结果经过归纳,你能得出什么结论?你能用只含有一个字母的式子表示吗? (3)根据上面的归纳猜测得到的结论,试比拟两个数的大小(1分) 20052006200召005 (填〞 >〞," <"),“二〞18、为了美化城市,某商场在门前的空地上用花盆按如下图的方式搭正方形,(1)填写下表正方形的层 数12345花盆的个数4(2)按这个规律搭下去,搭第n 层正方形,需要 _______________________________ 盆花?19、下面有三组数,请你填上适宜的运算符号,使每一组数的结果都为 10. (1) 1 5 5 9 =10 ; (2) 3 3 3 3=10 ; (3) 1 1 9 9 =10请你修忙算一算得多少?21、黑蚂蚁和红蚂蚁都认为自己跑得比对方快,刚好它们看到地上的几个半圆(图 1),于是它们决定比 一比.黑蚂蚁沿着大半圆从甲处跑到乙处;红蚂蚁沿着两个小半圆也从甲处跑到乙处.两只蚂蚁同时起 跑,说也奇怪,两只蚂蚁同时到达了乙处.(1)两只蚂蚁请你帮助判断:谁跑得快?20、小红和小花在玩一种计算的游戏,计算的规那么是a b ........................... 1 2=ad- bCo 现在轮到小红计算的值,c d3 4(2)两只蚂蚁对你的判断结果很不满意,决定再到(图 2)的几个半圆处再比赛一次,请你猜一猜,哪 一只蚂蚁先从甲处跑到乙处?,总的比赛场数是多少? 4个球队呢? m23.按一定规律排列的一串数:1 23 1 2 34 51 2Q , Q , G ,匚, 匚,匚,匚,匚,7,73 3 3 5 5 5 5 57714.下面的算式里,符号.、△、和口分别代表三个不同的自然数,这三个数的和是1111 118. △口24. 一群整数朋友根据一定的规律排成一排,可排在口位置的数跑掉了,请帮它们把跑掉的朋友找回来.(1) 5, 8, 11, 14, □ , 20; (2) 1, 3, 7, 15, 31, 63, □;(3) 1, 1, 2, 3, 5,8, □, 21 25.以下两列数:2, 4, 6, 8, 10, 12,……1994;6, 13, 20, 27, 34, (1994)这两列数中,相同的数的个数是( )A 、 142B 、 143C 、 284D 、 28526. 一串数字的排列规律是:第一个数是 20,从第二个数起,每一个数比前一个数小 8(1)第10个数是多少? ( 2)第n 个数是多少? ( 3)第几个数是一6027.某仓库堆放一批圆木,一共 20层,第一层3根,每往下一层多1根,问这堆圆木一共有多少根? 28.在如下图的2003年1月份的日历中,用一个方框圈出任意 3X3个数 星期日星期一星期二 星期三 星期四 星期五 星期六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920212223242526 27 28 29 30 31(1)从左下角到右上角的三个数字之和为 45,那么这9个数的和是多少?这9个日期中最后一天是 1月几日?(2)用这样的方框能否圈出总和为162的9个数? 37,…中,第98个数是 ______________22. (1) 3个球队进行单循环赛 (参赛的每一个队都与其它所有各队比赛一场) 个球队呢?(代数式表示出来)(2)当m=12时,总共比赛几场?29 .观察以下数据,按某种规律在横线上填上适当的数:♦ 3 5 7 9 1, 一, 一, 一,——, ,…49162530 .如图,△ ABC 中,D 是边BC 上的中点, F 是线段CD 的中点,E 是边AC 的中点,那么图中有 条线段,有 个角,假设4 DEF 的面积是2,那么△ ABC 的面积是31 .平面内两两相交的 6条直线,其交点个数最少为 m 个,最多为n 个,那么m+n 等于〔〕A 、12B 、16C 、20D 、以上都不对32 .如图,可以看成是边长为4的小正方形的巧克力糖,请你用尽可能多的不同方法把它分成形状、大小完全相同的四块,要求不把正方形糖块划破〔至少五种方法〕40、观察公式:公式 1 : (x a)3 x 3 3x 2a 3xa 2 a 333 .在某月日历上一个竖列相邻的五个数之和为 80,这五个数是34 .某月日历有一竖列四个日期,其中第二个日期与第四个日期的和是 36,那么第三个日期是35 .今年暑假,李老师一家三口人外出旅行一周,这一周各天的日期之和是 36 .如果这个月的5号是星期三,那么20号是星期 37 .三个连续偶数中,n 是最小的一个,这三个数的和为 , 38 .以下图形中三角形的个数是〔〕A.4 个B.6 个C. 9 个D.10 个 91,那么李老师是 号回家的39、至少找出以下几何体的 4个共同点4 4 3_22 3 4公式2:(x a) x 4x a 6x a 4xa a(1) 这两个公式有什么特点?(2) 利用公式计算:_ 4 _ 3 1 __2 1 2 _ 1 3 1242()62()42()() 2 2 2 241、下面有三组数,请你填上适宜的运算符号,使每一组数的结果都为10.(1) 1 5 5 9 =10 ; (2) 3 3 3 3 =10 ; (3) 1 1 9 9 =1042 .造一个含有字母p和q的代数式,使得不管p、q取何值,代数式的值永远不是正的.43 .图是2002年6月份的日历,现用一矩形在日历中任意框出4个数| a b] ,请用一个等式表示,a、b、c、d之间的关系. c d日一一三四五六12345678910111213141516171819202122232425262728293044 .右图,是用火柴棒摆成的一个大三角形,它是由九个小三角形组成的,试将1、2、3、4、5、6、7、8、9分别填入这9个小三角形哪(每个小三角形内只填一个数) ,要求靠近大三角形每条边的每五个数相加的和相等,请想一想,怎样填这些数才能使五个数的和尽可能大一些,这五个数的和最大是多少?45.王容许了大臣的一个要求:即在国际象棋棋盘上2粒米,第3格放4粒米,然后是8粒、16粒、32粒……一直到64格〞.但是不久国王九发现国库里没有这么多米,然而国王的话不能不算数,国王又不好意思向别人借,怎么办呢?请你帮国王想一个好方法来解决这个问题. (方法必须符合情理,有创意者可适当多加分.方法多者亦可多加分)46.如果连结多边形的一边上一点与其余各顶点可将某多边形分割成2004个三角形,求该多边形的边数47 .如图1-26,在ABC中,点D,E,F分别是AB,BC,AC三边中点,图中与BOD面积相等的三角形有几个?48 .观察图1-27中有几个三角形?由此你发现三角形的个数有什么规律呢49.求个数图 1-29(1)将下表填写完整. 图形符号52、以下图形经过折叠能否围成一个正方体?一个三角形3个三角形个三角形个三角形(n 个点)(3)(4)53、某种细胞每过54、有一张厚度是 30分便由1个分裂成2个,经过5小时,这种细胞由1个能分裂成0 .1毫米的纸,将它对折 1次后,厚度为2X0.1毫米.(1)图1-28(1)中有多少个三角形?(2)图1-28(2)中有多少个四边形?50.如图1-29所示,图①是一个三角形别连结图②中间的小三角形三边的中点,分别连结这个三角形三边的中点(将这条边分为相等的两局部的点 ,得到图③,按此方法继续下去,请你根据图中三角形个数的规律)得到图②;再分 ,完成以下问(2)〔1〕、对折2次后,厚度为毫米. 〔2〕对折20次后,厚度为毫米.〔3〕对折n次后,厚度为毫米.55、以下图〔1〕表示1张餐桌和6张椅子〔每个小半圆代表1张椅子〕,假设按这种方式摆放20张餐桌需要的椅子张数是.你认为220的末位数字是〔〕.57、某种细菌在培养过程中,每半小时分裂1次,每次一分为二.假设这种细菌由1个分裂到16个,那么这个过程要经过〔〕A. 1.5小时B , 2小时C , 3小时D , 4小时58、计算:1—2+3—4+……+2001 —2002+2003= . .会在与数字2所在的平面相对的平面上.,4 5 6 _1 2pv2 , 22 4, 23 8, 24 1 6, 25 32, 26 64, 27 1 28, 28 2 56, 根据上述算式中的规律,63、(A)观察以下数据,(B)按某种规律在横线上填上适当的数:4 9一列数7二72,7一,1673…72003 ,其中末位数是3的有个.56、观察以下算式: 2159、当下面这个图案被折起来组成一个正方体,数字61、根据规律填上适宜的数:〔1〕—9, —6, —3, /64、在下面的图形中〔62、〕是正方体的展开图.66、指出以下平面图形是什么几何体的展开图〔 6分〕:67、在下面的图形中,〔 〕是正方体的外表展开图68、探索规律:用棋子按下面的方式摆出正方形①按图本规律填写下表: 图形编号 (1) ⑵ (3) (4) ⑸ (6)棋子个数②根据这种方式才g 下去,摆第 n 个正方形需要多少个棋子? ③根据这种方式才g 下去,第第 20个正方形需要多少个棋子?69、,13 1 - 12 22,4,3 c3 c 1 -2 八21 2 9 — 2 3, 4□ □ □ □ □ □,3 八3 八3 "1 2 3 36 32 42⑴猜测填空:1323 334()(2)假设1323 33 240 2,试求n的值.70、用火柴棒按下面方式搭图形,那么20个图形需要的火柴棒是根. 第1 2。

十道初中数学找规律的题型及解题思路

十道初中数学找规律的题型及解题思路

十道初中数学找规律的题型及解题思路这里有10道初中数学找规律的题目,涵盖了常见的数列、图形等多种类型,希望能帮助学生更好地掌握找规律的技巧:数列找规律1.等差数列:1.1, 4, 7, 10, ... 下一个数是多少?2.100, 97, 94, ... 第10个数是多少?2.等比数列:1.2, 4, 8, 16, ... 第8个数是多少?2.81, 27, 9, ... 第6个数是多少?3.混合数列:1.1, 4, 9, 16, 25, ... 下一个数是多少?(提示:考虑每个数的平方)2.2, 5, 10, 17, ... 下一个数是多少?(提示:观察相邻两数的差)4.周期数列:1.1, 2, 3, 1, 2, 3, ... 第20个数是多少?2.A, B, C, A, B, C, ... 第100个数是多少?图形找规律图形的变化:1.一组图形,每个图形由小方块组成,观察图形的变化规律,画出下一个图形。

图形的旋转:1.一个图形不断旋转,观察旋转的规律,画出旋转后的图形。

图形的翻转:1.一个图形不断翻转,观察翻转的规律,画出翻转后的图形。

数字与图形结合数字与图形对应:1.一组图形,每个图形对应一个数字,找出数字与图形之间的对应关系。

图形中的数字规律:1.一个图形中包含多个数字,找出数字之间的规律。

综合题型1.数字和图形的综合:1.一组图形和数字交替出现,找出数字和图形之间的关系。

解题技巧:•观察:仔细观察数列或图形的变化规律,找出其中的共同点和差异点。

•比较:比较相邻的数或图形,找出它们的递增、递减或其他变化关系。

•联想:将题目与以前学过的知识联系起来,寻找解题思路。

•归纳:根据观察和比较的结果,归纳出一般性的规律。

•验证:将得到的规律代入后面的数或图形中进行验证,确保规律的正确性。

注意事项:•找规律题的答案可能不唯一,只要找到一种合理的规律即可。

•遇到困难时,可以尝试从不同的角度去观察和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学探索题训练—找规律
1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。

在电子数字计算机中用的是二进制,只要两个数码:0和1。

如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。

2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。

3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
那么,当输入数据是8时,输出的数据是( ) A 、
618 B 、638 C 、65
8
D 、678
4、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.
5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子。

6、如下图是用棋子摆成的“上”字:
第一个“上”字第二个“上”字第三个“上”字
如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子;(2)第n个“上”字需用枚棋子。

7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,
则这串珠子被盒子遮住的部分有_______颗.
8、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有
个点,第n个图形中有个点。

9、下面是按照一定规律画出的一列“树型”图:
经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出个
(1)(2)(3)
第4题
第7题图
(1)
(2)
(3)
(4)
“树枝”。

10、观察下面的点阵图和相应的等式,探究其中的规律:
(1)在④和⑤后面的横线上分别写出相应的等式;
(2)通过猜想写出与第n 个点阵相对应的等式_____________________。

11、用边长为1cm 的小正方形搭成如下的塔状图形,则第n 次所搭图形的周长是_______________cm (用含n 的代数式表示)。

12、如图,都是由边长为
1的正方体叠成的图形。

例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3
)个图形的表面积是36个平方单位。

依此规律。

则第(5)个图形的表面积 个平方单位。

……
……
①1=12
; ②1+3=22; ③1+3+5=32
④ ;
⑤ ;
第1次 第2次 第3次 第4次 ···
···

⑵⑶
13、图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是()
A 25
B 66
C 91
D 120
14、如图是由大小相同的小立方体木块叠入而成的几何体,图⑴中有1个立方体,图⑵中有4个立方体,图⑶中有9个立方体,……
按这样的规律叠放下去,
第8个图中小立方体个数是 .
15、图1是棱长为a的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…、第n层,第n层的小正方体的个数为s.解答下列问题:
(1
(1)
(2)(3)
14题
(2)写出当n =10时,s= .
16、如图用火柴摆去系列图案,按这种方式摆下去,当每边摆10根时(即10 n )时,需要的火柴棒总数为 根;
17、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律下去,搭n 个三角形需要S 支火柴棒,那么用n 的式子表示S 的式子是 _______ (n 为正整数).
18、如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图:则第n 个图形中需用黑色瓷砖 ____ 块.(用含n 的代数式表示)
19、如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:
当黑色瓷砖为20块时,白色瓷砖为块;当白色瓷砖为n2(n为正整数)块时,黑色瓷砖为块.
17题图
20、观察下列由棱长为
1的小立方体摆成的图形,寻找规律:如图1中:共有1 个小立
方体,其中1个看得见,0个看不见;如图2中:共有8个小立方体,其中7个看得见,1个看不见;如图3中:共有27个小立方体,其中有19个看得见,8个看不见;……,则第6个图中,看不见的小立方体有个。

21、下面的图形是由边长为l的正方形按照某种规律排列而组成的.。

相关文档
最新文档