中考数学专题训练:找规律、新概念(含答案)
初中数学找规律题(有答案)

初中数学找规律题(有答案)“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b 为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
中考数学规律探索题中考找规律题目有答案

中考规律探索1以下为全部整理类型;规律探索共两套试题;供参考学习使用一.选择题1.观察下列等式:31=3;32=9;33=27;34=81;35=243;36=729;37=2187… 解答下列问题:3+32+33+34…+32013的末位数字是 A .0 B .1 C .3 D .72. 把所有正奇数从小到大排列;并按如下规律分组:1;3;5;7;9;11;13;15;17;19;21;23;25;27;29;31;…;现用等式A M =i;j 表示正奇数M 是第i 组第j 个数从左往右数;如A 7=2;3;则A 2013= A .45;77 B .45;39 C .32;46 D .32;233.下表中的数字是按一定规律填写的;表中a 的值应是 .4.下列图形都是由同样大小的矩形按一定的规律组成;其中第1个图形的面积为2cm 2;第2个图形的面积为8 cm 2;第3个图形的面积为18 cm 2;……;第10个图形的面积为 A .196 cm 2B .200 cm 2C .216 cm 2D . 256 cm 25.如图;动点P 从0;3出发;沿所示的方向运动;每当碰到矩形的边时反弹;反弹时反射角等于入射角;当点P 第2013次碰到矩形的边时;点P 的坐标为 A 、1;4 B 、5;0 C 、6;4 D 、8;36.如图;下列各图形中的三个数之间均具有相同的规律.根据此规律;图形中M 与m 、n 的关系是A . M=mnB . M=nm+1C .M=mn+1D .M=mn+17.我们知道;一元二次方程12-=x 没有实数根;即不存在一个实数的平方等于-1;若我们规定一个新数“”;使其满足12-=i 即方程12-=x 有一个根为;并且进一步规定: 一切实数可以与新数进行四则运算;且原有的运算律和运算法则仍然成立;于是有,1i i =12-=i ;,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n;我们可得到,.)(.4414i i i i i i n n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么;20132012432i i i i i i +⋅⋅⋅++++的值为A .0B .1C .-1D .8.下列图形都是由同样大小的棋子按一定的规律组成;其中第①个图形有1颗棋子;第②个图形一共有6颗棋子;第③个图形一共有16颗棋子;…;则第⑥个图形中棋子的颗数为A .51B .70C .76D .81图① 图②图③···第8题图二.填空题1.观察下列图形中点的个数;若按其规律再画下去;可以得到第n个图形中所有的个数为用含n的代数式表示.2.如图;在直角坐标系中;已知点A﹣3;0、B0;4;对△OAB连续作旋转变换;依次得到△1、△2、△3、△4…;则△2013的直角顶点的坐标为.3.如图;正方形ABCD的边长为1;顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1;由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…;以此类推;则第六个正方形A6B6C6D6周长是.4.直线上有2013个点;我们进行如下操作:在每相邻两点间插入1个点;经过3次这样的操作后;直线上共有个点.5.如图;古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1;5;12;22…为五边形数;则第6个五边形数是.6 .如图;是用火柴棒拼成的图形;则第n个图形需根火柴棒.7.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…;则1+3+5+…+2013的值是.8.如图12;一段抛物线:y=-xx-30≤x≤3;记为C1;它与x轴交于点O;A1;将C1绕点A1旋转180°得C2;交x 轴于点A2;将C2绕点A2旋转180°得C3;交x 轴于点A3;……如此进行下去;直至得C13.若P37;m在第13段抛物线C13上;则m =_________.9.直线上有2013个点;我们进行如下操作:在每相邻两点间插入1个点;经过3次这样的操作后;直线上共有个点. 10.观察下列各式的计算过程:5×5=0×1×100+25;15×15=1×2×100+25;25×25=2×3×100+25;35×35=3×4×100+25;…………请猜测;第n个算式n为正整数应表示为____________________________.11.将连续的正整数按以下规律排列;则位于第7行、第7列的数x是__ __.12、如下图;每一幅图中均含有若干个正方形;第①幅图中含有1个正方形;第②幅图中含有5个正方形;……按这样的规律下去;则第6幅图中含有个正方形;••••••①②③13.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆; 第2个图形有10个小圆; 第3个图形有16个小圆; 第4个图形有24个小圆; ……;依次规律;第6个图形有 个小圆. 14.已知一组数2;4;8;16;32;…;按此规律;则第n 个数是 . 15、我们知道;经过原点的抛物线的解析式可以是y =ax 2+bxa ≠0 1对于这样的抛物线:当顶点坐标为1;1时;a =__________;当顶点坐标为m ;m ;m ≠0时;a 与m 之间的关系式是__________;2继续探究;如果b ≠0;且过原点的抛物线顶点在直线y =kxk ≠0上;请用含k 的代数式表示b ;3现有一组过原点的抛物线;顶点A 1;A 2;…;A n 在直线y =x 上;横坐标依次为1;2;…;n 为正整数;且n ≤12;分别过每个顶点作x 轴的垂线;垂足记为B 1;B 2;…;B n ;以线段A n B n 为边向右作正方形A n B n C n D n ;若这组抛物线中有一条经过D n ;求所有满足条件的正方形边长.16.如图;所有正三角形的一边平行于x 轴;一顶点在y 轴上;从内到外;它们的边长依次为2;4;6;8;…;顶点依次用1A 、2A 、3A 、4A 、…表示;其中12A A 与x 轴、底边12A A 与45A A 、45A A 与78A A 、…均相距一个单位;则顶点3A 的坐标是 ;22A 的坐标是 .第16题图17.如图;已知直线l :y=33x ;过点A 0;1作y 轴的垂线交直线l 于点B ;过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1;过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去;则点A 2013的坐标为 .18、如图;在平面直角坐标系中;一动点从原点O 出发;按向上;向右;向下;向右的方向不断地移动;每移动一个单位;得到点A 1 0;1;A 21;1;A 31;0;A 42;0;…那么点A 4n +1n 为自然数的坐标为 用n 表示19.当白色小正方形个数n 等于1;2;3…时;由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.用n 表示;n 是正整数20. 2013 衢州4分如图;在菱形ABCD 中;边长为10;∠A=60°.顺次连结菱形ABCD 各边中点;可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点;可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点;可得四边形A 3B 3C 3D 3;按此规律继续下去….则四边形A 2B 2C 2D 2的周长是 ;四边形A 2013B 2013C 2013D 2013的周长是 .21.一组按规律排列的式子:a2;43a ;65a ;87a ;….则第n 个式子是________22.观察下面的单项式:a;﹣2a 2;4a 3;﹣8a 4;…根据你发现的规律;第8个式子是 . 23.如图;已知直线l :y=x;过点M2;0作x 轴的垂线交直线l 于点N;过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x轴的垂线交直线l 于N 1;过点N 1作直线l 的垂线交x 轴于点M 2;…;按此作法继续下去;则点M 10的坐标为 .24.为庆祝“六一”儿童节;某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律;摆第n图;需用火柴棒的根数为.答案:选择题:1、C 2、C 3、21 4、B 5、D 6、D 7、D 8、 C填空题:1、n+12 2、8052;0 3、0.5 4、16097 5、51 6、2n+1 7、1014049 8、 2 9、16097 10、10n-1+52=100nn-1+25 11、85 12、91 13、46 14、2n 15、1-1;a =-1m或am +1=0;2解:∵a ≠0 ∴y =ax 2+bx =ax +2b a2-24b a ∴顶点坐标为-2ba;-24b a∵顶点在直线y =kx 上∴k -2ba=-24b a∵b ≠0 ∴b =2k3解:∵顶点A n 在直线y =x 上 ∴可设A n 的坐标为n ;n ;点D n 所在的抛物线顶点坐标为t ;t由12可得;点D n 所在的抛物线解析式为y =-1tx 2+2x∵四边形A n B n C n D n 是正方形 ∴点D n 的坐标为2n ;n∴-1t2n 2+2×2n =n∴4n =3t∵t 、n 是正整数;且t ≤12;n ≤12∴n =3;6或9∴满足条件的正方形边长为3;6或916、0;31-;-8;-8. 17、()()201340260,40,2或注:以上两答案任选一个都对18、2n;1 19、n 2+4n 20、20;21、221na n n 为正整数22、-128a 8 23、884736;0 24、6n+2规律探索21、 我们平常用的数是十进制数;如2639=2×103+6×102+3×101+9×100;表示十进制的数要用10个数码又叫数字:0;1;2;3;4;5;6;7;8;9..在电子数字计算机中用的是二进制;只要两个数码:0和1..如二进制中101=1×22+0×21+1×20等于十进制的数5;10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23;那么二进制中的1101等于十进制的数 ..2、 从1开始;将连续的奇数相加;和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始;将前10个奇数即当最后一个奇数是19时;它们的和是 .. 3、小王利用计算机设计了一个计算程序;输入和输出的数据如下表:输入 (1)2345… 输出……那么;当输入数据是8时;输出的数据是A 、618B 、638C 、658D 、6784、如下左图所示;摆第一个“小屋子”要5枚棋子;摆第二个要11枚棋子;摆第三个要17枚棋子;则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子;观察图形的变化规律;写出第n 个小房子用了 块石子6、如下图是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去;那么通过观察;可以发现:1第四、第五个“上”字分别需用 和 枚棋子;2第n 个“上”字需用 枚棋子..7、如图一串有黑有白;其排列有一定规律的珠子;被盒子遮住一部分;则这串珠子被盒子遮住的部分有_______颗.(1)(2)(3)第4题第7题图⑴ ⑵ ⑶1 2 348、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有 个点;第n 个图形中有 个点.. 9、下面是按照一定规律画出的一列“树型”图:经观察可以发现:图2比图1多出2个“树枝”;图3比图2多出5个“树枝”;图4比图3多出10个“树枝”;照此规律;图7比图6多出 个“树枝”..10、观察下面的点阵图和相应的等式;探究其中的规律:1在④和⑤后面的横线上分别写出相应的等式;2通过猜想写出与第n 个点阵相对应的等式_____________________..11、用边长为1cm 的小正方形搭成如下的塔状图形;则第n 次所搭图形的周长是_______________cm 用含n 的代数式表示..12、如图;都是由边长为1例如第1个图形的表面积为6个平方单位;第2个图形的表面积为18个平方单位;第3个图形的表面积是36..个图形的表面积 个平方单位13、图1是一个水平摆放的小正方体木块;图2、3是由这样的小正方体木块叠放而成;按照这样的规律继续叠放下去;至第七个叠放的图形中;小正方体木块总数应是A 25B 66C 91D 12014、如图是由大小相同的小立方体木块叠入而成的几何体;图⑴中有1个立方体;图⑵中有4个立方体;图⑶中有9个立方体;……按这样的规律叠放下去;第8个图中小立方体个数是 .15、图1是棱长为a 的小正方体;图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放;由上而下分别叫第一层、第二层、…、第n 层;第n 层的小正方体的个数为s .解答下列问题:1按照要求填表:2写出当n =10时;s= .16、如图用火柴摆去系列图案;按这种方式摆下去;当每边摆10根时即10 n 时;需要的火柴棒总数为 根;n1 2 3 4… s 1 3 6……………①1=12; ②1+3=22;③1+3+5=32; ④ ;⑤ ;第 ··· ···图1 图2 图3B 17、用火柴棒按如图的方式搭一行三角形;搭一个三角形需3支火柴棒;搭2个三角形需5支火柴棒;搭3个三角形需7支火柴棒;照这样的规律下去;搭n 个三角形需要S 支火柴棒;那么用n 的式子表示S 的式子是 _______ n 为正整数.18、;请观察下图:则第n 个图形中需用黑色瓷砖 ____ 19题图19、如图;用同样规格的黑白两种正方形瓷砖铺设正方形地面;观察图形并猜想填空:当黑色瓷砖为20块时;白色瓷砖为 块;当白色瓷砖为n 2n 为正整数块时;黑色瓷砖为 块.20、观察下列由棱长为1的小立方体摆成的图形;寻找规律:如图1中:共有1 个小立方体;其中1个看得见;0个看不见;如图2中:共有8个小立方体;其中7个看得见;1个看不见;如图3中:共有27个小立方体;其中有19个看得8个看不见;……;则第6个图中;看不见的小立方体有 个..21、下面的图形是由边长为l 的正方形按照某种规律排列而组成的. 1观察图形;填写下表:2推测第n 个图形中;正方形的个数为________;周长为______________都用含n 的代数式表示.22、观察下图;我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形;图⑶中共有14个正方形;按照这种规律继续下去;图⑹中共有_______个正方形..23、某正方形园地是由边长为1的四个小正方形组成的;现要在园地上建一个花坛阴影部分使花坛面积是园地面积的一半;以下图中设计不合要求....的是 第22题图 24;25<1>、 <3>26、2次把第1次铺的完全围起来;如图2;第3次把第23;…依此方法;第n 次铺完后;用字母n 表示第n 次镶嵌所使用的木块块数为 . n 为正整数27、用黑白两种颜色的正六边形地面砖按如下所示的规律;拼成若干个图案: ⑴ 第4个图案中有白色地面砖 块; ⑵ 第n 个图案中有白色地面砖 块..28、分析如下图①;②;④中阴影部分的分布规律;按此规律在图③中画出其中的阴影部分.29、将一圆形纸片对折后再对折;得到图2;然后沿着图中的虚线剪开;得到两部分;其中一部分展开后的平面图形是30.如图1;小强拿一张正方形的纸;沿虚线对折一次得图2;再对折一次得图3;然后用剪刀沿图3中的虚线剪去一个角;再DCB打开后的形状是A B C D31、 用一条宽相等的足够长的纸条;打一个结;如图1所示;然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE;其中∠BAC= 度.32、如图;一张长方形纸沿AB 对折;以AB 中点O 为顶点将平角五等分;并沿五等分的折线折叠;再沿CD 剪开;使展开后为正五角星正五边形对角线所构成的图形.则∠OCD 等于A .108°B .144°C .126°D .129°33、如图;把一个正方形三次对折后沿虚线剪下则得到的图形是A B C D 第35题图34、将一张长方形的纸对折;如图5所示可得到一条折痕图中虚线. 继续对折;对折时每次折痕与上次的折痕保持平行;连续对折三次后;可以得到7条折痕;那么对折四次可以得到 条折痕 .如果对折n 次;可以得到 _____________条折痕 ..35、观察图形:图中是边长为1;2;3 …的正方形:当边长n =1时;正方形被分成2个大小相等的小等腰直角三角形;当边长n =2时;正方形被分成8个大小相等的小等腰直角三角形;当边长n =3时;正方形被分成18个大小相等的小等腰直角三角形;以此类推:当边长为n 时;正方形被分成大小相等的小等腰直角三角形的个数是 ..36、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图;是一个正方体的平面展开图;若图中的“似”表示正方体的前面; “锦”表示右面; “程”表示下面.则“祝”、 “你”、“前”分别表示正方体的___________________.37、如图是一块长方形ABCD 的场地;长AB =102m;宽AD =51m;从A 、B 两处入口的中路宽都为1m;两小路汇合处路宽为2m;其余部分种植草坪;则草坪面积为A5050m 2 B4900m 2 C5000m 2D4998m 238、读一读;想一想;做一做:国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格;而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘;图中的“皇后Q ”能控制图中虚线所经过的每一个小方格.① 在如图乙的小方格棋盘中有一“皇后Q ”;她所在的位置可用“2;3”来表示;请说明“皇后Q ”所在的位置“2;3”的意义;并用这种表示法分别写出棋盘中不能被该“皇后Q ”所控制的四个位置.②如图丙也是一个4×4的小方格棋盘;请在这个棋盘中放入四个“皇后Q ”;使这四个“皇后Q ”之间互不受对方控制在图丙中的某四个小方格中标出字母Q 即可._沿虚线剪开 程前 你 祝 似 锦 AS D S CSB S 图1DEBA图23 甲行乙3丙参考答案1、132、1003、C4、1795、 3n+1-3+nn+1或n+12+2n-16、118、22 24n+27、278、31;n2-n-19、8010、1+3+5+7=42;1+3+5+7+9=52;1+3+5+……+2n-1=n2 11、 4n 12、9013、C 14、64 5、110 21+2+3+……+n=nn+1/2 16、16517、s=2n+1 18、4n+6 19、16;4n+420、125 21、113、18;28、38; 25n+3;10n+8 22 、9123、B 24、B 25、A 26、8n-6 27、118 ;24n+228、29、C30、 C31、3632、A 33、C34、15 ;2n-1 35、 2n2 36、后面、上面、左面 37、C38、1 1;1;3;1;4;2;4;4;2。
找规律题和新概念

找规律题和新概念知识点讲解:1、顺等差数列,前⼀个数减去后⼀个数的差相等。
例如:1,3,5,7,9,…逆等差数列,后⼀个数减去前⼀个数的差相等。
例如:10,8,6,4, 2…;2、顺等⽐数列,即前⼀个数除以后⼀个数的商相等。
例如:2,4,8,16,32…;逆等⽐数列,即后⼀个数除以前⼀个数的商相等。
例如:1024,512,256,128,…;3、兔⼦数列,即单数序号的数字与双数序号的数分别形成规律。
例如8,15,10,13,12,11,(14),(9)这⾥8,10,12,14成规律,15,13,12,11,9成规律;4、质数数列规律,例如:2,3,5,7,11,(13),(17)....这些数学都为质数;注意:⼀般考试只有以下⼀种情况,⽽且容易出现到⼩升初考试,要特别注意。
5、“平⽅数列”、“⽴⽅数列”等,例如:平⽅数列:1、4、9、16、27、64、125、…⽴⽅数列:1、8、27、64、81、256、625、…6、相邻数字差呈现规律。
数字之间差呈现等差数列,例如:1、3、7、13、21、31、43、…数字之间差呈现等⽐数列,例如:1、3、7、15、31、63、…7、多个数字间呈现规律,(本题考查较少)裴波那契数列,即任意连续两个数字之和等于第三个数字,例如:1、1、2、3、5、8、13、21、34、…任意连续三个数字之和等于第四个数字,例如:1、1、1、3、5、9、17、31、57、105、…练习题:1. 如图,把同样⼤⼩的⿊⾊棋⼦摆放在正多边形的边上,按照这样的规律摆下去,则第五个图形需要⿊⾊棋⼦的个数是,第n 个图形需要⿊⾊棋⼦的个数是(1n ,且n为整数).2.若“!”是⼀种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为()A. 5049B. 99!C. 9900D. 2!3.观察下⾯⼏个算式:1+2+1=4,1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25, ……根据你所发现的规律,请你直接写出下⾯式⼦的结果: 1+2+3+…+99+100+99+…+3+2+1=_________. 4.观察下⾯⼀列数,探究其中的规律:---,65,54,43,32,21,1(1)第11,12,13个数分别是,,(2)第2010个数是什么(3)第n 个数是( n 为⼤于1的正整数) 5.观察:33221129234+==;33322112336344++==??;33332211234100454+++==??;……,⑴若n 为正整数,猜想3333123n ++++=;⑵利⽤上题的结论来⽐较3333123100++++与2(5000)-的⼤⼩.6.有若⼲个数,第⼀个数记为a1,第⼆个数记为a2,…,第n 个数记为an.若a1=21,从第⼆个数起,每个数都等于“1与它前⾯那个数的差的倒数”.试计算:a2=______,a3=____,a4=_____,a5=______.这排数有什么规律吗?由你发现的规律,请计算a2043是多少?7.⽤“?”定义新运算:对于任意实数a, b , 都有a ?b=b2+1. 例如, 7?4= 42+1=17,那么5?3= ;当m 为实数时,m ? (m ?2) = .8. 如图,在⼀个三⾓点阵中,从上向下数有⽆数多⾏,其中各⾏点数依次为2,4,6,…,2n ,…,请你探究出前n ⾏的点数和所满⾜的规律.若前n ⾏点数和为930,则n =().A .29B .30C .31D .32 9.下⾯是⼀列单项式2342,4,8x x x--观察它们的系数和指数的特点,则第7个单项式是,第n 个单项式是 .10.观察下列算式,⽤你所发现的规律得出20132的末位数字是()21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8 11.⼀组按规律排列的式⼦:()25811234,,,,0b b b b ab a a a a --≠其中第7个式⼦是,第n 个式⼦是(n 为正整数). 12.(2011年)在右表中,我们把第i ⾏第j 列的数记为,i j a (其中i ,j 都是不⼤于5的正整数),对于表中的每个数,i j a 规定如下:当i ≥j 时,,1i j a =;当< i j 时,,0i j a =.例如:当i=2,j=1时,,2,11i j a a ==.按此规定,1,3a =_____;表中的25个数中,共有_____个1;计算1,1,11,2,21,3,31,4,41,5,5i i i i i a a a a a a a a a a ?+?+?+?+? 的值为_______.13. 刘谦的魔术表演风靡全国,⼩明也学起了刘谦,发明了⼀个魔术盒,当任意有理数对(a ,b )进⼊其中时,会得到⼀个新的有理数:-a2+b -1,例如:如果把(1,-2)放⼊其中,就会得到-12+(-2)-1=-4.现若将有理数对(-3,-2)放⼊其中,得到的有理数是.14. 定义计算“?”,对于两个有理数a ,b ,有a ?b =ab -(a +b ),例如:-3?2=516)23(23-=+-=+--?-,则[]4)1()1(?-?-m =___ __。
中考数学复习专题——找规律(含答案)

中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 第2个图 第3个图 …6、如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子枚(用含有n的代数式表示,并写成最简形式).○○○○○○○○○○○○○●●○○●●●○○●○○●●○○●●●○○○○○○○○○●●●○○○○○○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需根火柴棒。
8、将正整数按如图5所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.9、如图2,用n表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n的关系是10、观察图4的三角形数阵,则第50行的最后一个数是()1-2 3-4 5 -67 -8 9 -10。
11、下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第n个图案中白色正方形的个数为.12、观察下列各式:3211=332123+=33221236++=33332123410+++=……猜想:333312310++++=.第一个第二个第三个……第n个第一排第二排第三排第四排6┅┅10 9 8 73 2154答案解析:1解析:1时,5.n再每增加一个数时,m就增加3个数.解答:根据所给的具体数据,发现:8=5+3,11=5+3×2,14=5+3×3,….以此类推,第n个圈中,5+3(1)=32.2解析:分析可得:第1幅图中有1×2-1=1个,第2幅图中有2×2-1=3个,第3幅图中有3×2-1=5个,…,故第n幅图中共有21个3解析:在4的基础上,依次多3个,得到第n个图中共有的棋子数.观察图形,发现:在4的基础上,依次多3个.即第n个图中有4+3(1)=31.当6时,即原式=19.故第6个图形需棋子19枚4解析:此题只要找出截取表一的那部分,并找出其规律即可解.解答:解:表二截取的是其中的一列:上下两个数字的差相等,所以15+3=18.表三截取的是两行两列的相邻的四个数字:右边一列数字的差应比左边一列数字的差大1,所24+25-20+1=30.表四中截取的是两行三列中的6个数字:18是3的6倍,则c应是4的7倍,即28.故选D.认真观察表格,熟知各个数字之间的关系:第一列是1,2,3,…;第二列是对应第一列的2倍;等三列是对应第一列的3倍5解析:据给出的四个图形的规律可以知道,组成大正方形的每个小正方形上有一个完整的圆,因此圆的数目是大正方形边长的平方,每四个小正方形组成一个完整的圆,从而可得这样的圆是大正方形边长减1的平方,从而可得若这样铺成一个10×10的正方形图案,则其中完整的圆共有102+(10-1)2=181个.解答:解:分析可得完整的圆是大正方形的边长减1的平方,从而可知铺成一个10×10的正方形图案中,完整的圆共有102+(10-1)2=181个.点评:本题难度中等,考查探究图形的规律.本题也只可以直接根据给出的四个图形中计数出的圆的个数,找出数字之间的规律得出答案.6解析:解:第1个正方形图案有棋子共32=9枚,其中黑色棋子有12=1枚,白色棋子有(32-12)枚;第2个正方形图案有棋子共42=16枚,其中黑色棋子有22=4枚,白色棋子有(42-22)枚;…由此可推出想第n个图案的白色棋子数为(2)22=4(1).故第n个图案的白色棋子数为(2)22=4(1).点评:根据图形提供的信息探索规律,是近几年较流行的一种探索规律型问题.解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论7解析:根据题意分析可得:搭第1个图形需12根火柴;搭第2个图形需12+6×1=18根;搭第3个图形需12+6×2=24根;…搭第n个图形需12+6(1)=66根.解答:解:搭第334个图形需6×334+6=2010根火柴棒8解析:寻找规律,然后解答.每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.解答:解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案填:(6,5).对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9解析:根据题意分析可得:第n行有n个小圆圈.故f(n)和n的关系是ƒ(n)= (n2).10解析:根据题意可得:第n行有n个数;且第n行第一个数的绝对值为+1,最后一个数的绝对值为;奇数为正,偶数为负;故第50行的最后一个数是1275.解答:解:第n行第一个数的绝对值为+1,最后一个数的绝对值为,奇数为正,偶数为负,第50行的最后一个数是1275第一个图中白色正方形的个数为3×3-1;第二个图中白色正方形的个数为3×5-2第三个图中白色正方形的个数为3×7-3;…当其为第n个时,白色正方形的个数为3(21)5312解析:根据所给的等式,可以发现右边的底数是前边的底数的和,指数是平方,则最后的底数是1+2+310=5×11=55,则原式=552.解答:解:根据分析最后的底数是1+2+310=5×11=55,则原式=552.故答案552。
初中数学中考 规律探究、新概念专项训练(二)

======s a a a a a a 则.......,9926,6317,72,31,3253214111nnx x 第4讲:规律探究、新概念专项训练 1.(2015 广东省东莞市) 观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是 . 2.(2015 内蒙古包头市) 观察下列各数:1,,,,…,按你发现的规律计算这列数的第6个数为( )A .B .C .D .3.(2016年鄂尔多斯)请观察下列式子的规律:4.(2016 湖北省荆州市) 如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为( )A .671B .672C .673D .6745. (2016 贵州省黔南州) 在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①△(a ,b )=(﹣a ,b ); ②○(a ,b )=(﹣a ,﹣b ); ③Ω(a ,b )=(a ,﹣b ),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于 .6.(2016 贵州省黔南州) 】.阅读材料并解决问题: 求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015 两式相减:得2S ﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+ (32015)7.(2015 内蒙古通辽市) 一列数1x ,2x ,3x ,…,其中1x =12,(n 为不小于2的整数),则2015x= .8.(2015 贵州省铜仁地区).请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= .9.(2016 青海省西宁市) 如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x= ,一般地,用含有m ,n 的代数式表示y ,即y= .10.(2016 广东省梅州市) 】.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (23,0),B (0,2),则点B 2016的坐标为______________.。
2020--2021学年九年级数学中考总复习:找规律与新定义型问题

中考总复习专题之找规律与新定义型问题板块一:找规律1.有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是,这2019个数的和是.2.观察下列各式:,,,设n表示正整数,用关于n的等式表示这个规律是.3.观察下列图形规律:当n= 时,图形“●”的个数和“△”的个数相等.4.如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为________.5.如图,将从1开始的自然数按下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是.6.如图所示,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是( )A .71B .78C .85D .897.如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n 盆花,每个图案花盆总数是S ,按此推断S 与n 的关系式为( )A .S=3nB .S=3(n ﹣1)C .S=3n ﹣1D .S=3n+1板块二:新定义型问题1.定义新运算:a ※b =1()(0)a a b a a b b b-≤⎧⎪⎨->≠⎪⎩且,则函数y =3※x 的图象大致是( ) A . B .C .D .2.对于两个不相等的实数a 、b,定义一种新的运算如下,*0a b a b =+>),如:3*232==﹣,那么6*(5*4)= . 3.定义一种新运算:a ※b =()3()a b a b b a b -⎧⎨<⎩,则2※3﹣4※3的值______. 4.定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)= .5.对于x y ,定义一种新运算“☆”,x y ax by =+☆,其中a b ,是常数,等式右边是通常的加法和乘法运算.已知3515=☆,4728=☆,则11☆的值为____.6.定义:对于实数a ,符号[a]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(2)如果[]=3,求满足条件的所有正整数x . 7.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD =BD ,四边形ABCD 的外角平分线DF 交⊙O 于点F ,连结BF 并延长交CD 的延长线于点E .求证:∠BEC 是△ABC 中∠BA C 的遥望角.(3)如图3,在(2)的条件下,连结AE ,AF ,若AC 是⊙O 的直径.①求∠AED 的度数;②若AB =8,CD =5,求△DEF 的面积.12x +8.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.9.在平面直角坐标系中,我们定义直线y =ax -a 为抛物线y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”. 已知抛物线2234323yx x 与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.。
初中数学中考复习专题:找规律专项练习及答案解析(50道)

初中数学中考复习专题:找规律专项练习及答案解析(50道)以下是为大家整理的初中数学中考复习专题:找规律专项练习及答案解析(50道)的相关范文,本文关键词为初中,数学,中考,复习,专题,规律,专项,练习,答案,解析,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在中考初中中查看更多范文。
初中数学中考复习专题:找规律专项练习及答案解析(50道)一、选择题1、连结多边形不相邻的两个顶点的线段,叫做多边形的对角线.观察上述图形并阅读相关文字,思考回答问题:显然四边形对角线有2条;五边形的对角线有5条;对于六边形的对角线条数,光靠“数”数,也能数出来,但已感到较麻烦!需寻找规律!从一个顶点A 出发,显然有3条,同理从b出发也3条,每个顶点出发都是3条,但从c顶点出发,就有重复线段!用此方法算出六边形的对角线条数为a;且能归纳出n边形的对角线条数的计算方法;若一个n边形有35条对角线,则a和n的值分别为()A.12,20b.12,15c.9,10D.9,122、寻找规律计算1-2+3-4+5-6+…+20XX-20XX等于()A.0b.-1c.-1008D.10083、观察下列各式并找规律,再猜想填空:,则______.4、观察一列数:是(),,,,,……根据规律,请你写出第10个数A.c.b.D.共20页,第1页二、填空题5、观察一下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;……请你写出有以上规律的第⑤组勾股数:6、找规律填空:……7、已知察上面的计算过程,寻找规律并计算:=.…,观8、观察分析下列数据,寻找规律:0,据应是_________.,,3,2,……那么第10个数9、找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。
①2张桌子拼在一起可坐______人;(1分)3张桌子拼在一起可坐______人;(1分)n张桌子拼在一起可坐______人。
2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)类型一数式规律1.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB1n -CnD1n -【答案】Ca ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第nn ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.2.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111n n na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.3.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b -的值为()11122113223114233241……A .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.4.(2023·四川内江·统考中考真题)对于正数x ,规定2()1xf x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+…2100200(100)1100101f ⨯==+,1212100()11001011100f ⨯==+,1(100)(2100f f +=,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+201=故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.5.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于()A.23-B.13C.12-D.23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+ ,2021223a a ∴==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.6.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p的值为()A.100B.121C.144D.169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.7.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时W 的分子为5,分母为23110+=∴这个数为51102=故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.8.(2021·湖北十堰市·)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解析】∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.10.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是.【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.11.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.12.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.13.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.14.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=-的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b -=⎧⎨-+=-⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4--【分析】先分别解一元一次方程37322x x +=-和二元一次方程组2428a b a b -=⎧⎨-+=-⎩,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=-,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b -=⎧⎨-+=-⎩①②,由2+⨯①②得,3=12b -,解得:4b =-,把4b =-代入①得,24=4a +,解得:0a =,∴=04=4a b +--,∴点Q 的纵坐标为4-,∴点Q 的坐标为()5,4-,又∴点Q 关于y 轴对称点Q '的坐标为()5,4--,故答案为:()5,4--.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键.15.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:2-,4,8-,16,32-,64,……①0,7,4-,21,26-,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.16.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.17.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,2468101214161820……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有(1)2n n+个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有1+2+3+⋯+n=(1)2n n+个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.18.(2021·四川眉山市·中考真题)观察下列等式:1311 212x===+⨯;2711623x ===+⨯;313111234x ===+⨯;……根据以上规律,计算12320202021x x x x ++++-= ______.【答案】12016-【分析】根据题意,找到第n 个等式的左边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可.【详解】11(1)n n =++,20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021=2020+1﹣12016﹣2021=12016-.故答案为:12016-.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.19.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.20.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12nn +.【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设12a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: 12a =,b =11122ab =⨯=∴,1112211112a ba ba b b ba bS a a ++++=+==+++++++ ,222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.22.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.24.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n+1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明.(1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++,第三个式子()11111452041441=+=+++,……∴第(n+1)个式子1111(1)n n n n =+++;(2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边,∴1111(1)n n n n =+++.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.类型二图形规律25.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .54【答案】B 【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.25.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341…,⨯-=;所以第⑦个图案中圆圈的个数为37120故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n -是解题的关键.27.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B 【分析】利用图形寻找规律()211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.28.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.29.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.30.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答31.(2021·黑龙江大庆市·中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -.32.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】1226C H 【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .【点睛】本题考查了规律题,找到规律是解题的关键.33.(2023·山西·统考中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,∴第(1)n n >个图案中有()22n +个白色圆片.故答案为:()22n +.【点睛】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.34.(2023·黑龙江绥化·统考中考真题)在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.35.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.36.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.37.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n+2n ×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n.【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.38.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.类型三与函数有关规律39.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题训练:找规律、新概念附参考答案1. (2012山东潍坊3分)下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为【】.A.32 B.126 C.135 D.144【答案】D。
【考点】分类归纳(数字的变化类),一元二次方程的应用。
【分析】由日历表可知,圈出的9个数中,最大数与最小数的差总为16,又已知最大数与最小数的积为192,所以设最大数为x,则最小数为x-16。
∴x(x-16)=192,解得x=24或x=-8(负数舍去)。
∴最大数为24,最小数为8。
∴圈出的9个数为8,9,10,15,16,17,22,23,24。
和为144。
故选D。
2. (2012广西南宁3分)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有【】A.7队B.6队C.5队D.4队【答案】C。
【考点】分类归纳(数字的变化类),一元二次方程的应用。
【分析】设邀请x个球队参加比赛,那么第一个球队和其他球队打(x-1)场球,第二个球队和其他球队打(x-2)场,以此类推可以知道共打(1+2+3+…+x-1)= x(x1)2-场球,根据计划安排10场比赛即可列出方程:x(x1)102-=,∴x2-x-20=0,解得x=5或x=-4(不合题意,舍去)。
故选C。
3. (2012广东肇庆3分)观察下列一组数:32,54,76,98,1110,……,它们是按一定规律排列的,那么这一组数的第k个数是▲.【答案】2k2k+1。
【考点】分类归纳(数字的变化类)。
【分析】根据已知得出数字分母与分子的变化规律:分子是连续的偶数,分母是连续的奇数,∴第k个数分子是2k,分母是2k+1。
∴这一组数的第k个数是2k2k+1。
4. (2012福建三明4分)填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是▲.【答案】900。
【考点】分类归纳(数字变化类)。
【分析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=900。
5. (2012湖北孝感3分)2008年北京成功举办了一届举世瞩目的奥运会,今年的奥运会将在英国伦敦举行,奥运会的年份与届数如下表所示:年份 4 (2012)届数 1 2 3 …n表中n的值等于▲.【答案】30。
【考点】分类归纳(数字的变化类)。
【分析】寻找规律:第1届相应的举办年份=1896+4×(1-1)=1892+4×1=1896年;第2届相应的举办年份=1896+4×(2-1)=1892+4×2=1900年;第3届相应的举办年份=1896+4×(3-1)=1892+4×3=1904年;…第n届相应的举办年份=1896+4×(n-1)=1892+4n年。
∴由1892+4n=2012解得n=30。
6. (2012贵州安顺4分)已知2+23=22×23,3+38=32×38,4+415=42×415…,若8+ab=82×ab(a,b为正整数),则a+b= ▲.【答案】71。
【考点】分类归纳(数字的变化类)。
【分析】根据规律:可知a=8,b=82﹣1=63,∴a+b=71。
7. (2012贵州遵义4分)猜数字游戏中,小明写出如下一组数:2481632,57111935,,,,,小亮猜想出第六个数字是6467,根据此规律,第n个数是▲.【答案】nn22+3。
【考点】分类归纳(数字的变化类)。
【分析】∵分数的分子分别是:2 2=4,23=8,24=16,…2n。
分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…2n+3。
∴第n个数是nn22+3。
8. (2012辽宁丹东3分)将一些形状相同的小五角星如下图所示的规律摆放,据此规律,第10个图形有▲个五角星.【答案】120。
【考点】分类归纳(图形的变化类)。
【分析】寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星。
∴第10个图形有112-1=120个小五角星。
9. (2012内蒙古赤峰3分)将分数67化为小数是0.857142,则小数点后第2012位上的数是▲.【答案】5。
【考点】分类归纳(数字的变化类)。
【分析】观察0.857142,得出规律:6个数为一循环,若余数为1,则末位数字为8;若余数为2,则末位数字为5;若余数为3,则末位数安为7;若余数为4,则末位数字为1;若余数为5,则末位数字为4;若余数为0,则末位数字为2。
∵67化为小数是0.857142,∴2012÷6=335…2。
∴小数点后面第2012位上的数字是:5。
10. (2012重庆市4分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为【】A.50 B.64 C.68 D.72【答案】D。
【考点】分类归纳(图形的变化类)。
【分析】寻找规律:每一个图形左右是对称的,第①个图形一共有2=2×1个五角星,第②个图形一共有8=2×(1+3)=2×22个五角星,第③个图形一共有18=2×(1+3+5)=2×32个五角星,…,则第⑥个图形中五角星的个数为2×62=72。
故选D。
11. (2012福建莆田4分)如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A—B—C-D—A一…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是【】A.(1,-1) B.(-1,1) C.(-1,-2) D.(1,-2)12. (2012贵州铜仁4分)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是【】A.54 B.110 C.19 D.109【答案】D。
【考点】分类归纳(图形的变化类)。
【分析】寻找规律:第①个图形中有1个平行四边形;第②个图形中有1+4=5个平行四边形;第③个图形中有1+4+6=11个平行四边形;第④个图形中有1+4+6+8=19个平行四边形;13. (2012山东烟台3分)一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是【】A.3 B.4 C.5 D.6【答案】C。
【考点】分类归纳(图形的变化类)。
【分析】如图所示,断去部分的小菱形的个数为5:14. (2012山东济南3分)如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A (2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是【】A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)【答案】D。
【考点】分类归纳(图形的变化类),点的坐标,相遇问题及按比例分配的运用。
【分析】利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律作答:∵矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2。
由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×13=4,物体乙行的路程为12×23=8,在BC 边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×13=12,物体乙行的路程为12×3×23=24,在A 点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点, ∵2012÷3=670…2,故两个物体运动后的第2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE 边相遇。
此时相遇点的坐标为:(-1,-1)。
故选D 。
15. (2012湖南岳阳3分)图中各圆的三个数之间都有相同的规律,据此规律,第n 个圆中,m = ▲ (用含n 的代数式表示).【答案】29n 1-。
【考点】分类归纳(图形和数字的变化类)。
【分析】寻找圆中下方数的规律:第一个圆中,8=2×4=(3×1-1)(3×1+1); 第二个圆中,35=5×7=(3×2-1)(3×2+1);第三个圆中,80=8×10=(3×3-1)(3×3+1); ······第n 个圆中,()()22m 3n 13n 13n 19n 1=⨯-⨯+=-=-()。
16. (2012湖南娄底4分)如图,如图所示的图案是按一定规律排列的,照此规律,在第1至第2012个图案中“”,共 ▲ 个.【答案】503。
【考点】分类归纳(图形的变化类)。
【分析】由图知4个图形一循环,因为2012被4整除,从而确定是共有第503♣。
17. (2012贵州毕节5分)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 ▲ 个小正方形。
【答案】100。
【考点】分类归纳(图形的变化类)。
【分析】寻找规律:第1个图案中共有1=12个小正方形;第2个图案中共有4=22个小正方形;第3个图案中共有9=32个小正方形;第4个图案中共有16=42个小正方形; ……∴第10个图案中共有102=100个小正方形。
18. (2012山东德州4分)如图,在一单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,﹣1),A 3(0,0),则依图中所示规律,A 2012的坐标为 ▲ .【答案】(2,1006)。