信号与系统概念公式总结

合集下载

信号与系统-公式

信号与系统-公式

r 2

C1k C0
k
j
Z域 尺度变换
z ak f k F , a z a a
k m f k z
f k k m
1,2 a jb
e j
k C cos k D sin k 或A k cos k , 其中Ae
z
1

km
Pm k Pm 1k
m r m
m 1

m 1
Pk P0 1
k Pm k Pm 1k
Pa
k
k

Pk P0 1
时域积分
f
1
t F 0
F j j
不等于特征根时 等于特征单根时
t
尺度变换
f at
1 a
F j
a
F j
1,2 j
C cos t D sin t 或A cos t , 其中Ae
j
C jD
时移特性
f t t0 e
jt0
r 重共轭复根
r 1 r 2 Ar 1t cos t r 1 Ar 2t cos t r 2
t A0t r 2 cos t 0 e
频移特性
f t e
j0 t
F j 0
微分方程 激励 f t
微分方程 特征根 单实根
不同特征根所对应的齐次解 齐次解
yh t
对称性
傅里叶变换的性质
时域f t F j 频域 F jt 2 f

信号与系统第2章信号的复数表示

信号与系统第2章信号的复数表示
π
3
j
π
j
π
4
C1 + C 2 = (1 + 1) + j ( 3 + 1) = 2 + j ( 3 + 1)
2 C1 = 2 + j ( 2 3 ) = 2 2 e
j
= 4e
j
π
3
C1 C 2 = 1 + j 3 + j 3 3 = (1 3 ) + j ( 2 3 )
= 2 2e
j(
π
3
+
π
4
)
= 2 2e
j(
7π ) 12
2 复数中定义 j = 1 ,故 D = (a1a2 b1b2 ) + j(a1b2 + b1a2 )
换一种形式表示复数的乘法
D = C1 C2 = C1 e C2 e = C1 C2 e
j1 j2
= C1 C2 e j1 e j2
j (1 +2 )
复数的加法和乘法在复平面内的表示
复数加法
2、复平面形式
可以在复平面中表示复数
虚轴 b |C| a
复数C可表示成一个矢量
实轴
由图可以看出,矢量 的长度为复数的模,与 实轴的夹角为复数的辐 角
2.3 复数形式的运算
1、复数的数乘和共轭
数乘: k 为实数
虚轴 j
kC C
实轴
kC = ka + jkb
| kC | e j k ≥ 0 kC = | kC | e j ( +π ) k < 0
2、复数的加法和乘法
C1 、 C2 为复数, C1 = a1 + jb1 , C2 = a2 + jb2

信号与系统-公式总结

信号与系统-公式总结

信号与系统-公式总结信号与系统是电子信息类专业中的一门核心课程,主要研究信号的产生、变换、传输和处理过程,以及系统对信号的响应和处理。

信号与系统的学习需要掌握大量的数学知识和公式,下面就是信号与系统中一些重要的公式总结。

1. 信号的分类和表示:- 狄拉克脉冲函数:δ(t)- 单位阶跃函数:u(t)- 奇函数和偶函数性质:x(t) = x(-t) 和 x(t) = -x(-t)- 周期信号的频率和周期关系:f = 1/T2. 傅里叶变换:- 连续时间傅里叶变换(CTFT):X(jω)= ∫[−∞,∞]x(t)e^(-jωt)dt- 傅里叶反变换:x(t) = (1/2π) ∫[−∞,∞]X(jω)e^(jωt)dω- 周期信号的傅里叶级数展开:x(t) = ∑[k=−∞,∞]c(k)e^(jωk0t) - 频谱为实数的信号的性质:X(jω) = X*(−jω)3. 拉普拉斯变换:- 连续时间拉普拉斯变换(CTLT):X(s) = ∫[−∞,∞]x(t)e^(-st)dt- 拉普拉斯反变换:x(t) = (1 / 2πj) ∫[σ-j∞,σ+j∞]X(s)e^(st)ds- 零极点的性质:如果x(t)的拉普拉斯变换X(s)的极点位于左半平面,那么系统是稳定的。

4. Z变换:- 离散时间Z变换(DTZT):X(z) = ∑[n=−∞,∞]x(n)z^(-n) - Z反变换:x(n) = (1 / 2πj) ∮ X(z)z^(n-1)dz- 零极点的性质:如果X(z)的极点的模都小于1,则系统是稳定的。

5. 系统函数和频率响应:- 系统函数:H(s) = Y(s) / X(s) = L{h(t)}- 系统函数的零极点分解:H(s) = (s-z1)(s-z2)...(s-zn) / (s-p1)(s-p2)...(s-pm)- 频率响应:H(jω) = |H(jω)|e^(jφ(ω))6. 系统的时域响应和频域响应:- 系统的单位冲激响应:h(t) = L^{-1}{H(s)} 或 h(n) = Z^{-1}{H(z)}- 系统的频域响应:H(s) = ∫[−∞,∞]h(t)e^(-st)dt 或 H(z) =∑[n=−∞,∞]h(n)z^(-n)7. 信号的卷积运算:- 连续时间信号的卷积:y(t) = x(t) * h(t) = ∫[−∞,∞]x(t-τ)h(τ)dτ - 离散时间信号的卷积:y(n) = x(n) * h(n) = ∑[k=-∞,∞]x(k)h(n-k)8. 频域中的乘法和卷积:- 频域乘法:y(t) = x(t)h(t) = x(t) ⊗ h(t)- 频域卷积:y(t) = x(t) * h(t) = X(jω)H(jω)9. 系统的稳定性:- 连续时间系统的稳定性:系统零极点的实部都小于0时,系统是稳定的。

信号与系统公式大全

信号与系统公式大全

信号与系统公式大全1.傅里叶变换公式:F(ω) = ∫f(t)e^(-jωt)dtf(t)=∫F(ω)e^(jωt)dω2.傅里叶级数公式:f(t) = a_0/2 + ∑[a_n*cos(nωt) + b_n*sin(nωt)] a_n = (2/T)∫[f(t)*cos(nωt)]dtb_n = (2/T)∫[f(t)*sin(nωt)]dt3.傅里叶变换与傅里叶级数之间的关系:F(ω)=2π∑[a_n*δ(ω-nω_0)+b_n*δ(ω+nω_0)]a_n=f(nT)/Tb_n=04.系统均方根误差公式:E = √(∫[y(t)-x(t)]^2dt)5.窄带系统的频率响应公式:H(ω)=,H(0),*e^(jφ)φ=∠H(ω)-∠H(0)6.线性时不变系统的冲激响应公式:h(t)=L^{-1}[H(ω)]7.卷积公式:y(t)=h(t)*x(t)=∫h(τ)x(t-τ)dτ8.卷积定理:F_y(ω)=H(ω)F_x(ω)9.线性时不变系统的输入-输出关系公式:y(t)=x(t)*h(t)10.系统频率响应的幅度与相位关系:H(ω)=,H(ω),*e^(j∠H(ω))11.奇谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*sin(kωt)]dt12.偶谐信号的频谱:F(ω)=∑[C_k*δ(ω-2kπ/T)]C_k = (2/T)∫[f(t)*cos(kωt)]dt13.系统频率响应的单位脉冲响应关系:H(ω) = ∫h(t)e^(-jωt)dt以上是信号与系统中的一些重要公式,这些公式是理解和分析信号与系统的基础。

在学习时,我们可以通过掌握这些公式,理解它们的意义和用途,以便更好地应用在实际问题中。

同时,信号与系统还涉及到很多其他的公式和定理,如采样定理、拉普拉斯变换、Z变换等,这些内容超过1200字无法一一列举。

如果对这些公式有更进一步的了解,推荐阅读相关的教材和参考资料,以便更好地理解信号与系统的知识。

信号与系统重点概念公式总结

信号与系统重点概念公式总结

信号与系统重点概念公式总结一、信号的基本概念:1.离散信号:在离散时间点上取值的信号,用x[n]表示。

2.连续信号:在连续时间上取值的信号,用x(t)表示。

3.周期信号:在一定时间内重复出现的信号。

4.能量信号:能量信号的能量有限,用E表示。

5.功率信号:功率信号的能量无限,用P表示。

二、时域分析:1. 时域表示:x(t) = X(t)eiωt,其中X(t)是振幅函数,ω是角频率。

2.常用信号的时域表示:- 矩形脉冲信号:rect(t/T)- 三角函数信号:acos(ωt + φ)-单位跳跃信号:u(t)-单位斜坡信号:r(t)3.信号的分解与合成:线性时不变系统能够将一个信号分解为若干个基础信号的线性组合。

4.性质:-时域平移性:如果x(t)的拉普拉斯变换是X(s),那么x(t-t0)的拉普拉斯变换是e^(-t0s)X(s)。

-线性性:设输入信号的拉普拉斯变换为X(s),系统的拉普拉斯变换表达式为H(s),那么输出为Y(s)=X(s)H(s)。

-倍乘性:设输入信号拉普拉斯变换为X(s),输出信号的拉普拉斯变换为Y(s),那么输出信号的拉普拉斯变换为cX(s),即输出信号的幅度放大为c倍。

-时间反转性:x(-t)的拉普拉斯变换是X(-s)。

-时间抽取性:设输入信号的拉普拉斯变换为X(s),那么调整时间尺度为t/T的信号的拉普拉斯变换为X(s/T)。

三、频域分析:1.傅里叶级数:将周期信号表示为一系列谐波的和。

2.离散傅里叶变换(DFT):将离散信号从时域变换到频域的过程。

3.傅里叶变换:将连续信号从时域变换到频域的过程。

4.频域表示:- 矩形函数:sinc(ωt) = sin(πωt)/(πωt)- 高斯函数:ft(x) = e^(-πx^2)5.频域滤波:系统的传输函数是H(ω),那么输出信号的频率表示为Y(ω)=X(ω)H(ω)。

四、信号与系统的系统分析:1.系统稳定性:-意义:系统稳定指的是当输入有界时,输出有界。

信号与系统概念公式总结

信号与系统概念公式总结

信号与系统概念,公式集:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f j i dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

信号与线性系统分析总结

信号与线性系统分析总结
②两连续周期信号之和不一定是周期信号,而两周期序列之 和一定是周期序列。
•两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其 和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
总结
➢ 能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
-2 -1 0 1 2 3 ki
总结
例2 f1(k) ={0, 2 , 1 , 5,0} ↑k=1
f2(k) ={0, 3 , 4,0,6,0} ↑k=0
解:
3 , 4, 0, 6
×—————2 ,——1 ,—5 15 ,20, 0, 30
3 , 4, 0, 6 6 ,8, 0, 12 + ———————————— 6 ,11,19,32,6,30
总结
第二章 连续系统的时域分析
➢系统的时域求解,冲激响应,阶跃响应。
➢时域卷积: f1 (t) * f2 (t) f1 ( ) f2 (t )d
图解法一般比较繁琐,但若只求某一时刻卷积 值时还是比较方便的。确定积分的上下限是关
f1(-τ)
键。
f 1( τt )
2
f1(2-τ)
f1(t)、 f2(t)如图所示,已知f(t) = f2(t)* f1(t),求f(2) =?
*
d
n f 2 (t dtn
)
t
t
t
[
f1
(
)
*
f 2 ( )]d
[
f1 ( ) d ] *
f 2 (t)
f1 (t) *[

信号与系统公式大全

信号与系统公式大全

t
i(t)dt
C
u(t) 1 i(t) pC
UC (t) 1 IC (t) jC
UC
(s)

1 Cs
IC
(s)

1 s
uC
(0
)
IC (s) CsUC (s) CuC (0)
电 感
u(t) L d i(t) dt
u(t) pL i(t)
UC (t) jL
IC (t)
UL(s) LsIL(s) LiL (0 )
IL
(s)

1 Ls
UL
(s)

1 s
iL
(0
)
五.连续时间系统时域分析
系统 建立微分方程 建立算子方程: D( p)y(t) N( p) f (t) 系统的特征方程: D() D( p) p 0
求特征根 零输入响应方程 D( p) yx (t) 0
泛函定义: f (t) '(t)dt [ d f (t)] f '(0) 说明:1. '(t) 量纲是 s2

dt
t 0
3. '(t) 是奇函数
2.强度 A 的单位是Vs2
筛选特性
取样特性 展缩特性
f (t) '(t t0 ) f (t0) '(t t0 ) f '(t0) (t t0 )
1 ( p a)n
b ( p a)2 b2
pa ( p a)2 b2
a (t) au(t) eatu(t) tn1 eatu(t)
(n 1)!
eat sin(bt)u(t) eat cos(bt)u(t)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎰T 1 11i信号与系统概念,公式集:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设 C 为复数,a 、b 为实数。

常数形式的复数 C=a+jb a 为实部,b 为虚部;或 C=|C|e j φ,其中,| C |=复数的辐角。

(复平面)a 2 +b 2 为复数的模,tan φ=b/a ,φ为2.欧拉公式:e jwt= cos wt +j sin wt (前加-,后变减)第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合F = { f 1 (t ), f 2 (t ), f n ( t )}T 21如果满足: T 2f i (t ) f 2j (t )dt = 0i ≠ j ⎰Tf i (t )dt = K ii = 1,2 n 则称集合 F 为正交函数集如果K i = 1i = 1,2, n ,则称 F 为标准正交函数集。

如果 F 中的函数为复数函数T 2f (t) ⋅ f * (t )dt = 0i ≠ j⎰T i j条件变为: T2*⎰T f i (t ) ⋅ f i (t )dt = K ii = 1,2 n其中 f *(t ) 为 f i (t) 的复共轭。

2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数2 1 11 1 1t 222**在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交 集是完备的,否则称该正交集是不完备的。

如 果 在 正 交 函 数 集 g 1 (t ), g 2 (t ), g 3 (t ), g n(t ) 之 外 , 不 存 在 函 数 x ( t )t 20 < ⎰ x 2(t )dt < ∞ ,满足等式: ⎰x (t )g (t )dt = 0 ,则此函数集称为完备正交函数集。

t 1t 1i一个信号所含有的功率恒等于此信号在完备正交函数集中各分量的功率总和,如果正交函数集不完备,那么信号在正交函数集中各分量的总和不等于信号本身的功率,也就是说, 完备性保证了信号能量不变的物理本质。

4.均方误差准则进行信号分解:设正交函数集F 为 F = { f 1 (t ), f 2 (t ), f n (t )},信号为 f (t )所谓正交函数集上的分解就是找到一组系数a 1, a 2 , a n ,使均方误差 ∆2= n2 f (t ) -∑a f (t )最小。

i i i =1T n∆2的定义为: ∆2 = 1 ⎰ [ f (t ) - ∑a f (t )]2 dt T 2 -T 1 T 1 如果 F 中的函数为实函数 则有:i i i =1T 2⎰T a i= TT 2f (t ) f i (t )dt ⎰T=f (t ) f i (t )dtK ⎰T i if (t ) f (t )dti1如果 F 中的函数为复函数 则有:T 2 ⎰T a i= Tf (t ) f i T 2 (t )dt⎰T=f (t ) f iK(t )dtf (t ) f * (t )dti⎰T i i第四章:连续周期信号的傅里叶级数1.物理意义:付里叶级数是将信号在正交三角函数集上进行分解(投影),如果将指标系列 类比为一个正交集,则指标上值的大小可类比为性能在这一指标集上的分解,或投影;分解 的目的是为了更好地分析事物的特征,正交集中的每一元素代表一种成分,而分解后对应该 元素的系数表征包含该成分的多少1T 1 a b 2.三角函数形式: f (t ) 可以表示成:f (t ) = a 0 + a 1 cos( w 1t ) + a 2 cos( 2 w 1t ) + + + a n cos( nw 1t )+ b 1 sin( w 1t ) + b 2 s i n( 2 w 1t ) + + b n sin( nw 1t ) ∞= a 0 + ∑ [a n cos( nw 1t ) +b n sin( nw 1t )]n =1 其中, a 0 被称为直流分量a n c os( nw 1 t ) +b n s i n( nw 1 t ) 被称为 n 次谐波分量。

T 1 / 2⎰f ( t )dt1 T 1 / 2a 0 =- T 1 / 2K 0= ⎰- T / 2 1 f (t )dtT 1 / 2 ⎰f (t) cos(nw 1t )dt2 T 1 / 2a =-T 1 / 2= f (t ) cos(nw t)dt n⎰ 1 Ka nT 1 -T 1 / 2T / 2⎰f (t) sin( n w 1t )dt2 T 1 / 2b =-T 1 / 2= f (t ) sin( n w t )dt n ⎰ 13.一般形式:∞Kb nT 1 -T 1 / 2f (t ) = ∑ c n cos( nwt n = 0 + ϕ n )或者:∞f (t ) = ∑ d n sin( nwt n = 0c 0 =d 0 = a 0 + θ n )22 c n = d n = a n+ bnϕ = arctg (- b n ) ,θ= arctg ( a n ) n n nn4.指数形式:f (t ) = ∞∑ F n ejnw 1tn =-∞1 n T F = 1T 1 / 2f (t )e - jnw 1tdt⎰-T/ 2 1第五章:连续信号的傅里叶变换1.连续非周期信号的傅里叶变换及性质:+∞ F ( w ) = ⎰f ( t ) e - jwt dt- ∞f (t ) =1 + ∞⎰F ( w ) e jwt dw性质:2π- ∞1.对称性:若F ( w ) = f [ f (t )] , f [ f ( t )] 表示对 f (t ) 做付里叶变换,则:f [ F (t )] = 2π f ( - w )2.线性:若 f [ f i (t )] = F i (w ) (i = 1,2, n ) ,则nn f [ ∑ a i f i (t ) ] = i =1 ∑ a i F i ( w )i =13 .奇偶虚实性:若 f (t ) 为实函数,则 F ( w ) 的实部 R ( w ) 为偶函数,虚部X ( w ) 为奇函数;其幅度谱 F ( w ) 为偶函数, 相位谱ϕ ( w ) 为奇函数:若 f (t ) 为实偶函数, 则F ( w ) 为实偶函数若 f (t ) 为实奇函数, 则F ( w ) 为虚奇函数4.尺度变换:若 则f [ f ( t )] = F ( w ) ,f [ f( at )] = 1 F ( w)a a 其中 a 为非零的实常数。

5.时移:若 f [ f (t )] = F ( w ) ,则 f [ f ( t - t 0)] = F ( w ) e - jwt 06.频移:若 f [ f ( t )] =F ( w ) ,] 1n T 则 f [ f(t ) e jw 0 t] =F ( w - w 0 )即:f { f( t )[cos(w 0 t ) + j sin ( w 0 t )]} =F ( w -w 0 )7.微分:若 f [ f (t )] = F ( w ) ,df( t )则 f [ dt n ] = jwF ( w ) f [ d f ( t ) = dt n( jw ) n F ( w )8.积分:若 f [ f(t )] = F ( w ) , t F ( w ) 则 f [ ⎰- ∞ f (τ )d τ ] = + π F ( 0 )δ jw( w ) 2.连续周期信号的傅里叶变换:∞ F ( w ) = f [ f (t )] = 2π ∑ n = -∞F n δ ( w - n w 1 )F = 1T 1 / 2f (t )e - jnw 1tdt ⎰-T / 2 1 3.特殊信号的傅里叶变换:1.直流信号f (t ) = 1 ,其付里叶变换得到的频谱即为 2πδ1( w )2. U (t ) 的付里叶变换为πδ ( w ) + jw3. 单边指数: f ( t ) =e- at, t ≥ 0 F ( w ) = 1幅度谱:F ( w )= 1 /a 2 + w 2a + jw相位谱:ϕ ( w ) = - arctg ( w / a )4.双边指数:f ( t ) =e - a | t |F ( w ) =2 a a 2 + w 2幅度谱: F ( w )= 2 a /( a 2 + w 2 )相位谱:ϕ ( w ) = 0⎰ - τ2⎨ = 2E sin(w τ / 2) 5.矩形脉冲信号:F (w )w6.钟形信号:f ( t ) = Ee- ( t / τ ) 2+∞ 2F (w ) = Ee (t / ) cos wtdt = -∞π E τ ⋅ e -( w τ / 2 )7.符号函数: ⎧ 1 f ( t ) = ⎪ 0 ⎪t > 0 t = 0F ( w ) =2jw⎩ - 1t < 0幅度谱 F ( w ) =2 w⎧ π⎪ - 2 w > 0相位谱ϕ ( w ) = ⎨ π⎪ ⎩ 2w < 0第七章:连续时间系统及卷积1.连续线性系统:设某系统,如果该系统对输入f1(t ), f 2 (t ) 有输出 s 1 (t ), s 2 (t ) ,则该系统对输入C 1 ⋅ f 1 (t ) + C 2 ⋅ f 2 (t ) ,有输出 C 1 ⋅ s 1(t ) + C 2 ⋅ s 2 (t ) 。

该系统为线性系统。

2.连续时不变系统:设某系统,如该系统对输入f (t ) 有输出 s (t ) ,则该系统对输入f (t -T ) 有输出s (t -T ) 。

该系统为时不变系统。

3.连续因果系统:如果某系统在t 0 时刻的输出s (t 0 ) 仅于 t 0 时刻前的输入 f (t )t ≤ t 0 有关,而与 t 0 时刻以后的输入 f (t )4.连续稳定系统:t > t 0 无关,则该系统为因果系统。

对有界输入信号的响应还是有界信号的系统是稳定系统。

5.卷积公式:1 N +∞s (t ) = ⎰-∞f (τ )h (t -τ )d τ即为卷积公式,表示为:s (t ) =f (t ) ⊗ h (t )物理意义:将信号分解为冲激信号之和,借助系统的冲激响应 h (t ),求解系统对任意 激励信号的状态响应。

相关文档
最新文档