螺旋天线电路设计

合集下载

一种宽带螺旋天线的设计

一种宽带螺旋天线的设计

一种宽带螺旋天线的设计朱珊虹;董卫鹏;张琳江【摘要】A spiral antenna with bandwidth is introduced. An external feeding is applied to an elevated coplanar waveguide winding spiral antenna. The whole structure is completely planar and can be easily realized by printed cir-cuit technology. Simulated and experimented results show that the antenna has characteristics of good circular polari-zation and wide bandwidth. Its measured reflecting loss is less than -10 dB in the range 2.5 GHz to 9 GHz.%提出了一种宽带螺旋平面天线的设计。

采用共平面波导的方式绕成天线,该方法使得天线和馈电网络在同一平面上,可以利用印刷电路板技术制作。

通过软件仿真和实际测试显示:该天线具有良好的圆极化和宽频带特性,在频段2.5 GHz~9 GHz上实测反射损耗小于-10 dB。

该天线制作简单、平面化面积小、具有很高的应用价值。

【期刊名称】《电子器件》【年(卷),期】2015(000)004【总页数】4页(P742-745)【关键词】阿基米德螺旋天线;共平面波导;宽带天线;电磁仿真软件【作者】朱珊虹;董卫鹏;张琳江【作者单位】新乡学院计算机与信息工程学院,河南新乡453000;新乡学院计算机与信息工程学院,河南新乡453000;新乡学院计算机与信息工程学院,河南新乡453000【正文语种】中文【中图分类】TN823.31螺旋天线理论自上世纪40年代被提出来后,由于其超宽的频带、稳定的增益和较低的轴比,得到了广泛的应用[1]。

平面螺旋天线及宽带匹配网络的设计和仿真

平面螺旋天线及宽带匹配网络的设计和仿真

平面螺旋天线及宽带匹配网络的设计和仿真徐 琰 张漠杰(上海航天局第八○二研究所 上海200090)摘要:本文介绍了阿基米德平面螺旋天线及微带渐变线阻抗变换器的原理和设计方法,运用以有限元法为原理的专业软件Ansoft HFSS 对该天线及宽带匹配网络进行仿真,并与测量结果进行比较,仿真结果与测量结果吻合。

关键词: 阿基米德平面螺旋天线 渐变线阻抗匹配 平衡馈电一、 平面螺旋天线1.1 阿基米德平面螺旋天线为了满足灵活性和通用性,常常要求天线能以令人满意的方向图、阻抗和极化特性工作于很宽的频带范围内。

线性振子天线的频带是很窄的,增加振子直径只能稍微展宽一些频带,一般很少能大于所设计的中心频率的百分之几。

天线的增益、方向图、输入阻抗等电特性参数在一个较宽的频带内保持不变或变化较小的天线称为宽频带天线。

一般情况下,天线的性能参数是随频率变化的。

有一类天线,其几何形状完全由角度规定,性能与频率无关,这类天线称为非频变天线。

典型的天线有等角螺旋天线。

阿基米德平面螺旋天线不是一个真正意义上的非频变天线,但它也可以在很宽的频带内工作。

因为它不能满足截断要求,电流在工作区后并不明显的减小,螺旋天线被截断后方向图必受影响,因此必须在末端加载而避免波的反射。

阿基米德螺旋的半径随角度的变化均匀的增加,方程为φρρa +=0式中0ρ是起始半径,为螺旋增长率。

a本文设计的是双臂的阿基米德平面螺旋天线(如图1),两臂方程分别为φρρa +=011和)(022πφρρ++=a 。

用印刷电路技术来制造这种天线,使金属螺旋的宽度等于两条螺旋间的间隔宽度,形成自互补天线。

臂的宽度为:20102πρρa W =−=对于一个自互补天线结构,由巴比涅—布克(Babinet -Booker )原理可求得,具有两个臂的无限大结构的输入阻抗为188.5欧。

图1 阿基米德平面螺旋天线在螺旋的周长为一个波长附近的区域,形成平面螺旋的主要辐射区。

螺旋天线电路设计

螺旋天线电路设计

螺旋天线电路设计一、引言螺旋天线是一种常用的宽带天线,其特点是频率范围广、阻抗匹配好、方向性良好等。

本文将介绍如何设计一款螺旋天线电路。

二、螺旋天线的原理螺旋天线是一种基于电磁波的发射和接收原理的天线,其主要构成部分为导体和地面板。

导体通常采用圆形或正方形的金属片,通过不同方向上的缠绕来实现较好的频率范围和方向性。

在实际应用中,通常采用四分之一波长或半波长作为导体长度。

三、螺旋天线电路设计步骤1. 确定频率范围:首先需要确定需要使用的频率范围,以便选择合适的导体长度和缠绕方式。

2. 选择导体形状:根据实际应用需求,选择合适的导体形状(圆形或正方形),并确定其大小。

3. 计算导体长度:根据选定的频率范围和导体形状,计算出所需的导体长度。

可以使用在线计算器或专业软件进行计算。

4. 缠绕方式:根据计算出的导体长度和形状,确定缠绕方式。

通常有两种方式:顺时针和逆时针缠绕。

选择合适的缠绕方式可以影响天线的方向性。

5. 地面板设计:螺旋天线需要一个地面板来实现较好的阻抗匹配和性能。

地面板通常采用金属板或铜箔,大小应与导体相匹配。

6. 阻抗匹配:在实际应用中,需要将天线的阻抗与接收器或发射器进行匹配。

可以使用衰减器、变压器等方法进行匹配。

四、螺旋天线电路实现1. 制作导体:根据设计好的导体形状和长度,使用金属片或铜箔制作出导体。

2. 缠绕导体:根据设计好的缠绕方式,将导体进行缠绕,并固定在地面板上。

3. 制作地面板:根据设计好的大小和形状,制作出地面板,并将其与导体固定在一起。

4. 连接电路:将天线与接收器或发射器连接,并进行阻抗匹配。

五、螺旋天线电路调试1. 测试频率范围:使用信号源测试天线的频率范围,确保其符合设计要求。

2. 测试阻抗匹配:使用阻抗仪测试天线的阻抗,并进行调整以实现较好的匹配。

3. 测试方向性:使用转台或指向器测试天线的方向性,并进行调整以实现最佳效果。

六、总结螺旋天线是一种常用的宽带天线,其设计和制作需要考虑多个因素,包括频率范围、导体形状和长度、缠绕方式、地面板设计等。

平面等角螺旋天线及巴伦的设计

平面等角螺旋天线及巴伦的设计

平面等角螺旋天线及巴伦的设计随着无线通信技术的飞速发展,天线作为无线通信系统的重要组成部分,其性能和设计受到了广泛。

其中,平面等角螺旋天线(Planar Inverted-F Antenna,简称PIFA)以及巴伦(Balun)是两种常用的天线和平衡转换器设计。

本文将介绍这两种天线的特点、设计原理和参数,旨在帮助读者深入了解其优势和应用场景。

平面等角螺旋天线是一种常见的宽带天线,具有体积小、易共形、易集成等优点。

它由一个平面的辐射元和一个螺旋状的地面构成,通过调整辐射元和地面的尺寸以及螺旋的匝数,可以实现在宽频带内的良好辐射性能。

平面等角螺旋天线的辐射原理主要依赖于螺旋的电流分布。

当高频电流在螺旋上流动时,会产生一个向外扩散的磁场,从而形成辐射。

由于螺旋的等角特性,电流在整个螺旋上均匀分布,使得天线在宽频带内具有稳定的辐射方向图和阻抗特性。

平面等角螺旋天线的特点在于其宽频带性能和易共形性。

通过改变螺旋的匝数和辐射元的尺寸,可以覆盖较宽的频率范围,同时保持稳定的阻抗特性和辐射方向图。

在设计时,需要考虑的主要参数包括辐射元的尺寸、螺旋的匝数、介质基板的厚度和相对介电常数等。

巴伦是一种用于将不平衡的信号转换为平衡的信号,或反之亦然的平衡转换器。

在天线设计中,巴伦被广泛应用于将天线的不平衡信号转换为平衡信号,以实现更好的辐射性能。

下面以常见的威尔金森巴伦为例,介绍其设计原理和特点。

威尔金森巴伦是一种经典的巴伦设计,它利用两个对称的线绕线圈来实现不平衡到平衡的转换。

在线绕线圈的中心连接不平衡信号源,在线绕线圈的两侧连接平衡信号端口。

通过调整线圈的匝数和半径,以及源阻抗和负载阻抗的匹配,可以实现信号的高效传输。

威尔金森巴伦的特点在于其宽带性能和高效传输。

通过调整线圈的匝数和半径,可以覆盖较宽的频率范围,同时保持高效传输。

在设计时,需要考虑的主要参数包括线圈的匝数和半径、源阻抗和负载阻抗的匹配等。

平面等角螺旋天线和巴伦是两种常用的天线和平衡转换器设计,具有广泛的应用场景。

制作一个简单的2.425GHzGHz螺旋天线概要

制作一个简单的2.425GHzGHz螺旋天线概要

制作一个简单的ISM 无线电频段的2.425GHz 螺旋天线怎样制作一个简单的ISM无线电频段的 2.425GHz螺旋天线【ISM(Industry Science Medical)频段即工业科学医疗频段,该频段在美国不受FCC(美国联邦通信委员会)限制,属于工业自由辐射频段,频段范围为2.4GHz~2.4835GHz。

——译者注】引言As some of the readers may know, an effort by members of the Canberra Linux Users Group has been launched to set up a Canberra-wide wireless LAN. This amateur experiment's existence is largely due to the acquisition of many cut-price old style Lucent WaveLAN cards being superseded by the IEEE 802.11 standard cards. The cards were cheap but the tile antennas that came with them are no good for long haul links of more than several hundred metres. On top of this, commercial aerials that can do the job are expensive, can get rather large and are ugly, especially the conifers. My Mum would not want one on her roof. 正如很多读者都知道的,由于堪培拉Linux 用户集团的成员不懈努力的结果,已经创办起了堪培拉宽带局域网。

螺旋天线的仿真设计

螺旋天线的仿真设计

一、设计题目:螺旋天线的仿真设计二、设计目的:(1)熟悉Ansoft HFSS软件的使用。

(2)学会螺旋天线的仿真设计方法。

(3)完成螺旋天线的仿真设计,并查看S参数以及场分布。

三、设计要求:螺旋天线是一种常用的典型的圆极化天线,本设计就是基于螺旋天线的基础理论及熟练掌握HFSS10软件的基础上的,设计一个右手圆极化螺旋天线,要求工作频率为4G,分析其远区场辐射特性以及S曲线。

螺旋天线通常用同轴线馈电,天线的一端与同轴线的内导体相连,另一端则处于自由状态。

螺旋天线示意图如图1所示:图1、螺旋天线四、设计参数:中心频率f=4GHz λ=75mm螺旋导体的半径d=0.15λ=11.25mm螺旋线导线半径a=0.5mm螺距s-0.2λ=15mm圈数N=7轴向长度l=Ns五、设计步骤在HFSS建立的模型中,关键是画出螺旋线模型。

画螺旋线,现说明螺旋线模型的创建。

求解类型设置与上两个设计一样,材料为copper,模型单位为mm,螺旋线的创建如下。

点击Draw>Circle,输入圆的中心坐标。

X:11.25 Y:0 Z:0 ,按回车键结束。

输入圆的半径dX:0.5 dY:0 dZ:0 按回车键结束输入。

在特性窗口中将Axis 改为Y。

点击确认。

选中该circle。

点击Draw>Helix,输入X:0 Y:0 Z:-7.5,按回车键结束输入,输入dX:0 dY:0 dZ;100按回车键,在弹出的窗口中,Turn Directions:Right Hand Pitch:15(mm) Tuns:7 Radius change per Turn:0点击OK。

在特性窗口中选择Attribute标签,将名字改为Helix。

建立螺旋天线与同轴线相连的连接杆ring。

点击Draw>Cylider,创建圆柱模型。

输入坐标为X:11.25 Y:0 Z;0 ,按回车键结束输入,输入半径dX:0.5 dY:0 dZ:0 ,按回车键结束输入,输入圆柱长度dX;0 dY:0 dZ:-3,按回车键结束输入,在特性窗口中选择Attribute选项卡,将名字改为ring,点击确定。

第五讲-1-螺旋天线教程文件

第五讲-1-螺旋天线教程文件

实验天线的测试结果
▪ 天线测试结果
Beijing Institute of Technology
小型化超宽带圆极化组合天线
▪ 2010.10~2010.11
0.14max0.04max
实现22倍频
组合式螺旋天线
四臂螺旋天线相控阵列方案评估
▪ 2010.11
单螺旋天线阵(球舰通信)
1分8功分器 接口
复合螺旋天线HFSS设计及实物
复合螺旋天线的设计(2)
复合螺旋天线HFSS三维仿真效果图
复合螺旋天线的设计(3)
天线方向图及轴比图
背馈式印刷四臂螺旋卫星导航天线(4)
▪ 天线仿真模型与实物图片
Beijing Institute of Technology
实验天线的测试结果
▪ 天线测试结果
Beijing Institute of Technology
▪ 2010.03~2010.04
单螺旋天线的设计(2)
单螺旋天线HFSS三维仿真效果图
单螺旋天线的设计(3)
半球形辐射方向图
单螺旋天线的设计(4)
蝴蝶形辐射方向图
单螺旋天线的设计(5)
轴向辐射方向图
双螺旋天线的设计(1)
双螺旋天线HFSS建模
双螺旋天线实物照片
双螺旋天线的设计(2)
双螺旋天线HFSS三维仿真效果图
GPS天线 接口A
电气接口 (N型阴头)
GPS天线 接口B
云台接口
30
Hale Waihona Puke 31谢 谢!32
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
第五讲-1-螺旋天线
螺旋天线历史

宽带平面螺旋天线的研究与设计

宽带平面螺旋天线的研究与设计

宽带平面螺旋天线的研究与设计
宽带平面螺旋天线的研究与设计
 1.1 天线辐射元的设计
 阿基米德螺旋天线是一种自互补天线,即天线臂宽与间隔相等。

对于自互补结构的天线,由巴俾涅原理知其输入阻抗为60πΩ。

如微带衬底介电常数为εr,则输入阻抗选择普通基板εr=4.6,基片厚度h=1 mm,这样天线的输入阻抗约为Z0=112.6Ω。

天线外圈周长必须大于1.25倍λmax,馈电点间距必须小于λmin/4。

 1.2 背腔设计
 要获得单向辐射,需要用到反射腔,也可以在背腔内填充吸波材料,考虑到增益,本文腔体内部不填充吸波材料,而直接采用λ/4扼流套作为背腔。

其基本结构如图2所示,在同轴线外部加上一个长度为λ/4的金属套,底端与同轴线外皮短接,该金属套与同轴线的外导体构成一个特性阻抗为Zc的新同轴线L,且终端短路。

易知,终端短路的λ/4长的同轴线有开路效应即从L顶端向下看去,特性阻抗为Zc的同轴线的输入阻抗为无穷大,也就是说如果在该段传输线上有电压电流分布,则最顶端为电压腹点,电流节点,从而这种结构有一定的扼流作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

螺旋天线电路设计
引言
螺旋天线是一种常见的天线类型,具有多频段、宽带和方向性好等特点,被广泛应用于无线通信和雷达系统中。

在设计螺旋天线电路时,需要考虑天线的结构、频率范围、辐射特性以及电路参数等因素。

本文将全面、详细、完整地探讨螺旋天线电路设计的相关内容。

螺旋天线结构
螺旋天线由导体线圈在平面内旋转组成,其结构可以分为两种主要类型:方形螺旋天线和圆形螺旋天线。

方形螺旋天线
方形螺旋天线的导体线圈呈正方形或长方形,辐射器和馈电结构相对简单,易于制造和布局。

方形螺旋天线通常具有宽频带和宽角度覆盖等特点,适用于通信和雷达系统中的多频段应用。

圆形螺旋天线
圆形螺旋天线的导体线圈呈圆形,具有较为均匀的辐射特性。

圆形螺旋天线通常在窄带应用中使用,如无线电测向和卫星通信等领域。

螺旋天线频率范围
螺旋天线的频率范围受到其外形、尺寸和匝数等因素的影响。

频率范围的选择应根据具体的应用需求来确定。

方形螺旋天线频率范围
方形螺旋天线的频率范围较宽,通常可覆盖数个频段。

选择适当的参数可以实现不同频段的覆盖,如调整导体线圈的长度、宽度和匝数等。

圆形螺旋天线频率范围
圆形螺旋天线的频率范围较窄,通常适用于单一频段的应用。

改变导体线圈的尺寸和匝数可以微调频率范围,满足特定频段的要求。

螺旋天线辐射特性
螺旋天线的辐射特性在设计过程中需要考虑,包括辐射方向图、辐射效率和极化特性等。

辐射方向图
辐射方向图描述了螺旋天线在不同方向的辐射强度,通常以极坐标图的形式表示。

通过调整导体线圈的几何参数和匝数等,可以实现不同辐射方向图的设计。

辐射效率
辐射效率是指天线将输入功率转化为辐射功率的能力。

提高辐射效率可以减少能量损耗,提高天线的性能。

螺旋天线的辐射效率受到导体材料、匝数、尺寸和地平面等因素的影响。

极化特性
螺旋天线可以实现不同的极化方式,如线性极化和圆极化。

通过合适的设计和调整,可以实现所需的极化特性。

螺旋天线电路参数
在设计螺旋天线电路时,需要考虑到电路的匹配、增益、带宽和阻抗等参数。

匹配
螺旋天线的输入端需要与信号源进行匹配,以实现最大的能量传输。

匹配电路的设计需要考虑到天线的复阻抗和信号源的输出阻抗等因素。

增益
螺旋天线的增益是指其辐射方向与参考天线辐射方向之间的功率比。

增益与导体线圈的长度、宽度和匝数等参数有关。

带宽
螺旋天线的带宽是指在指定参数范围内,天线能够提供满意性能的频率范围。

设计带宽需要平衡天线的尺寸和性能等因素。

阻抗
螺旋天线的输入阻抗会影响到信号源的输出能力和天线的匹配性能。

调整导体线圈的尺寸和匝数等参数可以改变输入阻抗。

结论
通过对螺旋天线电路设计相关内容的探讨,我们了解到螺旋天线的结构、频率范围、辐射特性和电路参数等重要因素。

在实际设计中,需要综合考虑这些因素,以实现螺旋天线的良好性能和适应多样化的应用需求。

螺旋天线作为一种重要的天线类型,将继续在通信和雷达等领域发挥重要作用。

相关文档
最新文档