电力电子技术的应用及其发展
电力电子技术的发展及应用

电力电子技术的发展及应用朱磊1侯振义1张开2(空军工程大学电讯工程学院陕西西安710077)(南京理工大学动力工程学院江苏南京210000)摘要:本文通过介绍电力电子技术的发展及应用,阐述了电力电子技术在国民经济中的重要作用,结合国家政策,描绘出我国电力电子行业的大好前景。
关键词:电力电子技术功率器件逆变能源电力电子技术,又称功率电子技术。
它主要研究各种电力电子器件,以及这些电力电子器件所构成的各种各样高效地完成对电能的变换和控制的电路或装置。
它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、大电流)或电子领域的一个分支,总之是强弱电相结合的新学科。
1 电力电子技术的发展电力电子技术的发展与功率器件的发展密切相关,1948年普通晶体管的发明引起了电子工业革命,1957年第一只晶闸管的问世,为电力电子技术的诞生奠定了基础。
1.1 电力电子技术的晶闸管时代由于大功率硅整流器能够高效率的把工频交流电转变为直流电,因此在60年代和70年代,大功率硅整流管和晶闸管的开发与应用得到大发展,这一时期称之为电力电子技术的晶闸管时代。
1.2 电力电子技术的逆变时代20世纪70年代,随着自关断器件的出现,电力电子技术进入了逆变时代。
七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。
在70年代到80年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。
这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
1.3现代电力电子时代80年代末期和90年代初期发展起来的以功率MOSFET和IGBT为代表的集高频、高压和大电流于一身的功率半导体复合器件,使以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学转变创造了条件,表明传统电力电子技术已经进入现代电力电子时代。
电力电子技术的应用研究及发展趋势

电力电子技术的应用研究及发展趋势电力电子技术是一种应用极广的技术,它涉及到包括电力系统、工业、交通、家电等领域的许多方面。
随着社会经济的发展和科技不断进步,电力电子技术的应用越发普遍,其应用领域也在不断扩大。
在这篇文章中,我将从电力电子技术的分类、应用研究和未来发展三个方面来谈谈电力电子技术的应用研究及发展趋势。
一、电力电子技术的分类电力电子技术根据其不同的功率等级、用途和原理等因素,可以分为多种不同的类别。
其中比较常见的主要有以下几种:1、直流-直流变换器直流-直流变换器可以将直流电压转换、升压或降压,常见的应用有开关电源、电动机驱动系统等。
直流-直流变换器具有简单的控制、高效率和稳定性,目前在交通、能源、石化、冶金等领域中得到了广泛的应用。
2、交流-直流变流器交流-直流变流器可以将交流电转换为直流电供电使用,常见的应用有风力发电、光伏发电等。
这种变换器具有高效、可靠和可控的特点,是现代电力系统中最重要的组成部分之一。
3、交流-交流变换器交流-交流变换器可以改变交流电的频率和电压等参数,常见的应用有电动机驱动系统、变频空调、UPS等。
交流-交流变换器在工业、家电等领域中应用广泛,目前已经成为了工业发展的关键技术之一。
二、电力电子技术的应用研究随着电力电子技术的不断发展和进步,其应用领域也在不断拓展。
在应用研究方面,电力电子技术主要有以下几个方向:1、高电压高功率应用随着电力系统的发展和能源消费增长,电力电子技术在高电压高功率领域的应用范围也在不断扩大。
高电压高功率应用主要包括超高压输电、逆变器、脉冲电源、高压直流输电等。
电力电子技术在这些领域中的应用,可以提高电力系统的可靠性、效率和稳定性,同时也可以改善电力系统的质量和环境问题。
2、新能源发电系统新能源发电系统是近年来最热门的电力电子技术应用之一。
新能源发电系统包括太阳能发电、风力发电、潮汐能发电等。
电力电子技术在新能源发电系统中的应用,可以将风、光等无法控制的能源转化为易于控制的电能,提高了整个发电系统的效率。
电力电子技术的发展与应用

电力电子技术的发展与应用电力电子技术是电气工程领域中的一个重要分支,它涉及到电力转换、控制和调节等方面的研究与应用。
随着科技的不断进步和社会的不断发展,电力电子技术在能源转换、电力传输和工业自动化等领域的应用日益广泛,对于提高能源利用效率、改善电力质量和保障电力系统的稳定运行起到了关键作用。
一、电力电子技术的发展历程电力电子技术的发展可以追溯到20世纪60年代,当时主要用于直流输电和高压直流变压器的研究。
随着功率半导体器件的发展,如晶闸管、功率MOSFET和IGBT等,电力电子技术得以迅速发展。
在20世纪80年代,随着功率半导体器件的性能不断提高,电力电子技术逐渐应用于交流输电、电力变换和电机控制等领域。
到了21世纪,随着新型功率半导体器件的出现,如SiC和GaN等,电力电子技术迎来了新的发展机遇。
二、电力电子技术的应用领域1. 可再生能源发电系统随着可再生能源的快速发展,如风能、太阳能和潮汐能等,电力电子技术在可再生能源发电系统中的应用越来越重要。
电力电子技术可以实现可再生能源的高效转换和稳定输出,提高发电系统的可靠性和稳定性。
2. 电力传输与配电系统电力电子技术在电力传输与配电系统中的应用主要包括柔性交流输电、高压直流输电和智能配电网等。
柔性交流输电技术可以提高电力系统的稳定性和可靠性,高压直流输电技术可以实现长距离大容量的电力传输,智能配电网可以实现电力系统的自动化和智能化管理。
3. 电机控制与驱动系统电力电子技术在电机控制与驱动系统中的应用主要包括变频调速技术和电力电子变压器技术等。
变频调速技术可以实现电机转速的无级调节和高效能量转换,提高电机的运行效率和控制精度。
电力电子变压器技术可以实现电力系统的电压和频率调节,提高电力系统的稳定性和可靠性。
三、电力电子技术的未来发展趋势1. 高效能量转换技术随着能源短缺和环境保护的要求,电力电子技术将继续朝着高效能量转换的方向发展。
新型功率半导体器件的应用和拓扑结构的优化将进一步提高电力电子系统的能量转换效率。
电力电子技术及其发展趋势

电力电子技术及其发展趋势近年来,电力电子技术在能源领域发挥着越来越重要的作用。
它是一门研究关于电能的控制、调节以及转换的学科,广泛应用于电力传输、电力变流与变频、能源储存等领域。
本文将介绍电力电子技术的基本原理和常见应用,并展望其未来的发展趋势。
一、电力电子技术的基本原理1.1 电力电子器件电力电子器件是电力电子技术的重要基础,它被用于控制和调节电能流动。
常见的电力电子器件包括二极管、晶体管、场效应管、开关管等。
这些器件通过开关操作,可以实现对电能的高效控制和转换,使得电能能够适应不同的工作状态和负载需求。
1.2 开关电源技术开关电源技术是电力电子技术中的一个重要方向,它能够将交流电能转换为直流电能,并通过开关器件进行高效控制。
开关电源具有体积小、效率高、功率密度大等特点,广泛应用于各个领域,如军事、通信、工业等。
而且,开关电源还可以实现电能的变压、变频和变流等功能,满足各种复杂的电能需求。
1.3 电力电子控制技术电力电子控制技术是电力电子技术的核心内容,它通过对电力电子器件和开关电源的控制,实现对电能的精确调节和控制。
电力电子控制技术可以使电能的传输和转换更加高效、可靠,同时也可以提高电能的质量和稳定性,确保电能系统的安全运行。
二、电力电子技术的应用领域2.1 电力传输电力传输是电力电子技术的主要应用领域之一。
在长距离电力传输中,电力电子技术可以实现输电线路的无功补偿、无功控制、降低线路损耗等功能,提高电力传输效率。
而在直流输电领域,电力电子技术可以实现高功率的直流变换和逆变,实现长距离、大容量的电能传输。
2.2 电力变流与变频电力变流与变频是电力电子技术的另一个重要应用领域。
通过电力电子器件和控制技术,可以实现交流电能向直流电能的转换,或者将一种频率的交流电能转换为另一种频率的交流电能。
这对于电机调速、电力系统的稳定性等方面都具有重要意义。
2.3 能源储存能源储存是近年来电力电子技术的研究热点之一。
电力电子技术在电力系统中的应用及发展

电力电子技术在电力系统中的应用及发展首先,电力电子技术在电力系统中的应用非常广泛。
电力电子技术包含了各种电力电子器件和电路,如开关电源、逆变器、整流器、变频器等。
这些技术可以用于各种不同的应用,包括电力调节、变频调速、无停电切换、能量回馈等。
电力电子技术在电力系统中的应用主要有以下几个方面:1.电力调节:电力电子技术可以用来调节电力系统的电压和频率。
例如,电力电子技术可以用于调节输电线路的电压,以保证电力系统的稳定性和可靠性。
同时,它也可以用来调节电力系统的频率,以适应不同的负载条件。
2.变频调速:电力电子技术可以用于变频调速系统中,通过改变电机的供电频率来改变电机的转速。
这可以使电机在不同负载要求下,具备良好的性能特性。
变频调速系统广泛应用于工业、交通等领域。
3.无停电切换:电力电子技术可以实现无停电切换。
例如,在配电系统中,当发生故障时,电力电子技术可以实现对备用电源的无停电切换,以保证供电的连续性和可靠性。
4.能量回馈:电力电子技术可以实现能量的回馈。
例如,通过逆变器将太阳能等可再生能源转换为电能,然后回馈到电力系统中,减少对传统能源的依赖,提高能源利用效率。
除了以上应用,电力电子技术还可以用于电力系统的电力质量改善、电力系统的故障检测和故障定位等方面,为电力系统的稳定运行和安全性提供支持。
其次,电力电子技术在电力系统中的发展也非常迅速。
随着科技的不断进步和应用需求的不断增加,电力电子技术得到了广泛的研究和应用。
目前,电力电子技术正在向下列几个方向发展:1.高效率:提高电力电子设备的工作效率是当前的重要发展方向。
高效率的电力电子设备可以减少能量损失,提高能源利用效率。
2.高功率密度:提高电力电子设备的功率密度,使其在体积相同的情况下可以提供更大的功率输出。
这对于应用于空间有限的场合非常有用。
3.高可靠性:提高电力电子设备的可靠性,使其能够在恶劣的工作环境下稳定运行。
这对于电力系统的稳定性和可靠性非常重要。
电力电子技术的发展与应用

电力电子技术的发展与应用作为电气自动化的学生,我们有必要对专业课程电力电子技术做个全面的了解。
我们先对电力电子的定义做了解,再对电子电力技术的发展做大致介绍,最后综述电力电子技术的应用。
电力电子技术,是使用电力电子器件对电能进行变换和控制的电子技术。
电力电子技术包括电力电子器件、电力电子设备和系统及其控制三个方面,涉及电力电子器件,电力电子设备和系统,电力电子技术在各个行业的应用。
与以信息处理为主的信息电子技术不同,电力电子技术主要用于功率(电力)变换,所变换“电力”功率的范围小到数瓦(W),大到数百兆瓦(MW)甚至吉瓦(GW)。
电力电子技术分为电力电子器件制造技术和变流技术,电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。
因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。
电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。
电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。
近代新型电力电子器件中大量应用了微电子学的技术。
电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。
电力电子技术的发展史:一般认为,电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。
晶闸管出现前的时期可称为电力电子技术的史前期或黎明期。
1904年出现了电子管,它能在真空中对电子流进行控制,并应用于通信和无线电,从而开启了电子技术用于电力领域的先河。
20世纪30年代到50年代,水银整流器广泛用于电化学工业、电气铁道直流变电所以及轧钢用直流电动机的传动,甚至用于直流输电。
1947年美国著名的贝尔实验室发明了晶体管,引发了电子技术的一场革命。
晶闸管时代,晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组,并且其应用范围也迅速扩大。
电力电子技术的研究进展及应用

电力电子技术的研究进展及应用随着现代科学技术的迅猛发展,电力电子技术作为其中一个重要分支,在国家经济和社会发展中扮演着不可或缺的角色。
本文将从电力电子技术的定义、研究进展以及应用方面进行探讨。
一、电力电子技术的定义电力电子技术是电力系统中电能的处理与控制技术,是研究通过半导体元件实现交、直流的能量转移、传递、匹配以及电能的调节、变换、变频的新型电气工程技术,具有诸多特点,如高效、精确、可靠、无噪音、无污染等。
因此,电力电子技术是目前国家十三五规划中电力转型的核心技术之一,广泛应用于今天的工业制造、信息通讯和公共基础设施等领域。
下面将详细讲述电力电子技术的研究进展。
二、电力电子技术的研究进展随着电力电子技术的不断发展,其研究取得了丰硕的成果。
在电力电子器件、电力电子拓扑与控制、电力电子应用等方向上都有着日益丰富的研究进展。
在电力电子器件方面,功率半导体电子器件得到了长足的发展。
压缩机封装车间生产的功率半导体器件已经进入行业标准化生产,其特点是具有低损耗、高速度、高电压、大电流、高耐受放热量和温度等特点,越来越能够满足各种场合的需求。
在电力电子拓扑与控制方面,电力电子系统的拓扑结构和控制策略得到了日益完善,已经从传统的整流、逆变结构转变为集成于一体的多功能电力电子拓扑结构。
电力电子系统的控制技术不断发展,已经实现了全数字化、高速、高精度的控制。
例如,目前双向DC-DC转换器及其控制技术已经得到了广泛的应用。
新型的电气系统如智能家居、新能源分布式发电等,对于双向变换器的研究和应用成为了热点。
在电力电子应用方面,电力电子技术在新能源、半导体照明和交通运输等领域得到了广泛的应用。
其中,新能源是电力电子技术应用领域的一大亮点,电力电子技术在太阳能、风能、氢能等新能源的开发利用中发挥了巨大的作用,能够有效提高能源的利用效率。
电力电子技术的应用范围之广,使其成为了当今高新技术的代表之一。
接下来,本文将从电力电子技术应用的实际案例进行分析,探讨其在各个领域中的应用。
电力电子技术在电网中的应用及智能电网的发展

电力电子技术在电网中的应用及智能电网的发展随着社会的进步和科技的发展,电力电子技术在电网中的应用越来越广泛。
电力电子技术是将电力与电子技术相结合,用电子器件和电力设备来处理和控制电能的技术。
它在电网中的应用带来了许多好处,同时也推动了智能电网的发展。
一、电力电子技术在电网中的应用1. 柔性交流输电技术柔性交流输电技术是指利用电力电子设备来控制电流和电压的频率、幅值和相位等参数,从而实现高压交流输电线路的柔性控制。
通过柔性交流输电技术,可以有效地提高电力系统的稳定性和可靠性,减少能量损耗,并且适应不同负荷需求的变化。
2. 逆变技术逆变技术是指将直流电转换为交流电的技术。
在电网中,逆变技术广泛应用于交流-直流变流器和逆变器中。
交流-直流变流器将电网中的交流电转换为直流电,并可用于直流输电、直流电源以及电动汽车充电等领域。
而逆变器则将直流电转换为交流电,可用于太阳能发电、风能发电以及UPS电源等。
3. 无功补偿技术无功补偿是对电网中的无功功率进行控制和补偿,以提高电能的有效利用率。
电力电子技术可以通过控制电容器、电抗器等无功补偿设备的接入和切除,实现电网中无功功率的调节和平衡,提高电网的功率因数和稳定性。
二、智能电网的发展随着电力电子技术的应用,智能电网正在不断发展。
智能电网是指利用先进的通信、控制和计算技术,对电网中的各个环节进行集成和优化,实现电力系统的智能化管理和运行。
智能电网的发展有以下几个方面:1. 智能感知智能感知是指通过传感器、测量仪表等设备,实时采集和监测电网中的各种数据,包括电压、电流、功率、负荷等信息。
通过智能感知技术,可以实现电网中各个节点的数据互联互通,提高电网的可视化程度,为智能化管理提供数据支持。
2. 智能调度智能调度是指根据电网中各个节点的状态和需求,通过智能算法和优化模型,实现对电网中的电力资源进行合理分配和调度。
智能调度可以提高电网的供电可靠性和经济性,优化电能的分配和利用效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【应用管理】
电力电子技术是利用电力电子器件对电能进行控制和转换的学科。
它包括电力电子器件、变流电路和控制电路三部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。
随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等血多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。
随着电力电子、计算机技术的迅速发展,交流调速取代直流调速已成为发展趋势。
变频调速以其优异的调速和启、制动性能被国内外公认为是最有发展前途的调速方式。
变频技术是交流调速的心技术,电力电子和计算机技术又是变频技术的核心,而电力电子器件是电力电子技术的基础。
电力电子技术是近几年迅速发展的一种高新技术,广泛应用于机电一体化、电机传动、航空航天等领域,现已成为各国竞相发展的一种高新技术。
一、电力电子技术应用
用电领域中的电力电子技术,电动机的优化运行。
全世界的用电量中约有60%左右是通过电动机来消耗的。
高能量密度的电源应用,电化学电源广泛应用在作为国民经济的铜、铝、锌、镍等有色金属以及氯碱等电解产业中;体积小、重量轻、效率高的各种开关电源应用也是十分广泛;信息领域中的电力电子技术,电力电子技术为信息技术提供先进的电源和运动控制系统,日益成为信息产品中不可缺少的一部分;发电领域中的电力电子技术,发电机的直流励磁。
常规发电机中励磁的建立已经由传统的直流磁励机转变为由中频交流励磁机加电力电子整流的方法,并已取得良好的经济效益,可靠性较高。
水轮发电机的变频励磁。
发电频率取决于发电机的转速,采用了电力电子技术后,将水轮发电机直流励磁转变为低频交流变频励磁。
当水流量减少时,提高励磁频率,可以把发电频率补偿到额定,延长水轮发电机的发电周期,解决了水力发电中发电机工作时间受季节性水流量影响而导致的频率无法调节、浪费较多水能的问题;环保型能源发电,利用太阳能、风能、潮汐能、地热能等新能源发电,是解决一次能源危机(煤、石油、天然气等石化类能源日趋匮乏)的重要途径,它们是可再生的绿色能源。
二、电力电子器件发展趋势
纵观几十年的发展历史,半导体器件起到了推动电子技术发展的作用,晶闸管等电力半导体器件扮演了电力电子发展中的主要角色。
电力电子技术的创新与电力电子器件制造工艺,己成为世界各国工业自动化控制和机电一体化领域竞争最激烈的阵地,各发达国家均在这一领域注入极大的人力,物力和财力,使之进入高科技行业,就电力电子技术的理论研究言,目前日本、美国及法国、荷兰、丹麦等西欧国家可以说是齐头并进,在这些国家各种先进的电力电子功率量不断开发完善,促进电力电子技术向着高频化迈进,实现用电设备的高效节能,为真正实现工控设备的小型化,轻量化,智能化奠定了重要的技术基础,也为21世纪电力电子技术的不断拓展创新描绘了广阔的前景。
1.全球范围内石油储量、煤储量逐渐在减少,生态平衡也严重受到破坏,环境污染越来越严重,现在世界各国普遍关注新能源的应用..新能源发电中的电力电子技术应用特点如下:一次能源供给随机性大,风能、太阳能都随天气情况而有很大变化;并网发电要求高,电网侧要求输入电能波动小,电能质量高等。
2.电力牵引(electric traction)是利用电能为动力的一种轨道运输牵引动力形式。
电力机车或动车的牵引电动机将电能转换为机械能,驱动铁路列车、电动车组和城市轨道交通电动车辆组运行。
因此,在以后的发展中,要不断应用先进的技术来扼杀电力牵引的缺点,达到尽量完美。
3.智能电网,就是电网的智能化,它是建立在集成的高速双向通信网络的基础上,通过先进的传感和测量技术、控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、经济、高效、环境友好和使用安全的目标。
智能电网技术正蓬勃发展,太阳能和风能发电是智能电网的分布式发电组成部分。
从更高的层面来讲,现今的电网变得比以往更大、更安全及更高能效,但其智能化程度仍然偏低,故智能电网是当今的重要发展趋势。
我国开发研制电力电子器件的综合技术能力与国外发达国家相比,仍有较大的差距,要发展和创新我国电力电子技术,并形成产业化规模,就必须走有中国特色的产学创新之路,即牢牢坚持和掌握产、学、研相结合的方法走共同发展之路。
从跟踪国外先进技术,逐步走上自主创新,从交叉学科的相互渗透中创新,从器件开发选择及电路结构变换上创新,这对电力技术创新是尤其实用的。
目前世界上许多大公司已开发出IPM智能化功率模块,日本三菱、东芝及美国的国际整流器公司已有成熟的产品推出。
国产电力半导体器件研发生产能力还落后于世界电力电子器件的发展水平,在新世纪国际电力电子崛起之时,中国电力半导体器件的落后状态将会影响中国经济的发展,国产电力半导体器件产业任重而道远。
从发展前景看,以电力半导体器件及“变频技术”为核心的电力电子行业,在国家政策的强持下将会走向更加辉煌的明天。
电力电子技术的应用及其发展
刘云霞
(北方机电工业学校河北张家口075000)
摘要:随着科技的不断发展和人们要求的不断提高,电力电子技术的应用越来越广泛。
电力电子技术作为信息产业和传统产业之间的桥梁,它将在国民经济中占有很重要的作用。
本为主要从电气节能、新能源发电、电力牵引以及智能电网这几个领域对电力电子技术的应用进行分析。
关键词:电力电子;技术;应用及其发展
刘云霞:电力电子技术的应用及其发展
114
··。