数字语音信号处理实验报告
语音信号处理实验报告.docx

在实验中,当P值增加到一定程度,预测平方误差的改善就不很明显了,而且会增加计算量,一般取为8~14,这里P取为10。
5.基音周期估计
①自互相关函数法
②短时平均幅度差法
二.实验过程
1. 系统结构
2.仿真结果
(1)时域分析
男声及女声(蓝色为时域信号,红色为每一帧的能量,绿色为每一帧的过零率)
某一帧的自相关函数
3.频域分析
①一帧信号的倒谱分析和FFT及LPC分析
②男声和女声的倒谱分析
③浊音和清音的倒谱分析
④浊音和清音的FFT分析和LPC分析(红色为FFT图像,绿色为LPC图像)
从男声女声的时域信号对比图中可以看出,女音信号在高频率分布得更多,女声信号在高频段的能量分布更多,并且女声有较高的过零率,这是因为语音信号中的高频段有较高的过零率。
2.频域分析
这里对信号进行快速傅里叶变换(FFT),可以发现,当窗口函数不同,傅里叶变换的结果也不相同。根据信号的时宽带宽之积为一常数这一性质,可以知道窗口宽度与主瓣宽度成反比,N越大,主瓣越窄。汉明窗在频谱范围中的分辨率较高,而且旁瓣的衰减大,具有频谱泄露少的有点,所以在实验中采用的是具有较小上下冲的汉明窗。
三.实验结果分析
1.时域分析
实验中采用的是汉明窗,窗的长度对能否由短时能量反应语音信号的变化起着决定性影响。这里窗长合适,En能够反应语音信号幅度变化。同时,从图像可以看出,En可以作为区分浊音和清音的特征参数。
短时过零率表示一帧语音中语音信号波形穿过横轴(零电平)的次数。从图中可以看出,短时能量和过零率可以近似为互补的情况,短时能量大的地方过零率小,短时能量小的地方过零率较大。从浊音和清音的时域分析可以看出,清音过零率高,浊音过零率低。
语音信号处理实验报告实验二

语音信号处理实验报告实验二一、实验目的本次语音信号处理实验的目的是深入了解语音信号的特性,掌握语音信号处理的基本方法和技术,并通过实际操作和数据分析来验证和巩固所学的理论知识。
具体而言,本次实验旨在:1、熟悉语音信号的采集和预处理过程,包括录音设备的使用、音频格式的转换以及噪声去除等操作。
2、掌握语音信号的时域和频域分析方法,能够使用相关工具和算法计算语音信号的短时能量、短时过零率、频谱等特征参数。
3、研究语音信号的编码和解码技术,了解不同编码算法对语音质量和数据压缩率的影响。
4、通过实验,培养我们的动手能力、问题解决能力和团队协作精神,提高我们对语音信号处理领域的兴趣和探索欲望。
二、实验原理(一)语音信号的采集和预处理语音信号的采集通常使用麦克风等设备将声音转换为电信号,然后通过模数转换器(ADC)将模拟信号转换为数字信号。
在采集过程中,可能会引入噪声和干扰,因此需要进行预处理,如滤波、降噪等操作,以提高信号的质量。
(二)语音信号的时域分析时域分析是对语音信号在时间轴上的特征进行分析。
常用的时域参数包括短时能量、短时过零率等。
短时能量反映了语音信号在短时间内的能量分布情况,短时过零率则表示信号在单位时间内穿过零电平的次数,可用于区分清音和浊音。
(三)语音信号的频域分析频域分析是将语音信号从时域转换到频域进行分析。
通过快速傅里叶变换(FFT)可以得到语音信号的频谱,从而了解信号的频率成分和分布情况。
(四)语音信号的编码和解码语音编码的目的是在保证一定语音质量的前提下,尽可能降低编码比特率,以减少存储空间和传输带宽的需求。
常见的编码算法有脉冲编码调制(PCM)、自适应差分脉冲编码调制(ADPCM)等。
三、实验设备和软件1、计算机一台2、音频采集设备(如麦克风)3、音频处理软件(如 Audacity、Matlab 等)四、实验步骤(一)语音信号的采集使用麦克风和音频采集软件录制一段语音,保存为常见的音频格式(如 WAV)。
数字语音信号处理实验

数字语音信号处理实验学号:1228401060姓名:唐榆专业:信息工程日期:2014年12月21日目录前言---------------------------------------------------------------2 一,实验目的--------------------------------------------------3 二,实验原理-----------------------------------------------------31.短时能量---------------------------------------------------------------------32短时平均过零率-------------------------------------------------33.短时自相关函数------------------------------------------------4 三,算法流程及结果------------------------------------------4 语音端点的检测与估计--------------------------------------------------4处理结果-----------------------------------5基音频率提取及男女判别-----------------------------------------5处理结果-----------------------------------5四,实验总结----------------------------------6五,参考文献----------------------------------------------------6六,附程序--------------------------------------------------------6前言语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。
数字语音处理课程实验报告

数字语音处理课程报告语音信号的采集与分析摘要语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系。
其中语音采集和分析仪器的小型化、智能化、数字化以及多功能化的发展越来越快,分析速度较以往也有了大幅度的高。
本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制自己的一段声音,运用Matlab进行仿真分析,最后加入噪声进行滤波处理,比较滤波前后的变化。
关键词:语音信号,采集与分析,时域,频域0 引言通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息的形式。
语言是人类持有的功能.声音是人类常用的工具,是相互传递信息的最主要的手段。
因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。
并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。
现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。
让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。
随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。
作为高科技应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。
它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,电话、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。
可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。
我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。
数字语音信号处理实验

语音信号处理实验班级:学号:姓名:2015年10月语音信号处理实验实验学时数:8实验学分:0.5实验项目数:41、目的与基本要求实验为研究型(设计型)实验,共安排4个,为了真正达到研究设计型实验的目的,采用开放实验的办法,将自主学习和研究设计型实验结合起来,统一安排。
自主学习内容由学生自主学习参考教材的内容,并采用多种渠道,如查阅最新语音信号处理方面的科技文献、资料,作出学习报告。
目的是培养学生的自学能力和科技文献的检索和查阅能力,同时可以有助于学生了解和掌握语音信号处理领域的最新技术进展和应用情况,将理论知识和实际应用结合起来,促进学生学习的积极性和主动性。
通过开放实验,目的使学生进一步理解数字语音信息处理的基本方法,提高学生自主分析、发现及解决问题的能力,锻炼学生论文写作能力,为实际的应用打下扎实的基础。
2、研究设计型实验的内容1)研究设计型实验1:基于MATLAB的语音信号时域特征分析要求:按所学相关语音处理的知识,通过网上学习、资料查阅,自己设计程序,给出某一语音信号的短时过零率、短时能量、短时自相关特征的分析结果,并借助时域分析方法检测所分析语音信号的基音周期。
2)研究设计型实验2:基于MATLAB分析语音信号频域特征要求:按所学相关语音处理的得知识,通过网上学习、资料查阅,自己设计程序,给出某一语音信号的短时谱、倒谱、语谱图的分析结果,并借助频域分析方法检测所分析语音信号的基音周期或共振峰。
3)研究设计型实验3:基于MATLAB进行语音信号的LPC分析要求:按所学相关语音处理的知识,通过网上学习、资料查阅,自己设计程序,给出某一语音信号的LPC分析结果,包括LPC谱、LPCC谱的分析结果,并借助LPC分析方法检测所分析语音信号的基音周期和共振峰。
4)研究设计型实验4:基于VQ的特定人孤立词语音识别研究要求:按所学相关语音处理的知识,通过网上学习、资料查阅,借助MATLAB工具,自己设计基于VQ的码本训练程序和识别程序(尽量选用所学HMM或DTW方法设计识别程序),能识别特定人的语音,分析所设计系统的特性。
数字信号处理语音处理课程设计实验报告

实验报告(1)语音采样和观察clear,clc;[y,fs]=audioread('E:\大学课程\大三上\数字信号处理\201400121184吴蔓.mp3'); %语音信号的采集,把采样值放在y中subplot(3,1,1)plot(y);title('时域波形');sound(y,fs); %语音信号的播放n=length(y) %计算语音信号的长度Y=fft(y) ; %快速傅里叶变换subplot(3,1,2)plot(abs(Y)); %绘出频域波形title('幅频特性');subplot(3,1,3)plot(angle(Y));title('相频特性');plot(angle(Y1)); title('延时后相频特性');0.511.522.533.544.5x 105-0.500.5延时后时域波形0.511.522.533.544.5x 10505001000延时后幅频特性0.511.522.533.544.5x 105-505延时后相频特性我延时了和原信号一样长的点数,可以看出来延时后的信号要后播放一小段时间并且幅频相频差别不大。
(3)混响: clear,clc;[y,fs]=audioread('E:\大学课程\大三上\数字信号处理\201400121184吴蔓.mp3'); %语音信号的采集一,加一撇表示转置。
如右图二,语音信号真的大多数是在3.4khz以内的,由下面三图对比可以发现,实际人的声音只在一段频率范围内,并且主要集中在3400hz以内。
但录制的语音还有一些少许的幅度很低的高频信号达到了100khz,那都是人耳听不见的声音。
也可以看出声音占得频谱很宽,并且是在数字域的pi也就是模拟域的FS以内,audioread函数读取Mp3格式的采样率大约是44100hz。
也可以看出采样时大致满足奈奎斯特定理,fs约等于2fh.(5)多重回声(回声数量有限):clear,clc;[y,fs]=audioread('E:\大学课程\大三上\数字信号处理\201400121184吴蔓.mp3') ; %语音信号的采集,从命令行窗口的输出可以看出%采样后的信号矩阵是多行一列的,下面n=length(y0)语句计算出来有220032个采样数据,有的数据为0,大多数数据是复数y0= y (:,1);%冒号代表“所有的”,这里指的是把y的所有行的第一列给y0,实际上y0和y 一样的,这句指令用来取单声道信号N=3; %三重回声y1=filter(1,[1,zeros(1,80000/(N+1)),0.5],y');%这里的y'指的是y的转置矩阵,故是一行多列的,y'作为filter函数的输入矩阵%[1,zeros(1,30000),0.5]是分母矩阵,1是分子,就相当于这是个无限长的信号,求其差分方程,y1是输出矩阵,这里filter函数相当于是个IIR滤波器,系统函数%相当于H(Z)=1/(1-0.5Z.^(-30001)).sound(10*y1,fs); %回放三重回声信号,这里乘以10以加强信号,便于听取,因为如果衰减系数太大则回声难以听见n=length(y0) ;Y0=fft(y0) ;Y=fft(y1) ;figure(1);subplot(2,1,1)plot(y);title('原音时域波形');axis([0 225000 -0.4 0.6]);subplot(2,1,2)plot(y1);title('多重回声时域波形');。
数字语音信号处理实验报告

语音信号处理实验报告专业班级电子信息1203学生姓名钟英爽指导教师覃爱娜完成日期2015年4月28日电子信息工程系信息科学与工程学院实验一语音波形文件的分析和读取一、实验学时:2 学时二、实验的任务、性质与目的:本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。
通过实验(1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等;(2)掌握语音信号的录入方式和*.WAV音波文件的存储结构;(3)使学生初步掌握语音信号处理的一般实验方法。
三、实验原理和步骤:WAV 文件格式简介WAV 文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。
每个WAV 文件的头四个字节就是“RIFF”。
WAV 文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV 文件标识段和声音数据格式说明段两部分。
常见的WAV 声音文件有两种,分别对应于单声道(11.025KHz 采样率、8Bit 的采样值)和双声道(44.1KHz 采样率、16Bit 的采样值)。
采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。
对于单声道声音文件,采样数据为8 位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16 位的整数(int),高八位和低八位分别代表左右两个声道。
WAV 文件数据块包含以脉冲编码调制(PCM)格式表示的样本。
在单声道WAV 文件中,道0 代表左声道,声道1 代表右声道;在多声道WAV 文件中,样本是交替出现的。
WAV 文件的格式表1 wav文件格式说明表(1)选取WINDOWS 下MEDIA 中的任一WAV 文件,采用播放器进行播放,观察其播放波形,定性描述其特征;(2)录入并存储本人姓名语音文件(姓名.wav),根据WAV 文件的储格式,利用MATLAB 或C 语言,分析并读取文件头和数据信息;(3)将文件的通道数、采样频率、样本位数和第一个数据读取并示出来。
最新语音信号处理实验报告实验二

最新语音信号处理实验报告实验二实验目的:本实验旨在通过实际操作加深对语音信号处理理论的理解,并掌握语音信号的基本处理技术。
通过实验,学习语音信号的采集、分析、滤波、特征提取等关键技术,并探索语音信号处理在实际应用中的潜力。
实验内容:1. 语音信号采集:使用语音采集设备录制一段时长约为10秒的语音样本,确保录音环境安静,语音清晰。
2. 语音信号预处理:对采集到的语音信号进行预处理,包括去噪、归一化等操作,以提高后续处理的准确性。
3. 语音信号分析:利用傅里叶变换等方法分析语音信号的频谱特性,观察并记录基频、谐波等特征。
4. 语音信号滤波:设计并实现一个带通滤波器,用于提取语音信号中的特定频率成分,去除噪声和非目标频率成分。
5. 特征提取:从处理后的语音信号中提取关键特征,如梅尔频率倒谱系数(MFCC)等,为后续的语音识别或分类任务做准备。
6. 实验总结:根据实验结果,撰写实验报告,总结语音信号处理的关键技术和实验中遇到的问题及其解决方案。
实验设备与工具:- 计算机一台,安装有语音信号处理相关软件(如Audacity、MATLAB 等)。
- 麦克风:用于采集语音信号。
- 耳机:用于监听和校正采集到的语音信号。
实验步骤:1. 打开语音采集软件,调整麦克风输入设置,确保录音质量。
2. 录制语音样本,注意控制语速和音量,避免过大或过小。
3. 使用语音分析软件打开录制的语音文件,进行频谱分析,记录观察结果。
4. 设计带通滤波器,设置合适的截止频率,对语音信号进行滤波处理。
5. 应用特征提取算法,获取语音信号的特征向量。
6. 分析滤波和特征提取后的结果,评估处理效果。
实验结果与讨论:- 描述语音信号在预处理、滤波和特征提取后的变化情况。
- 分析实验中遇到的问题,如噪声去除不彻底、频率成分丢失等,并提出可能的改进措施。
- 探讨实验结果对语音识别、语音合成等领域的潜在应用价值。
结论:通过本次实验,我们成功实现了语音信号的基本处理流程,包括采集、预处理、分析、滤波和特征提取。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
语音信号处理实验报告
专业班级电子信息1203
学生姓名钟英爽
指导教师覃爱娜
完成日期2015年4月28日
电子信息工程系
信息科学与工程学院
实验一语音波形文件的分析和读取
一、实验学时:2 学时
二、实验的任务、性质与目的:
本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。
通过实验
(1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等;
(2)掌握语音信号的录入方式和*.WAV音波文件的存储结构;
(3)使学生初步掌握语音信号处理的一般实验方法。
三、实验原理和步骤:
WAV 文件格式简介
WAV 文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。
每个WAV 文件的头四个字节就是“RIFF”。
WAV 文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV 文件标识段和声音数据格式说明段两部分。
常见的WAV 声音文件有两种,分别对应于单声道(11.025KHz 采样率、8Bit 的采样值)和双声道(44.1KHz 采样率、16Bit 的采样值)。
采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。
对于单声道声音文件,采样数据为8 位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16 位的整数(int),高八位和低八位分别代表左右两个声道。
WAV 文件数据块包含以脉冲编码调制(PCM)格式表示的样本。
在单声道WAV 文件中,道0 代表左声道,声道1 代表右声道;在多声道WAV 文件中,样本是交替出现的。
WAV 文件的格式
表1 wav文件格式说明表
(1)选取WINDOWS 下MEDIA 中的任一WAV 文件,采用播放器进行播放,观察其播放波形,定性描述其特征;
(2)录入并存储本人姓名语音文件(姓名.wav),根据WAV 文件的储格式,利用MATLAB 或C 语言,分析并读取文件头和数据信息;
(3)将文件的通道数、采样频率、样本位数和第一个数据读取并示出来。
四、实验设备
PC机。
五、实验源程序及结果:
[y,Fs,bits]=wavread('C:\Users\Administrator\Desktop\zys.wav');//读取本人姓名语音文件,分析并读取文件头和数据信息,y为数据信息、Fs为采样频率、bits为样本位数
m=wavread('C:\Users\Administrator\Desktop\zys.wav',1); 将文件的第一个数据读取并示出来
实验二语音信号的时域参量分析
一、实验学时:2 学时
二、实验的任务、性质与目的:
(1)增强学生对语音时域分析理论的理解,尤其是语音的短时能量、幅度和过零率的的分析和应用;
(2)进一步提高学生分析问题和解决问题的能力从而培养学生初步掌握进行科学研究的方法和总结实验结果的能力。
三、实验原理和步骤:
(1)利用MATLAB或C语言,针对ringout.wav文件,求取语音信号的短时能量函数、短时平均幅度函数和短时平均过零率三大时域参量;三大时域参量的定义式是:短时能量函数和短时平均幅度函数
(2)将三大时域参量的结果用波形图的方式显示出来;
(3)分析并标识波形图上的清浊音信息。
四、实验设备
PC机。
五、实验源程序及结果
[y,Fs,bits]=wavread('C:\Users\Administrator\Desktop\ringout.wav');
T=1/Fs;
N=input('窗口长度为:');
h=linspace(1,1,N);
En=conv(h,y.*y); subplot(4,1,1),
plot(y)
subplot(4,1,2),
plot(En)
legend('短时能量函数');
Mn=conv(h,abs(y));
subplot(4,1,3),
plot(Mn)
legend('短时平均幅度');
n=length(y);
for i=1:n
if y(i)>=0
a(i)=1;
else
a(i)=-1;
end
end
for i=1:n
if i==n
b(i)=a(i);
else
b(i)=a(i+1)-a(i);
end
w(i)=abs(b(i))/2;
end
subplot(4,1,4)
s=0;
x=1;
for i=1:n-1
if(rem(i,200)~=0)
s=s+w(i);
else
m(x)=s;
s=0;
x=x+1;
end
end
plot(m)
legend('短时过零率');
实验三语音信号的基音周期检测和线性预测分析
一、实验学时:4 学时
二、实验的任务、性质与目的:
1、理解自相关函数的概念、性质和应用,特别是在基音周期检测和线性预测分析(LPC)中的应用;
2、进一步增强学生对语音时域分析理论的理解,尤其是语音基音周期检测的分析和应用;
3、深入理解线性预测分析的概念和原理,并利用LPC 的自相关法对语音进行预测分析。
三、实验原理和步骤:
(1)利用MATLAB 或 C 语言,针对ringout.wav 文件和姓名.wav文件,求取语音信号的短时自相关函数;
(2)画出自相关函数波形,分析清浊音性质,检测基音周期;
(3)利用Durbin 递推算法,设定采样频率和预测阶数,求解语音(名字)的预测系数;(4)画出原始语音的波形、预测语音波形以及预测误差波形,并分析和比较。
四、实验设备
PC机。
五、实验源程序及结果
自相关函数波形
Wn=[60/8000,500/8000];
n=[1:240];
B=FIR1(239,Wn,'bandpass');
Y=wavread('C:\Users\Administrator\Desktop\ringout.wav');
temp=Y(3271:3510);
wc1=0.0075;
wc2=0.9625;
wn=[wc1/pi,wc2/pi];
h=fir1(239,wn,blackman(240));
h=reshape(h,240,1);
temp=temp.*abs(h);
temp2=reshape(temp,1,240);
temp=temp2.*B;
Rn1=zeros(1,240);
for nn=[1:240]
for ii=[1:240-nn]
Rn1(nn)=Rn1(nn)+temp(ii)*temp(nn+ii);
end
end
jj=[1:240];
plot(jj,Rn1,'b');。