初一数学上册:有理数《找规律》专题练习
人教版七年级上册数学 第1章 有理数 数字类找规律 拓展训练习题

人教版七年级上册数学第1章 有理数 数字类找规律 拓展训练习题一.选择题1.1,3,3,5,7,9,13,15( ),( ) A .19,21B .19,23C .21,23D .27,302.观察下列算式31=3,32=9,33=27,34=81,35=243,36=729,37=2187…根据上述算式中的规律,你认为32018的末位数字是( ) A .3B .9C .7D .13.观察下列按一定规律排列的代数式:2,3+,3﹣,3+,3﹣,…,第n 个代数式为( ) A .2+B .2﹣C .3+D .3﹣4.观察下列单项式:﹣x ,3x 2,﹣5x 3,7x 4,…,﹣37x 19,39x 20,…,按照上述规律,第2021个单项式为( ) A .2020x 2021B .﹣4039x 2020C .﹣4041x 2021D .4041x 20215.按规律排列的单项式x 3,﹣x 5,x 7,﹣x 9,x 11,…的第n 个单项式是( ) A .(﹣1)n ﹣1x 2n ﹣1 B .(﹣1)n x 2n ﹣1C .(﹣1)n x 2n+1D .(﹣1)n ﹣1x 2n+16.将自然数按以下规律排列,则2016所在的位置 ( )第1列 第2列 第3列 第4列 … 第1行 1 2 9 10 第2行 4 3 8 11 第3行 5 6 7 12 第4行 16 15 14 13 第5行 17 … …A .第45行第10列B .第10行第44列C .第44行第10列D .第10行第45列二.填空题7.按一定规律排列的单项式:a ,﹣2a ,4a ,﹣8a ,16a ,﹣32a ,64a ,…,第2021个单项式是 . 8.已知x 1,x 2,…,x n 中x i (i =1,2,…,n )的数值只能取﹣2、0、1中的一个,且满足x 1+x 2+…+x n =﹣17,x 12+x 22+…+x n 2=37.则(x 13+x 23+…+x n 3)2的值为 . 9.观察下列一组代数式:a ,,…,它们是按一定规律排列的,那么这一组数的第n 个代数式为 .10.中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出第n个数据是.11.瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第23个数据是.12.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是13.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是103,则m的值是.14.琪琪利用计算机设计了一个计算程序,输入和输出的数据如表:输入… 1 2 3 4 5 …输出……如表输入的数据记为x,输出的数据记为y,则y与x满足的关系式为.三.解答题15.观察下列等式,找出规律,按要求答题.①1=12;②1+3=22;③1+3+5=32;…(1)1+3+5+…+29=(结果要化简).(2)请用含n的代数式表示出第n个等式.(3)已知公式:1+2+3+4+…+m=,请用已知公式证明第(2)题的等式.16.阅读下列材料,完成相应的任务:神奇的等式第一个等式;第二个等式;第三个等式;第四个等式;…第100个等式.任务:(1)第6个等式为;(2)猜想第n个等式(用含n的代数式表示),并证明.17.如图所示,由1开始连续自然数组成,观察规律,并完成以下各题.(1)图中第8行最后一个数是,它是自然数的平方,第8行共有个数.(2)用含n代数式表示:第n行第一个数是,最后一个数是,第n行共有个数.(3)n=10时,求第10行各数之和.18.观察下列等式:第一个等式:;第二个等式:;第三个等式:.按上述规律,回答下列问题:(1)请写出第四个等式:;(2)第n个等式为:;(3)计算:.。
七年级(上)数学【找规律】经典题汇总带答案

……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
(完整)初中数学找规律专项练习题(有答案)

1、观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则2+6+10+14+…+2014的值是。
2、用四舍五入法对31500取近似数,并精确到千位,用科学计数法可表示为.3、观察下面的一列数:0,﹣1,2,﹣3,4,﹣5,6…请你找出其中排列的规律,并按此规律填空.(1)第10个数是,第21个数是.(2)﹣40是第个数,26是第个数.4、一组按规律排列的数:,,,,…请你推断第9个数是.5、计算:__________;(-2)100+(-2)101= .6、若,则=__________.7、大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
8、猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是9、10、若与|b+5|的值互为相反数,则 =____ ____11、在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制的比较如下表:0 1 2 3 4 5 6 …十进位制二进制0 1 10 11 100 101 110 …请将二进位制10101010(二)写成十进位制数为 .12、为求值,可令S=,则2S=,因此2S-S=,所以=。
仿照以上推理计算出的值是_________________。
二、选择题(每空?分,共?分)13、的值是……………………………………………【】A.﹣2 B.﹣1 C.0 D.114、已知8.62=73.96,若x2=0.7396,则x的值等于()A 86. 2B 862C ±0.862D ±86215、计算:(-2)100+(-2)101的是()A.2100B.-1C.-2D.-210016、计算等于( ) .A.B.C.D.17、已知a、b互为相反数,c、d互为倒数,m的绝对值为1, p是数轴到原点距离为1的数,那么的值是 ( ).A.3 B.2 C.1 D.018、若,则的大小关系是 ( ).A. B. C. D.19、观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,….解答下列问题:3+32+33+34+…+32 013的末尾数字是( )A.0B.1C.3D.720、计算机是将信息转化成二进制进行处理的,二进制即“逢二进一”。
七年级上册数学第二章《有理数》探寻规律含答案

七年级上册数学第二章《有理数》探寻规律含答案1.观察下列各组数,尝试写出第n个数:(1)有一列数:2,4,6,8,10,…,则第n个数是;(2)有一列数:3,5,7,9,11,…,则第n个数是;(3)有一列数:1,3,6,10,15,…,则第n个数是 .2.观察下列各算式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?3.下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 _ _ _ _4.请填出下面横线上的数字: 1 1 2 3 5 8 __ __ 215.有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……第100个数是 .6.有一串数字 3 6 10 15 21 _ __ 第6个是什么数?7.观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1 B.2 C.3 D.48.100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为_________个.9.观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2014个球止,共有实心球个.10.观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2015个图形是(填图形名称).11.如图,由若干根火柴棒拼成小金鱼的图形:(1)拼一个金鱼需要根火柴;(2)拼三个金鱼需要根火柴;(3)拼n个金鱼需要根火柴12.下图是某同学在沙滩上用石子摆成的小房子:观察图形的变化规律,则第n 个小房子用的石子块数为 个.13.已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 .14.观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=__ __. 15.,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a ab a b 则符合前面式子的规律,,若…21010 16.有若干个数,依次记为a 1,a 2,a 3,……,a n ,若a 1=-21,从第2个数数起,每个数都等于1与它前面那个数的差的倒数,则a 2015= .17.观察下列等式:16115-=;25421-=;36927-=;491633-=;… … 用自然数n (其中1n ≥)表示上面一系列等式所反映出来的规律是 .18.观察下列各式:121312⨯+=⨯; 222422⨯+=⨯; 323532⨯+=⨯… 请你将猜想到的规律用自然数n (n ≥1)表示出来__________________. 19. 观察下列等式:12=1-12,221111222+=-,233111112222++=-,…… 请根据上面的规律计算:231011112222+++⋅⋅⋅+=____________. 20.观察下面的点阵图和相应的等式,探究其中的规律:⑴在④和⑤后面的横线上分别写出相应的等式;…… …… ①1=12; ②1+3=22; ③1+3+5=32; ④ ; ⑤ ;⑵根据上面算式的规律,请计算:1+3+5……+199= 。
精选七年级数学上册有理数找规律解答题难题专题训练

精选七年级数学上册有理数找规律解答题难题专题训练一、解答题1.我们知道13=1=14×12×22,13+23=9=14×22×32,13+23+33=36=14×32×42,13+23+33+43=100=14×42×52…… (1)猜想:13+23+33+…+(n -1) 3+n 3=14×( ) 2×( ) 2.(2)计算:①13+23+33+…+993+1003;②23+43+63+…+983+1003.2.有规律排列的一列数:2,4,6,8,10,12,…,它的每一项可用式子2n(n 是正整数)来表示;则有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,…(1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2 017是不是这列数中的数?如果是,是第几个数?3.已知x 1,x 2,x 3,…x 2016都是不等于0的有理数,若y 1=11x x ,求y 1的值.当x 1>0时,y 1=11x x =11x x =1;当x 1<0时,y 1=11x x =11x x =﹣1,所以y 1=±1 (1)若y 2=11x x +22x x ,求y 2的值 (2)若y 3=11x x +22x x +33x x ,则y 3的值为 ;(3)由以上探究猜想,y 2016=11x x +22x x +33x x +…+20162016x x 共有 个不同的值,在y 2016这些不同的值中,最大的值和最小的值的差等于 .4.(1)填空:(a −b)(a +b )=______ ;(a −b)(a 2+ab +b 2)= ______ ;(a −b)(a 3+a 2b +ab 2+b 3)= ______ ;(2)猜想:(a -b )(a n -1+a n -2b+a n -3b 2+…+ab n -2+b n -1)= ______ (其中n 为正整数,且n≥2);(3)利用(2)猜想的结论计算:①29+28+27+…+22+2+1②210-29+28-…-23+22-2.5.仔细阅读下面的例题,找出其中规律,并解决问题:例:求2342017122222++++++的值.解:令S =2342017122222++++++ ,则2S =23452018222222++++++ , 所以2S ﹣S =201821- ,即S=201821-,所以2342017122222++++++=201821-仿照以上推理过程,计算下列式子的值:① 234100155555++++++ ② 234520161333333-+-+-++6.你会求(a −1)(a 2018+a 2017+a 2016+⋅⋅⋅+a 2+a +1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:(a −1)(a +1)=a 2−1(a −1)(a 2+a +1)=a 3−1(a −1)(a 3+a 2+a +1)=a 4−1(1)由上面的规律我们可以大胆猜想,得到(a −1)(a 2018+a 2017+a 2016+⋅⋅⋅+a 2+a +1)=________利用上面的结论,求(2)22018+22017+22016+⋅⋅⋅+22+2+1的值;(3)求52018+52017+52016+⋅⋅⋅+52+4的值.7.下列是用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:⑴第4个图中共有_________根火柴,第6个图中共有_________根火柴;⑵第n 个图形中共有_________根火柴(用含n 的式子表示)⑶若f(n)=2n−1(如f(−2)=2×(−2)−1,f(3)=2×3−1),求f(1)+f(2)++f(2017)2017的值. ⑷请判断上组图形中前2017个图形火柴总数是2017的倍数吗,并说明理由? 8.观察下列算式:111111111111;;;2121262323123434==-==-==-⨯⨯⨯…… (1)通过观察,你得到什么结论?用含n (n 为正整数)的等式表示:________.(2)利用你得出的结论,计算:1111(1)(2)(2)(3)(3)(4)(4)(5)a a a a a a a a +++-------- 9.观察以下等式: 第1个等式:101011212++⨯=, 第2个等式:111112323++⨯=, 第3个等式:121213434++⨯=, 第4个等式:131314545++⨯=,第5个等式:14141 5656++⨯=,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.10.先观察:1﹣122=12×32,1﹣132=23×43,1﹣142=34×54,…(1)探究规律填空:1﹣1n2=×;(2)计算:(1﹣122)•(1﹣132)•(1﹣142)…(1﹣120152)11.如图所示,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?12.观察下列三行数:0,3,8,15,24,…①2,5,10,17,26,…②0,6,16,30,48,…③(1)第①行数按什么规律排列的,请写出来?(2)第②、③行数与第①行数分别对比有什么关系?)(3)取每行的第个数,求这三个数的和13.观察下列各式:(x−1)(x+1)=x2−1(x−1)(x2+x+1)=x3−1(x−1)(x3+x2+x+1)=x4−1……由上面的规律:(1)求25+24+23+22+2+1的值;(2)求22011+22010+22009+22008+…+2+1的个位数字.(3)你能用其它方法求出12+122+123+⋯+122010+122011的值吗?14.有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.15.观察下列等式:第1个等式:1111(1) 1323a==-⨯第2个等式:21111() 35235a==-⨯第3等式:31111() 57257a==-⨯第4个等式:41111() 79279a==-⨯请解答下列问题:(1)按以上规律写出第5个等式:a5==.(2)用含n的式子表示第n个等式:a n==(n为正整数).(3)求a1+a2+a3+a4+…+a2018的值.16.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏?阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒……按这个方法放满整个棋盘就行。
精选七年级数学上册有理数找规律解答题难题专题训练

精选七年级数学上册有理数找规律解答题难题专题训练一、解答题1.我们知道13=1=14×12×22,13+23=9=14×22×32,13+23+33=36=14×32×42,13+23+33+43=100=14×42×52…… (1)猜想:13+23+33+…+(n -1) 3+n 3=14×( ) 2×( ) 2.(2)计算:①13+23+33+…+993+1003;②23+43+63+…+983+1003.2.有规律排列的一列数:2,4,6,8,10,12,…,它的每一项可用式子2n(n 是正整数)来表示;则有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,…(1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2 017是不是这列数中的数?如果是,是第几个数?3.已知x 1,x 2,x 3,…x 2016都是不等于0的有理数,若y 1=11x x ,求y 1的值.当x 1>0时,y 1=11x x =11x x =1;当x 1<0时,y 1=11x x =11x x =﹣1,所以y 1=±1 (1)若y 2=11x x +22x x ,求y 2的值 (2)若y 3=11x x +22x x +33x x ,则y 3的值为 ;(3)由以上探究猜想,y 2016=11x x +22x x +33x x +…+20162016x x 共有 个不同的值,在y 2016这些不同的值中,最大的值和最小的值的差等于 .4.(1)填空:(a −b)(a +b )=______ ;(a −b)(a 2+ab +b 2)= ______ ;(a −b)(a 3+a 2b +ab 2+b 3)= ______ ;(2)猜想:(a -b )(a n -1+a n -2b+a n -3b 2+…+ab n -2+b n -1)= ______ (其中n 为正整数,且n≥2);(3)利用(2)猜想的结论计算:①29+28+27+…+22+2+1②210-29+28-…-23+22-2.5.仔细阅读下面的例题,找出其中规律,并解决问题:例:求2342017122222++++++的值.解:令S =2342017122222++++++ ,则2S =23452018222222++++++ , 所以2S ﹣S =201821- ,即S=201821-,所以2342017122222++++++=201821-仿照以上推理过程,计算下列式子的值:① 234100155555++++++ ② 234520161333333-+-+-++6.你会求(a −1)(a 2018+a 2017+a 2016+⋅⋅⋅+a 2+a +1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:(a −1)(a +1)=a 2−1(a −1)(a 2+a +1)=a 3−1(a −1)(a 3+a 2+a +1)=a 4−1(1)由上面的规律我们可以大胆猜想,得到(a −1)(a 2018+a 2017+a 2016+⋅⋅⋅+a 2+a +1)=________利用上面的结论,求(2)22018+22017+22016+⋅⋅⋅+22+2+1的值;(3)求52018+52017+52016+⋅⋅⋅+52+4的值.7.下列是用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:⑴第4个图中共有_________根火柴,第6个图中共有_________根火柴;⑵第n 个图形中共有_________根火柴(用含n 的式子表示)⑶若f(n)=2n−1(如f(−2)=2×(−2)−1,f(3)=2×3−1),求f(1)+f(2)++f(2017)2017的值. ⑷请判断上组图形中前2017个图形火柴总数是2017的倍数吗,并说明理由? 8.观察下列算式:111111111111;;;2121262323123434==-==-==-⨯⨯⨯…… (1)通过观察,你得到什么结论?用含n (n 为正整数)的等式表示:________.(2)利用你得出的结论,计算:1111(1)(2)(2)(3)(3)(4)(4)(5)a a a a a a a a +++-------- 9.观察以下等式: 第1个等式:101011212++⨯=, 第2个等式:111112323++⨯=, 第3个等式:121213434++⨯=, 第4个等式:131314545++⨯=,第5个等式:14141 5656++⨯=,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.10.先观察:1﹣122=12×32,1﹣132=23×43,1﹣142=34×54,…(1)探究规律填空:1﹣1n2=×;(2)计算:(1﹣122)•(1﹣132)•(1﹣142)…(1﹣120152)11.如图所示,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?12.观察下列三行数:0,3,8,15,24,…①2,5,10,17,26,…②0,6,16,30,48,…③(1)第①行数按什么规律排列的,请写出来?(2)第②、③行数与第①行数分别对比有什么关系?)(3)取每行的第个数,求这三个数的和13.观察下列各式:(x−1)(x+1)=x2−1(x−1)(x2+x+1)=x3−1(x−1)(x3+x2+x+1)=x4−1……由上面的规律:(1)求25+24+23+22+2+1的值;(2)求22011+22010+22009+22008+…+2+1的个位数字.(3)你能用其它方法求出12+122+123+⋯+122010+122011的值吗?14.有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.15.观察下列等式:第1个等式:1111(1) 1323a==-⨯第2个等式:21111() 35235a==-⨯第3等式:31111() 57257a==-⨯第4个等式:41111() 79279a==-⨯请解答下列问题:(1)按以上规律写出第5个等式:a5==.(2)用含n的式子表示第n个等式:a n==(n为正整数).(3)求a1+a2+a3+a4+…+a2018的值.16.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏?阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒……按这个方法放满整个棋盘就行。
七年级上—找规律专题练习题

有理数找规律和新定义运算专题1.观察下面的每列数,按某种规律在横线上适当的数。
(1)-23,-18,-13,______,________; ; (2)2345,,,8163264--,_______,_________; 2.有一组数:1,2,5,10,17,26,.....,请观察这组数的构成规律,用你发现的规律确定第8个数为__________.3.观察下列算式:21=2,22 =4,23 =8,24=16,25 =32,26=64,27=128,通过观察,用你所发现的规律确定22011的个位数字是( )A. 2B. 4C. 6D. 84.一根lm 长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为( )A.31()2m B. 51()2m C. 61()2m D. 121()2m5.下面一组按规律排列的数:1,2,4,8,16.......,第2011个数应是( ) A. 22011 B. 22011-1 C.22010 D .以上答案不对 6.研究下列算式,你会发现什么规律?1×3+1=4=22 2×4+1 =9=32 3×5+1=16=42 4×6+1 =25=52 请你找出规律用公式表示出来:___________________7.观察下列三行数:第一行:-1,2,-3,4,-5…… 第二行:1,4,9,16,25,…… 第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?__________________ _(2)第二行、第三行分别与第一行数有什么关系?___________________ (3)取每行的第10个数,计算这三个数的和.___________________8.有规律排列的一列数:2,4,6,8,10,12,……它的每一项可用式子2n(n 是正整数)表示. 有规律排列的一列数:1,-2,3,-4,5,-6,7,-8...... (1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少?(3)2012是不是这列数中的数?如果是,是第几个数? 9.如果对于任意非零有理数a,b 定义运算如下:a △b=ab +1,那么(-5)△(+4)△(-3)的值是多少?10.如果规定符号※的意义是a ※b=aba b+,求:2※(-3)※4的值.11.先完成下列计算:1×9+2=11;12×9+3=________;123×9 + 4=__________;……你能说出得数的规律吗?请你根据发现的算式的规律求出1234567×9 + 8的值.12.如果1+2-3-4+5+6-7-8 +9+……,是从1开始的连续整数中依次两个取正, 两个取负写下去的一串数,则前2012个数的和是多少?依照以上各式成立的规律,使44a b a b +--=2成立,则a+b 的值为____________14.观察下列各式:12+1=1×2 22+2=2×3 32+3=3×4 请把你猜想到的规律用自然数n 表示出来___________________15.观察下列各式:2×4=32-1,3×5 =42-1,4×6 =52-1,……把你发现的规律用含一个字母的等式表示_________ 16.观察下列各式找规律:12+(1×2)2+22=(1×2+1)2 22+(2×3)2+32 =(2×3+1)2 32+(3×4)2 +42=(3×4+1)2(1)写出第6个式子的值; (2)写出第n 个式子.17.(2011湖南益阳)观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1③ 3 × 5 - 42 = 15 - 16 = -1④ ……(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母n 的式子表示出来;1. (2011浙江省)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此规律,图A 6比图A 2多出“树枝”( )A.28B.56C.60D. 124 2.(2011广东肇庆)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 .3. (2011内蒙古乌兰察布)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)4. (2011湖南常德)先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 5.(2011湖南益阳)观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1③ 3 × 5 - 42 = 15 - 16 = -1④ ……(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母n 的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由. 6.研究下列算式,你会发现什么规律?1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52 …………, (1) 请用含n 的式子表示你发现的规律:___________________.第1个图形第 2 个图形第3个图形 第 4 个图形(2) 请你用发现的规律解决下面问题 计算11111(1)(1)(1)(1)(1)13243546911+++++⨯⨯⨯⨯⨯的值一、数字找规律1.观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .2.观察下面一列数,探求其规律: .,61,51,41,31,21,1 ---(1)写出这列数的第九个数;(2)第2008个数是什么数?如果这一列数无限排列下去,与哪个数越来越近?3.下列是有规律排列的一列数:325314385,,,,……其中从左至右第100个数是__________.4、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 . 5. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .6、已知21873,7293,2433,813,273,93,337654321=======…推测到203的个位数字是 ;7、观察下列等式: 第一行 3=4-1 第二行 5=9-4 第三行 7=16-9 第四行 9=25-16 … …按照上述规律,第n 行的等式为____ ________ 8.已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ; …… ……由此规律知,第⑤个等式是 . 9.观察下列各式:1×3=12+2×1,2×4=22+2×2,3×5=32+2×3, … …请你将猜想到的规律用自然数n (n ≥1)表示出来: .10.观察下列顺序排列的等式:猜想:第n 个等式(n 为正整数)应为__ _________________。
七年级数学有理数找规律题型

七年级数学有理数找规律题型一、数字规律。
题1。
观察下列数:1, -2, 3, -4, 5, -6,…,按照这样的规律,第100个数是多少?解析。
可以发现这些数的绝对值是连续的自然数,且奇数项为正,偶数项为负。
第100个数是偶数项,所以为 - 100。
题2。
给出一组数: - 1,2, - 4,8, - 16,32,…,则第7个数是多少?解析。
先看绝对值,后一个数是前一个数绝对值的2倍,再看符号,奇数项为负,偶数项为正。
第7个数是奇数项,绝对值为2^6=64,所以第7个数是 - 64。
题3。
有一列数:(1)/(2),(2)/(3),(3)/(4),(4)/(5),…,那么第n个数是多少?解析。
分子依次是1,2,3,4,…,n;分母依次是2,3,4,5,…,n + 1。
所以第n 个数是(n)/(n + 1)。
题4。
观察数:1,4,9,16,25,…,第10个数是多少?解析。
这组数是1^2,2^2,3^2,4^2,5^2,…,第n个数是n^2,所以第10个数是10^2=100。
题5。
数列:0,3,8,15,24,…,第n个数是多少?解析。
这组数可以写成1^2-1,2^2-1,3^2-1,4^2-1,5^2-1,…,第n个数是n^2-1。
二、算式规律。
题6。
观察下列算式:1 = 1^2;1+3 = 2^2;1 + 3+5=3^2;1+3 + 5+7 = 4^2;…,求1+3+5+·s+99的值。
解析。
从算式可以看出,从1开始连续奇数的和等于数的个数的平方。
1到99的奇数有50个,所以1+3+5+·s+99 = 50^2=2500。
题7。
观察算式:2^1=2,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,…,求2^20的个位数字是多少?解析。
通过观察2^n的个位数字依次是2、4、8、6循环。
20÷4 = 5,刚好整除,所以2^20的个位数字是6。
题8。
有这样一组算式:(1-(1)/(2))(1+(1)/(2))=(1)/(2)×(3)/(2)=(3)/(4);(1 -(1)/(3))(1+(1)/(3))=(2)/(3)×(4)/(3)=(8)/(9);(1-(1)/(4))(1+(1)/(4))=(3)/(4)×(5)/(4)=(15)/(16);…,求(1-(1)/(10))(1+(1)/(10))的值。