6.3实数(第1课时)公开课 (1)

合集下载

6.3 实数 (第1课时)

6.3  实数 (第1课时)

一课一案 创新导学
3.你能归纳一下现阶段无理数常以哪种形式出现吗?试一试.
现阶段有三种:第一种,开方开不尽的数,如 ������;第二种, 由π 组成的数,如 3π ;第三种,具有特殊构造的数,如 0.101 001 000 100 001„.
一课一案 创新导学
1.下列各数中,是无理数的是( B ) A.
������������ ������
B. ������������
������
C.- ������������
D.2.020 020 002
2.- ������是 ������的( A ) A.相反数 B.倒数 C.绝对值 D.算术平方根
������ ������ ������ 3.实数① ,② ,③ 中,分数是 ① ������ ������ ������
.(填序号)
4.化简: ������- ������ =
������-1 .
.
5.如图,数轴上表示数 ������的点是 点B
一课一案 创新导学
1.如图,已知直径为 1 个单位长度的圆形纸片上的点 A 与 数轴上表示-1 的点重合,若该圆形纸片沿数轴顺时针滚动 一周(无滑动)后点 A 与数轴上的点 A'重合,则点 A'表示 的数为 π -1 . 44 个. 2.在 ������, ������, ������,„, ������ ������������������中,有理数有_______
一课一案 创新导学
1.尝试回答“问题导引”中的问题.
这个城堡是“有理数王国”,因为 ������是无理数,所以不 能进去.我们可以把城堡的名字改成“实数王国”, ������ 就能自由进出了.
一课一案 创新导学

6.3实数(第1课时)教学设计-2021-2022学年人教版数学七年级下册

6.3实数(第1课时)教学设计-2021-2022学年人教版数学七年级下册

人教版七年级数学下册第六章第三节《实数》教学设计(第1课时)一、教学目标知识技能1.了解无理数及实数的概念,并会对实数进行分类.2.会对实数按照一定标准进行分类,培养分类能力.3.知道实数和数轴上的点一一对应.数学思考1.经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.2.经历对实数进行分类,发展学生的分类意识.解决问题1.通过无理数的引入,使学生对数的认识由有理数扩充到实数.2在交流中学会与人合作,并能与他人交流自己思维的过程和结果.情感态度1.通过无理数的引入,激发学生的求知欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.2.通过了解数系扩充体会数系扩充对人类发展的作用.3.敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.二、教学重点和难点教学重点:使学生了解无理数和实数的意义,熟练掌握实数的分类教学难点:无理数意义的理解.三、教学方法讲练结合启发教学学生为主四、教学手段多媒体五、课时安排一课时六、教学设计(一).数学故事——无理数的发现:通过俗语“有理走遍天下,无理寸步难行”引入数学故事,古希腊著名的数学家,哲学家毕达哥拉斯有一句名言“万物皆为数。

”他认为宇宙间的一切事物都归为整数或整数的比。

问:整数的比是什么数?答:分数。

问:整数和分数统称为什么数?答:有理数。

〖设计说明〗让学生了解无理数是怎么发现的,经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的,从而对数学充满兴趣(二)、回顾旧知,检查预习:1.有理数怎样分类?有理数分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 或 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负整数负整数负有理数零正分数正整数正有理数有理数 〖设计说明〗让学生进行简单的练习,帮助学生回顾旧知识:有理数,为本节课的迁移伏笔. (三)、创设情境,导入新课:1.展示问题,引导学生探究。

七年级数学下册(人教版)6.3.1实数的相关概念及分类(第一课时)优秀教学案例

七年级数学下册(人教版)6.3.1实数的相关概念及分类(第一课时)优秀教学案例
3.鼓励学生提出问题:鼓励学生在完成作业的过程中提出问题,培养学生的提问意识和解决问题的能力。
五、案例亮点
1.生活情境的创设:通过购物找零的实际例子,让学生感受到实数的实际意义,激发学生的学习兴趣,提高学生对实数的理解和运用能力。
2.问题导向的设计:通过设计具有启发性和针对性的问题,引导学生进行思考和探究,激发学生的思维活力,培养学生的解决问题的能力。
4.运用实际例子,引导学生将实数知识应用到生活中,培养学生的实践能力和创新意识。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使学生感受到数学的趣味性和魅力,激发学生学习数学的内在动力。
2.培养学生的团队合作意识,使学生在合作交流中体验到学习的乐趣,增强学习的自信心。
3.培养学生严谨治学的态度,使学生养成认真思考、细致观察的学习习惯,提高学生的学习效果。
2.利用数轴情境导入:在数轴上标出几个关键点,如0, 1, -1等,引导学生观察实数在数轴上的位置,引出实数的分类。
3.利用故事情境导入:讲述“兔子与胡萝卜”的故事,引发学生对实数的思考,如兔子每天跑的距离是无理数,胡萝卜的数量是有理数,引出实数的概念和分类。
(二)讲授新知
1.实数的定义和分类:讲解实数的概念,引导学生理解实数是包括有理数和无理数两大类的数,并讲解实数与数轴的关系。
5.教学策略的灵活运用:结合学生的认知水平和学习兴趣,设计丰富的教学活动,注重引导学生通过自主探究、合作交流,深入理解实数的本质特征和分类依据,提高实数知识的系统性和灵活运用能力。同时,运用多媒体教学手段,直观地展示实数的性质和规律,帮助学生更好地理解和掌握实数知识。
(二)过程与方法
1.通过自主探究、合作交流,培养学生的动手操作能力和思维能力,提高学生对实数概念和分类的理解。

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。

本节内容主要包括实数的定义、实数的分类和实数的性质。

通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。

但是,对于实数的定义和性质,可能还比较陌生。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。

三. 教学目标1.理解实数的概念,掌握实数的分类和性质。

2.能够运用实数的概念和性质解决一些简单的实际问题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.实数的定义和性质。

2.实数的分类。

五. 教学方法采用讲授法、引导法、讨论法等教学方法。

通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。

六. 教学准备1.教师准备教案、PPT等教学资料。

2.学生准备笔记本、文具等学习用品。

七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。

2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。

引导学生理解和记忆实数的概念和性质,掌握实数的分类。

3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。

通过练习,巩固学生对实数的理解和掌握。

4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。

5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。

6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。

7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。

人教版七年级下册6.3.1 实数及其分类

人教版七年级下册6.3.1  实数及其分类
第六章 实 数
6.3 实 数 第1课时 实数及其分类
1 课堂讲解
无理数 实数及其分类 实数与数轴上的点的关系
2 课时流程
பைடு நூலகம்
逐点 导讲练
课堂 小结
课后 作业
回顾旧知
什么是有理数?有理数怎样分类?
有理数
整数 分数
正有理数
有理数

0
负有理数
知识点 1 无理数
知1-导
探究 我们知道有理数包括整数和分数,请把下列分数写成 小数的形式,你有什么发现?
如,将3看成3.0), 那么任何一个有理数都可以写成有
限小数或无限循环小数的形式. 反过来,任 何有限小
数或无限循环小数也都是有理数.
(来自教材)
知1-讲
1. 定义:无限不循环小数叫做无理数. 判断标准:小数位数无限,小数形式为不循环.
2. 三种常见形式: (1)开方开不尽的数,如 3 ,3 5 ,…; (2)含有π的一类数: 1 π, 1 π,π+1,…;
5 8
,0,0.8,
45 6
,-4.2.
正数:{ ,…};负数:{ ,…};
正整数:{ ,…};正分数:{ ,…};
负整数:{ ,…};负分数:{ ,…}.
分析: 以前学过的0以外的数就是正数,正数前面加上 “-”号就是负数,再看它们是整数还是分数.
解:正数:{13,+6, ,0.8,4 5 ,…}; 6
议一议 (1)如图,OA=OB,数轴上点A对应的数是什么?它介
于哪两个整数之间? (2)你能在坐标轴上找到 5 对应的点吗?与同伴进
行交流.
知3-讲
1.实数与数轴间的关系:实数和数轴上的点是一一对应 的. 它包含着两层含义:

人教版七年级数学下册6.3实数(第1课时)一等奖优秀教学设计

人教版七年级数学下册6.3实数(第1课时)一等奖优秀教学设计

人教版义务教育课程标准实验教科书七年级下册6.3.1实数(第1课时)教学设计一、教材分析1、地位作用:本章内容相当于旧教材《数的开方》一章,但编排顺序有所差别,旧教材先学习平方根,再将算术平方根作为其中的一种特例进行学习,而本套教材先联系实际学习认识算术平方根后,再进一步认识平方根。

这样可以引发学生的疑惑,激发学生学习兴趣,从而使学生积极主动地投入到数学活动中去。

本节篇幅不长,内容也不多,但知识比较抽象,而且与学生以前接触的数学知识差异较大,根据以前的教学经验,我感觉学生学习起来不会很顺手,而且它又是以后学习二次根式、一元二次方程的基础,需要老师在教学中精心构思,认真落实。

2、教学目标:(1)了解无理数和实数的概念.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想。

3、教学重、难点:重点:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系。

难点:理解实数的概念突破重难点的方法:观察与动手作图实践,让学生知道实数和数轴上的点是一一对应的,从而理解学习实数的必要性。

二、教学准备:多媒体课件、导学案三、教学过程.圆周率及一些含有3、下列结论正确的是( )A.无限小数是无理数B.实数不是正数就是负数合起来就是:数轴上的点。

C.无理数都是带根号的数D.无理数都是无限不循环小数 4、判断:(1).实数不是有理数就是无理数。

( ) (2).无理数都是无限不循环小数。

( ) (3).无理数都是无限小数。

( ) (4).带根号的数都是无理数。

( ) 2、下列说法中,正确的是()、都是无理数234、、A 、B 、无理数都是带根号的数C 、实数分为正实数和负实数D 、实数和数轴上的点是一一对应的D。

6.3.1 实数的相关概念及分类(第一课时)七年级数学下册(人教版)

6.3.1 实数的相关概念及分类(第一课时)七年级数学下册(人教版)
规律但不循环的小数,如1.01001000100001…(两个1之间依次多一个0)
自学导航
有理数和无理数统称为实数.
(1)按定义分
有理数
正有理数
0
有限小数或者无限循环小数
负有理数
实数
正无理数
无理数
无限不循环小数
负无理数
自学导航
有理数和无理数统称为实数.
(2)按性质分
正有理数
正实数
实数
正无理数
0
负有理数
无理数π可以用数轴上的点来表示出.
合作探究
如图,以单位长度为边长画一个正方形,以原点为圆心,正方形
对角线为半径画弧,与正半轴的交点就表示 2,与负半轴的交点就表示
- 2.(为什么)
合作探究
事实上,每一个无理数都可以用数轴上的一个点表示出来.
当数的范围从有理数扩充到实数以后,实数与数轴上的点是一一对应的,即
1.了解实数的意义,并能将实数按要求进行分
类;
2.熟练掌握实数大小的比较方法;(重点)
3.了解实数和数轴上的点一一对应,能用数轴
上的点表示无理数.(难点)
自学导航
我们知道有理数包括整数和分数,利用计算器把下列分数写成小数的形式,
它们有什么特征?
5 3 27 11 9
, , , , .
2 5 4 9 11
5
2.5
2
3
0.6
5
27
6.75
4
.
11
1. 2
9
. .
9
0. 81
11
它们都可以写成有限小数或者无限循环小数的形式.
整数能写成小数的形式吗?3可以看成是3.0吗?

2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)

6,

••
, 1. 2 3,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
有理数是:1.

2

3
22
,7
36
无理数是: 6
,,

2
1.232232223 ,(两个3之间依次多一个 2)
思考:无理数一般有哪些形式?
(1)像 7, 3, 12 的开不尽方的数是无理数。
020
002
000
02…是无
理数吗?
1.57079632679...
2
它们都是无限 不循环小数,
2.02002000200002…
是无理数
常见的一些无理数:
(1)含 π 的一些数;
(2)含开不尽方的数; (3)有规律但不循环的小数,如1.01001000100001…
例:判断下列数哪些是有理数?哪些是无理数?
人教版七年级数学 下册
6.3 实 数 第1课时 实数的概念
1.了解实数的意义,并能将实数按要求进 行准确的分类;
2.熟练掌握实数大小的比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用 数轴上的点 表示无理数.(难点)
认真阅读课本中6.3 实数的 内容,完成下面练习并体验知 识点的形成过程。
• 这个矛盾说明, 2 不能写成分数的形式, 即 2 不是有理数。
• 实际上, 2 是无限不循环小数。
实数的概念:
在前面的学习中,我们知道,许多数的平方根和 立方根都是无限不循环小数,它们不能化成分数.我 们给无限不循环小数起个名字,叫“无理数”.有理 数和无理数统称为实数.
思考:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合作交流,解决问题
练习2.
把下列各数填入相应的集合内.
9 2 3 15, 4, , , 27,0.15, 7.5, π. 17 3
(1)无理数集合:{ (2)有理数集合:{ (3)正实数集合:{
9 15, , π 17
…}; …}; …};
2 3 4, , 27 , 0.15, 7.5 3
一个实数a
-2 -1 0 1A 2
练习3、把下列各数填入相应的集合内:
9
3
5
64
3

5
(1)有理数集合: 9
(2)无理数集合: (3)整数集合: (4)负数集合: (5)分数集合: (6)实数集合: 9
3 0. 6 4 3 64 0 . 6 4


3
9
3
0.13
0.13
3

3
试一试
:带根号 根据你所看到的或想到的,注意 你觉得无理数都 把下列各数分别填入相应的集合内: 的数不一定是 22 有哪些形式? 3 3 , 8, 0.101, , 无理数 3 , 9 , 64 3 7
3
Байду номын сангаас
开方开不尽的数 20 2.1 21, ,
含有 9 1 , 16
有规律但不循环 的数 0.3737737773 的无限小数
3
9
9
3 4
64
9
3 4
3
0. 6
3

0.13
5
64

0. 6

3 4
3
9 3 0.13
4、判断: 1.实数不是有理数就是无理数。( 2. 无限小数都是无理数。( ×) 3.无理数都是无限小数。( ) )
4.带根号的数都是无理数。( ×) 5.无理数一定都带根号。( × ) 6.两个无理数之积不一定是无理数。( 7.两个无理数之和一定是无理数。( ×) )
15 , 4,
3
9 2 , , 0.15 17 3
(4)负实数集合:{
27, 7.5, π
…}.
练一练
判断:
(1)实数不是有理数就是无理数;(
(2)带根号的数都是无理数; (3)无理数一定都带根号.

( × ) ( × )
探究 问题1.无理数能在数轴上表示出来吗?
如图,直径为1个单位长度的圆从原点沿数轴向右 滚动一周,圆上一点从原点到达A点,则点A的坐标为 多少?
. = 0.5.
5 = 9 . 0.6,
★ 任何一个有理数都可以写成有限小 数或无限循环小数的形式.
无理数的概念 新知
所有的数都可以写成有限小数或无限 循环小数的形式吗?
2 =1.414 213 562…
π=3.141 592 653…
1.010010001…(两个1之间依次多一个0) 无限不循环小数 叫做无理数.
学习目标
(1)无理数和实数的概念; (2)实数的分类; (3)实数和数轴上的点一一对应。
重点与难点
• 学习重点:理解实数的概念。 • 学习难点: 实数和数轴上的点一一对应。
回顾 探究 有理数包括哪些数?
正有理数 快速计算,把下列有理数写成小数的 整数 形式,你有什么发现? 有理数 有理数 零 分数 负有理数 9 3 3 像3 3, = 3.0, 5 , 11 , 5 . . 9 5 = 0. 81 , 11 9
...
...
有理数集合
无理数集合
有理数和无理数统称实数.
运用新知 练习1 在下列每一个圈里,至少填入三个适当的数.
...
...
有理数集合
无理数集合
实数的分类
有理数和无理数统称实数.
整数 有理数 实数 无理数 正实数 分数 无限不循环小数 正有理数 有限小数和无限循环小数
实数
正无理数 0 负实数 负有理数 负无理数
8.所有的有理数都可以在数轴上表示,反过来,
数轴上所有的点都表示有理数。(
×)
5、下列说法正确的是:
(1)有理数都是有限小数 (2)一个数的立方根不一定是无理数 (3)任何实数都有唯一的立方根 (4)只有正实数才有算术平方根 ( ×) ( √ ) (√ ) ( ×)
(5)任何数的平方根有两 个,它们互为相反数 ( × ) (6)不带根号的数都是有理数 (× )
(7)若正数a的一个平方根 是b,那么a的另一个
平方 根是-b (8)正数的两个平方根的和为0 (9)没有平方根的数也没有立方根 ( 10)若a为有理数,b为无理数,则 ab必为无理数
√ ( )
( √ ) ( ×) (× )
6.下列说法错误的是( ). A.负数不能开平方 B.有理数和无理数统称为实数 C.数轴上的点和实数一一对应 D.不带根号的数一定是有理数
c
课堂小结
整数 实数 有理数 有理数 有限小数和无限循环小数 无理数 分数 无理数 无限不循环小数
实数 … … …
正有理数 正无理数
正实数 实数 0 负实数 负有理数
负无理数
★实数和数轴上的点是一一对应的.
㈠、课本:P57第1题、 第2题 ㈡、配套练习册:P26 练习一, 练习二
3A
-4
-3
-2
-1
0
1
2
4
无理数 可以用数轴上的点来表示.
问题2.你能在数轴上表示出 2 吗?
探究
A
2
C
-2
O
0 1
B
- 2 -1
2
2
★实数和数轴上的点是一一对应的.
每一个实数都可以用数轴上的一个点来表示; 反过来,数轴上的每一点都表示一个实数。
在数轴上作出 5 的对应点.
2 1
-1
0
1
2 5 3
相关文档
最新文档