pcb布局布线技巧及原则

合集下载

pcb布局布线技巧

pcb布局布线技巧

PCB 布局、布线基本原则一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。

定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。

特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。

电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC元件单边对齐,封装方向一致,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。

重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。

二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。

pcb布线规则及技巧

pcb布线规则及技巧

使用自动布线工具需 要合理设置参数,以 确保布线的质量和效 果。
自动布线工具可以自 动优化线路布局,减 少线路交叉和干扰。
考虑电磁兼容性
在布线过程中需要考虑电磁兼容 性,避免线路之间的干扰和冲突。
合理选择线宽和间距,以降低电 磁干扰的影响。
考虑使用屏蔽、接地等措施,提 高电磁兼容性。
04 PCB布线中的挑战及应对 策略
模拟电路板布线
总结词:模拟电路板布线需要特别关注信号的 连续性和稳定性。
01
确保信号的连续性和稳定性,避免信号的 突变和噪声干扰。
03
02
详细描述:在模拟电路板布线中,应遵循以 下规则和技巧
04
考虑信号的带宽和频率,以选择合适的传 输线和端接方式。
优化布线长度和布局,以减小信号的延迟 和失真。
05
1 2
高速信号线应进行阻抗匹配
高速信号线的阻抗应与终端负载匹配,以减小信 号反射和失真。
敏感信号线应进行隔离
敏感信号线应与其他信号线隔离,以减小信号干 扰和噪声。
3
大电流信号线应进行散热设计
大电流信号线应考虑散热问题,以保证电路的正 常运行。
03 PCB布线技巧
优化布线顺序
01
02
03
先电源后信号
3. 解决策略:对于已存 在的电磁干扰问题,可 以尝试优化PCB布局、 改进屏蔽设计、增加滤 波器或调整接地方式等 技术手段进行改善。
05 PCB布线实例分析
高速数字电路板布线
在此添加您的文本17字
总结词:高速数字电路板布线需要遵循严格的规则和技巧 ,以确保信号完整性和可靠性。
在此添加您的文本16字
考虑电磁兼容性
布线过程中需要考虑电磁兼容性,通过合理的布线设计减小电磁干扰和辐射,提 高电路板的电磁性能。

PCB板布局原则布线技巧

PCB板布局原则布线技巧

PCB板布线布局一.PCB布局原则首先,要考虑PCB尺寸大小。

PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。

在确定PCB尺寸后.再按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性,按工艺设计规范的要求进行尺寸标注。

最后,根据电路的功能单元,对电路的全部元器件进行布局。

1.布局操作的基本原则A. 位于电路板边缘的元器件,离电路板边缘一般不小于2mm。

电路板的最佳形状为矩形。

长宽比为3:2成4:3。

B. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.C. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.D. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.E. 以每个功能电路的核心元件为中心,围绕它来进行布局。

元器件应均匀、整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。

F. 相同结构电路部分,尽可能采用“对称式”标准布局;同类型插装元器件在X或Y方向上应朝一个方向放置;同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。

2.布局操作技巧1. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。

2. 元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。

3. IC去耦电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。

4. 尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。

易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。

5. 某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则

PCB板基础知识布局原则布线技巧设计规则PCB板(Printed Circuit Board),即印刷电路板,是电子元器件连接和支撑的重要组成部分。

在电子设备中,PCB板起到连接电子元件、传导电信号和供电的作用。

本文将介绍PCB板的基础知识、布局原则、布线技巧和设计规则。

一、PCB板的基础知识1.PCB板的分类:根据不同的材料和结构,PCB板可以分为单面板、双面板和多层板。

2.PCB板的制作工艺:PCB板的制作包括原材料选购、制板、布线、焊接和测试等过程。

3.PCB板的重要参数:常见的PCB板参数包括厚度、层数、焦耳效应、阻抗控制等。

二、PCB板的布局原则1.布局紧凑且合理:电子元件应尽量集中布置,以减少信号线的长度和杂散电磁干扰。

2.电气分区与热分区:将电子元件按照功能分区,以便降低信号干扰,同时考虑热量的分布和散热问题。

3.处理信号线和电源线的互相干扰:要尽量增加信号线和电源线的间距,并避免平行穿越,以减少互相干扰。

4.放置元件外围的预留空间:为元器件的安装和维修预留足够的空间,以方便组装和维护。

三、PCB板的布线技巧1.信号线和电源线布线:信号线和电源线应分开布线,以减少互相干扰。

信号线应尽量缩短长度,减少串扰和信号损耗。

2.确定信号线的走向:信号线的走线路径应避开高频干扰源和高功率设备。

一般情况下,信号线应尽量走直线,避免拐弯和交叉。

3.地线布线:地线是保证PCB板正常工作的重要线路,地线应尽量接近信号线,以减少回流噪声。

同时,地线应尽量宽,以降低电阻和噪声。

4.设置滤波电容:在PCB板上合适的位置加入滤波电容,可以有效降低电源杂波及其他噪声的干扰。

四、PCB板的设计规则1.规定LED、电位器和按键的位置和引脚间距。

2.规定电源线的规格、引脚间距和安全间距。

3.规定电子元件与焊盘的间距和接触面积。

4.规定PCB板的最小线宽、最小孔径和最小间距。

5.规定PCB板的阻焊、喷锡、丝印等工艺要求。

pcb布局布线技巧及原则

pcb布局布线技巧及原则

pcb布局布线技巧及原则pcb布局布线技巧及原则[ 2018-11-16 0:19:00 | By: lanzeex ]PCB 布局、布线差不多原则一、元件布局差不多规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采纳就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(关于M2.5)、4mm(关于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方幸免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。

定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。

专门应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。

电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,显现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差不太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。

重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。

二、元件布线规则1、画定布线区域距PCB 板边≤1mm 的区域内,以及安装孔周围1mm 内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu 入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W 电阻: 51*55mil(0805 表贴);直插时焊盘62mil,孔径42mil;无极电容: 51*55mil(0805 表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能显现回环走线。

PCB板布局原则布线技巧

PCB板布局原则布线技巧

PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。

比如,将稳压电路、放大电路、数字电路等放在不同的区域内。

-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。

因此,尽量把线路缩短,减少线路长度。

-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。

因此,尽量避免线路的交叉,使布局更加清晰。

-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。

-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。

2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。

-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。

-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。

-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。

-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。

总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。

通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项布线技巧:1.确定电路结构:在布线之前,需要先确定电路结构。

将电路分成模拟、数字和电源部分,然后分别布线。

这样可以减少干扰和交叉耦合。

2.分区布线:将电路分成不同的区域进行布线,每个区域都有自己的电源和地线。

这可以减少干扰和噪声,提高信号完整性。

3.高频和低频信号分离:将高频和低频信号分开布线,避免相互干扰。

可以通过设立地板隔离和电源隔离来降低电磁干扰。

4.绕规则:维持布线规则,如保持电流回路的闭合、尽量避免导线交叉、保持电线夹角90度等。

这样可以减少丢失信号和干扰。

5.简化布线:简化布线路径,尽量缩短导线长度。

短导线可以减少信号传输延迟,并提高电路稳定性。

6.差分线布线:对于高速信号和差分信号,应该采用差分线布线。

差分线布线可以减少信号的传输损耗和干扰。

7.用地平面:在PCB设计中,应该用地平面层绕过整个电路板。

地平面可以提供一个低阻抗回路,减少对地回路电流的干扰。

8.参考层对称布线:如果PCB板有多层,应该选择参考层对称布线。

参考层对称布线可以减少干扰,并提高信号完整性。

注意事项:1.信号/电源分离:要避免信号线与电源线共享同一层,以减少互相干扰。

2.减小射频干扰:布线时要特别注意射频信号传输的地方,采取屏蔽措施,如避免长线路、使用高频宽接地等。

3.避免过长接口线:如果接口线过长,则信号传输时间会增加,可能导致原始信号失真。

4.避免过短导线:过短的导线也可能引发一些问题,如噪声、串扰等。

通常导线长度至少应该为信号上升时间的三分之一5.接地技巧:为了减少地回路的电流噪声,应该尽量缩短接地回路路径,并通过增加地线来提高接地效果。

6.隔离高压部分:对于高压电路,应该采取隔离措施,避免对其他电路产生干扰和损坏。

7.注重信号完整性:对于高速和差分信号,应该特别注重信号完整性。

可以采用阻抗匹配和差分线布线等技术来提高信号传输的稳定性。

总结起来,PCB布线需要遵循一些基本原则,如简化布线、分区布线、差分线布线等,同时需要注意电源和信号的分离、射频干扰的减小等问题。

pcb布局布线技巧及原则(全面)

pcb布局布线技巧及原则[ 2020-11-16 0:19:00 | By: lanzeex ]PCB 布局、布线基本原则一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。

定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。

特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。

电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8 mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。

重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。

二、元件布线规则1、画定布线区域距PCB 板边≤1mm 的区域内,以及安装孔周围1mm 内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu 入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W 电阻: 51*55mil(0805 表贴);直插时焊盘62mil,孔径42mil;无极电容: 51*55mil(0805 表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。

PCB的布线原则介绍

PCB的布线原则介绍PCB(Printed Circuit Board)布线是在电子产品的设计和制造过程中非常重要的一步,它涉及到电路连接的实现和优化,对电气性能和可靠性有着直接影响。

下面将介绍一些PCB布线的原则和技巧。

1.分层布线原则:为了减少信号串扰和提高布线效果,通常使用多层PCB来进行布线。

不同信号层之间约束通过信号引线进行连接。

2.信号流布线原则:PCB布线应遵循信号流动路径的原则,尽量在布线中使用直线、平行和垂直线路,避免使用弯曲和串扰风险较大的线路。

3.引脚位置原则:为了便于布线和减少信号串扰风险,应该将高速信号的输入和输出引脚安排在同一侧或者上下相邻的地方。

4.良好的地平面原则:地平面是整个PCB布线设计中非常重要的一部分,要做到尽量连续、稳定和低阻抗。

良好的地平面可以减少信号回流路径长度,提高信号质量和抗干扰能力。

5.模拟数字分区原则:为了减少模拟信号和数字信号之间的干扰,布线时应该将它们分开布线,模拟信号通常靠近输入/输出接口,数字信号靠近芯片和处理器。

6.信号引线长度控制原则:为了提高信号的稳定性和可靠性,应尽量控制信号引线的长度,避免过长而引起信号失真或者串扰。

7.信号引线宽度控制原则:为了适应高速信号的要求,应尽量增加信号引线的宽度,减小电流密度,提高信号的传输速率。

8.信号层间距控制原则:为了减少层间串扰风险,应根据信号分布和技术需求,适当调整信号层的间距,通常越窄越好,但过窄会增加制造难度。

9.电源与分布原则:为了减少电源干扰,应设计分布式电源和地平面。

并且将电源线和信号线分开布线,以减少干扰。

10.阻抗匹配原则:为了保证传输线和匹配网络的工作效果,应根据设计要求和信号特征,选择合适的阻抗值。

11.元器件布局原则:元器件布局的合理性会直接影响到整个PCB布线的效果,因此在布局时应考虑信号传输要求、热问题、电源分布等因素。

12.电磁兼容原则:为了减少电磁辐射和电磁接收的干扰,应设计良好的屏蔽和周边环境,并尽量使用低辐射的元器件。

pcb布局布线技巧及原则

PCB布局布线技巧及原则1. 引言PCB(Printed Circuit Board)布局布线是电子产品设计中至关重要的一步。

良好的布局布线能够确保电路的可靠性、性能和EMI (Electromagnetic Interference)抗干扰能力。

本文将介绍一些常见的PCB布局布线技巧及原则,帮助读者更好地进行电路设计和布线。

2. PCB布局技巧2.1 分区布局在设计复杂的电路板时,将电路板分为几个功能区域进行布局是一个很好的策略。

例如,将微处理器、模拟电路和电源电路分开布局。

这可以降低信号干扰,并更好地管理电源分配和地平面。

2.2 复用层对于多层PCB设计,可以使用复用层的技术来提高布局效率。

复用层是指多个分区共享同一个地平面或电源平面。

这样做可以减少电路板的层数,提高信号完整性和EMI性能。

2.3 阻抗控制在高速设计中,阻抗控制是非常重要的。

通过合理设计走线宽度、间距和层间距,可以实现所需的阻抗匹配。

使用阻抗控制工具进行模拟和仿真分析,以确保信号完整性。

2.4 时钟信号布局时钟信号在高速电子系统中非常关键。

为了降低时钟抖动和噪声,应优先布置时钟信号线。

时钟信号线应尽量短、直接,并与其他信号线保持一定的距离以减少干扰。

2.5 地平面和电源分布良好的地平面和电源分布可以大大改善电路性能和抗干扰能力。

地平面应尽量连续、整齐,并尽可能地覆盖整个PCB区域。

电源分布应合理,避免共享电流,以减少电源波动。

3. PCB布线原则3.1 追求最短和最直接的路径布线时应尽量追求最短和最直接的路径,以降低传输延迟和信号损失。

避免走线过长或弯曲,特别是对于高速信号和时钟信号。

3.2 避免平行和交叉在布线过程中,应尽量避免平行和交叉走线。

平行走线容易引起串扰干扰,而交叉走线则易引起交互耦合。

合理规划走线,尽量平行走线和交叉垂直走线。

3.3 差分信号布线对于高速差分信号,应采用差分布线技术。

差分信号的两条传输线上的信号互为补码,可以大大减小对外部干扰的敏感度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)减小信号线间的交*干扰:
A点一个上升时间为Tr的阶跃信号通过引线AB传向B端。信号在AB线 上的延迟时间是Td。在D点,由于A点信号的向前传输,到达B点后的信 号反射和AB线的延迟,Td时间以后会感应出一个宽度为Tr的页脉冲信号。 在C点,由于AB上信号的传输与反射,会感应出一个宽度为信号在AB线 上的延迟时间的两倍,即2Td的正脉冲信号。这就是信号间的交*干扰。干 扰信号的强度与C点信号的di/at有关,与线间距离有关。当两信号线不 是很长时,AB上看到的实际是两个脉冲的迭加。
(4)减小来自电源的噪声 电源在向系统提供能源的同时,也将其噪声加到所供电的电源上。电路中微 控制器的复位线,中断线,以及其它一些控制线最容易受外界噪声的干扰。 电网上的强干扰通过电源进入电路,即使电池供电的系统,电池本身也有高 频噪声。模拟电路中的模拟信号更经受不住来自电源的干扰。
一个传输线问题,必须考虑信号反射,阻抗匹配等问题。
信号在印制板上的延迟时间与引线的特性阻抗有关, 即与印制线路板材料的 介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速
的1/3到1/2之间。微控制器构成的系统中常用逻辑电话元件的Tr(标准
延迟时间)为3到18ns之间。
在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延 迟时间大致在4~20ns之间。也就是说, 信号在印刷线路上的引线越短越好, 最长不宜超过25cm而且过孔数目也应尽量少,最好不多于2个。当信号 的上升时间快于信号延迟时间,就要按照快电子学处理。此时要考虑传输线 的阻抗匹配,对于一块印刷线路板上的集成块之间的信号传输,要避免出现Td>Trd的情况,印刷线路板越大系统的速度就越不能太快。 用以下结论归纳印刷线路板设计的一个规则: 信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。
CMOS工艺制造的微控制由输入阻抗高,噪声高,噪声容限也很高,数字电 路是迭加100~200mv噪声并不影响其工作。若图中AB线是一模拟信号,这 种干扰就变为不能容忍。 如印刷线路板为四层板, 其中有一层是大面积的地, 或双面板,信号线的反面是大面积的地时,这种信号间的交*干扰就会变小。
原因是,大面积的地减小了信号线的特性阻抗, 信号在D端的反射大为减小。 特性阻抗与信号线到地间的介质的介电常数的平方成反比, 与介质厚度的自 然对数成正比。若AB线为一模拟信号,要避免数字电路信号线CD对AB的干扰,AB线下方要有大面积的地,AB线到CD线的距离要大于AB线与 地距离的2~3倍。可用局部屏蔽地, 在有引结的一面引线左右两侧布以地线。
3、正常过孔不低于30mil;
4、双列直插:焊盘60mil,孔径40mil;
1/4W电阻:51*55mil(表贴);直插时焊盘62mil,孔径42mil; 无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;
5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。 如何提高抗干扰能力和电磁兼容性 在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性?
贴印制线、焊盘,其间距应大于2mm定位孔、紧固件安装孔、椭圆孔及板
中其它方孔外侧距板边的尺寸大于3mm;
7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;
8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线 端应布置在同侧。 特别应注意不要把电源插座及其它焊接连接器布置在连接 器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座
pcb布局布线技巧及原则
[ 2009-11-16 0:19:00 |By: lanzeex]
PCB布局、布线基本原则
一、元件布局基本规则
1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模 块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;
2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安
(2)减小信号传输中的畸变
微控制器主要采用高速CMOS^术制造。信号输入端静态输入电流在1mA左
右,输入电容10PF左右,输入阻
抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出 值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射 问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了
12、贴片单边对齐,字符方向一致,封装方向一致;
13、有极性的器件在以同一板上的极性标示方向尽量保持一致。 二、元件布线规则
1、画定布线区域距PCB板边w1mm的区域内,以及安装孔周围1mm内,禁 止布线;
2、 电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入 出线不应低于10mil(或8mil);线间距不低于10mil;
装孔周围3.5mm(对于
M2.5)、4mm(对于M3内不得贴装元器件;
3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波 峰焊后过孔与元件壳体短路;
4.元器件的外侧距板边的距离为5mm;
5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;
6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧
1、下面的一些系统要特别注意抗电磁干扰:
(1)微控制器时钟频率特别高,总线周期特别快的系统。
(2)系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关 等。
(3)含微弱模拟信号电路以及高精度A/D变换电路的系统。
2、为增加系统的抗电磁干扰能力采取如下措施:
(1)选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。 同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的 高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微 控制器产生的最有影响的高频噪声大约是时钟频率的3倍。
及焊接连接器的布置间距应考虑方便电源插头的插拔;
9.其它元器件的布置:
所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示 不得多于两个方向,出现两个方向时,两个方向互相垂直;
10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);
11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。重要信号线不准 从插座脚间穿过;
相关文档
最新文档