随机变量的数字特征试题答案
(完整版)概率论习题答案随机变量的数字特征

(完整版)概率论习题答案随机变量的数字特征第3章随机变量的数字特征1,在下列句⼦中随机地取⼀单词,以X 表⽰取到的单词所包含的字母个数,试写出X 的分布律并求)(X E .“They found Peking greatly changed ”解:根据题意,有1/5的可能性取到5个单词中的任意⼀个。
它们的字母数分别为4,5,6,7,7。
所以分布律为5/29)77654(51)(=++++=X E .2,在上述句⼦的29个字母中随机地取⼀个字母,以Y 表⽰取到的字母所在的单词所包含的字母数,写出Y 的分布律并求)(Y E 。
解:5个单词字母数还是4,5,6,7,7。
这时,字母数更多的单词更有可能被取到。
分布律为29/175)147665544(291)(=?+?+?+?=Y E .3,在⼀批12台电视机中有2台是次品,若在其中随即地取3台,求取到的电视机中包含的次品数的数学期望。
解:根据古典概率公式,取到的电视机中包含的次品数分别为0,1,2台的概率分别为1163123100==C C p , 229312210121==C C C p , 221312110222==C C C p 。
所以取到的电视机中包含的次品数的数学期望为)(21222112290116台=?+?+?=E 。
4,抛⼀颗骰⼦,若得6点则可抛第⼆次,此时得分为6+(第⼆次所抛的点数),否则得分就是第⼀次所抛的点数,不能再抛。
求所得分数的分布律,并求得分的数学期望。
解:根据题意,有1/6的概率得分超过6,⽽且得分为7的概率为两个1/6的乘积(第⼀次6点,第2次1点),其余类似;有5/6的概率得分⼩于6。
分布律为得分的数学期望为)(1249)121110987(361)54321(61点=++++++++++=E 。
5,(1)已知)(~X λπ,}6{}5{===X P X P ,求)(X E 。
(2)设随机变量X 的分布律为Λ,4,3,2,1,6}{22--===k k k X P π,问X 的数学期望是否存在?解:(1)根据)(~X λπ,可得}6{!6!5}5{65=====--X P e e X P λλλλ,因此计算得到6=λ,即)6(~X π。
第四章 随机变量的数字特征试题答案

第四章随机变量的数字特征试题答案一、 选择(每小题2分)1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A.E (X )=0.5,D (X )=0.5?B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4?D.E (X )=2,D (X )=22Y X -=,则34) A C 5A 6、)1=(C ) A .34?B .37C .323?D .326 7、设随机变量X 服从参数为3的泊松分布,)31,8(~B Y ,X 与Y 相互独立,则)43(--Y X D =(C )A .-13?B .15C .19?D .238、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B )A .6?B .22C .30?D .469、设)31,10(~B X,则)(X E =(C )A .31?B .1C .310?D .1010、设)3,1(~2N X ,则下列选项中,不成立的是(B )A.E (X )=1?B.D (X )=3?C.P (X=1)=0?D.P (X<1)=0.511A .C .12、XY ρ=(D 13x =(B)A .14、(C ) A.-15、为(A .C .21)(,41)(==X D X E ?D .41)(,21)(==X D X E 16、设二维随机变量(X ,Y )的分布律为则)(XY E =(B )A .91-?B .0 C .91?D .3117、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D ) A18,0.5),则A 19,则X A 20, 则21(B A C 22、设n X X X ,,,21 是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B ) A .{}22εσεμn n X P ≥<-?B .{}221εσεμn X P -≥<-C .{}221εσεμn X P -≤≥-?D .{}22εσεμn n X P ≤≥-23、设随机变量X 的μ=)(X E ,2)(σ=X D ,用切比雪夫不等式估计{}≥<-σ3)(X E X P (C )A .91?B .31C .98?D .124、设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计{}≤≥-32X P (C )A25A 1234且5x =710 67、设随机变量X 服从参数为3的指数分布,则)12(+X D =948、设二维随机变量);,;,(~),(222121ρσσμμN Y X ,且X 与Y 相互独立,则ρ=0 9、设随机变量序列 ,,,,21n X X X 独立同分布,且μ=)(i X E ,0)(2>=σi X D ,,2,1=i ,则对任意实数x ,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-∑=∞→x n n X P n i i n σμ1lim =)(1x Φ- 10、设随机变量X 具有分布51}{==k XP ,5,4,3,2,1=k ,则)(X E =3 11、设随机变量X 在区间(0,1)上服从均匀分布,Y=3X -2,则E?(?Y?)=-0.5 121314、3=,则cov(X 1516大于1724}=0.6826 附:18、-0.5,19的期望E?(Y)=4,D?(Y?)=9,又E?(XY?)=10,则X ,Y 的相关系数XY ρ=31 20、设随机变量X 服从二项分布31,3(B ,则)(2X E =35 三、计算:每小题5分1、某柜台做顾客调查,设每小时到达柜台的顾客数X 服从泊松分布,则)(~λP X ,若已知}2{}1{===X P XP ,且该柜台销售情况Y (千元),满足2212+=X Y。
概率论~第三章习题参考答案与提示

第三章 习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
22.已知 X 、 Y 分别服从正态分布 N (0,32 ) 和 N (1,42 ) ,且 X 与Y 的相关系数 ρ XY = −1/ 2 ,设 Z = X / 3 + Y / 2 ,求:
(1)求数学期望 EZ ,方差 DZ ; (2)Y 与 Z 的相关系数 ρYZ ; 答案与提示:本题要求熟悉数学期望、方差、协方差的性质、计算及有关正态 分布的性质。
X
Y
0
1
0
0.1
0.2
1
0.3
0.4
求:(1) EX , EY , DX , DY ;
(2)( X , Y )的协方差,相关系数,协方差阵,相关阵。
答案与提示: (1) EX = 0.7 , DX = 0.21, EY = 0.6 , DY = 0.24 。
(2) EXY = 0.4 ; Cov ( X ,Y ) = −0.02 , ρXY = 0.089 ;
(1) X 的概率密度;
(2)Y = 1 − 2 X 的概率密度。
答案与提示:考查服从正态分布随机变量的概率密度的一般表达形式、参数的
几何意义及正态分布随机变量的性质。
(1) f (x) = 1 e−(x−1.7)2 /6 (−∞ < x < +∞) 6π
(2) f ( y) = 1 e−( y+2.4)2 / 24 2 6π
考研数学一(随机变量的数字特征)模拟试卷5(题后含答案及解析)

考研数学一(随机变量的数字特征)模拟试卷5(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.若离散型随机变量X的概率分布为P{X=(一1)n2n}=,n=1,2,…,则E(X)=( )A.2。
B.0。
C.ln2。
D.不存在。
正确答案:D解析:依定义,E(X)=(一1)n2n(一1)n,而级数∣(一1)n∣=+∞,(一1)n不绝对收敛,故E(X)不存在。
故选D。
知识模块:随机变量的数字特征2.设随机变量X~E(1),记Y=max{X,1},则E(Y)=( )A.1。
B.1+e-1。
C.1一e-1。
D.e-1。
正确答案:B解析:根据随机变量函数的数学期望的定义,有E(Y)=E[max{X,1}]=∫-∞+∞max{x,1}f(x)dx,其中f(x)为指数分布X的密度函数,即f(x)=所以E(Y)=∫-∞+∞max{x,1}f(x)dx=∫-∞0max{x,1}.Odx+∫0+∞max{x,1}e-xdx =∫01e-xdx+∫1+∞xe-xdx=1一e-1+2e-1=1+e-1。
故选(B)。
知识模块:随机变量的数字特征3.一台仪器由5只不太可靠的元件组成,已知各元件是否出故障是独立的,且第k只元件出故障的概率为Pk=,则出故障的元件数的方差是( ) A.1.3。
B.1.2。
C.1.1。
D.1.0。
正确答案:C解析:由于每个元件出故障概率不同,故采用(0—1)分布,即Xk=k=1,2,…,5于是D(X1)=故有D(X)=1.1。
故选(C)。
知识模块:随机变量的数字特征4.已知随机变量X服从二项分布,E(X)=2.4,D(X)=1.44,则二项分布的参数n,p的值为( )A.n=4,P=0.6。
B.n=6,P=0.4。
C.n=8,P=0.3。
D.n=24,P=0.1。
正确答案:B解析:由已知,则E(X)=np,D(X)=np(1一p),即2.4×(1一p)=1.44=p=0.4,n=6。
概率论与数理统计第四章随机变量的数字特征习题解答

习题4-11、设随机变量X 服从参数为p 的01-分布,求()E X 。
解:据题意知,X 的分布律为根据期望的定义,得()0(1)1E X p p p =⋅-+⋅=。
2、袋中有n 张卡片,记有号码1,2,,n 。
现从中有放回地抽出k 张卡片,求号码之和X 的数学期望。
解:设i X 表示第i 次取到的卡片的号码(1,2,,i k =),则12k X X X X =+++。
因为是有放回地抽出卡片,所以i X 之间相互独立。
所以第i 次抽到号码为m 的卡片的概率为1{},(1,2,,;1,2,,)i P X m m n i k n====,即i X 的分布律为1{},(1,2,,)i P X m m n n===, 所以11()(12)2i n E X n n+=+++=, 所以,1(1)()()2k k n E X E X X +=++=。
注:求复杂随机变量期望时可先引入若干个简单的随机变量,再根据期望的性质即可。
3、某产品的次品率为0.1,检验员每天检验4次。
每次随机地抽取10件产品进行检验,如果发现其中的次品数多于1,就去调整设备,以X 表示一天中调整设备的次数,试求()E X 。
(设诸产品是否是次品是相互独立的。
)解:令Y 表示一次抽检的10件产品的次品数,据题意知,~(10,0.1)Y b ,00101191010{1}1{0}{1}10.10.90.10.90.2639p P Y P Y P Y C C =>=-=-==--=,因此,~(4,0.2639)X b ,从而()40.2639 1.0556E X np ==⋅=。
注:此题必须先求出一天中调整设备的概率。
即p 值。
4、据统计,一位60岁的健康(一般体检未发生病症)者,在5年内仍然活着或自杀身亡的概率为p (01p <<,p 为已知),在五年内非自杀身亡的概率为1p -。
保险公司开办5年人寿保险,条件是参保者需缴纳人寿保费a 元(a 已知),若5年内非自杀死亡,保险公司赔偿b 元(b a >)。
随机变量与数字特征练习题及答案

1 第8章 随机变量与数字特征一、填空题⒈ 设随机变量X 的概率分布为则a = . ⒉ 设X 服从区间[1,5]上的均匀分布,当5121<<<x x 时,}{21x X x P ≤≤= .⒊ 设),(~p n B X ,且6)(=X E ,6.3)(=X D ,则n = .4.设)10,5(~2N X ,若5.0)5(=<-a X P ,则a = .5. 设随机变量X 的期望方差分别为E X ()和D X (),令Y aX b =+,则有E Y ()= ,D Y ()= .二、单项选择题⒈ 设X 是连续型随机变量,其密度函数为 ⎩⎨⎧∉∈=],1(0],1(ln )(b x b x x x f 则常数b =( ).A . eB . e + 1C . e - 1D . e 2⒉ 设)10,50(~2N X ,则随机变量( )~)1,0(N . A .10050-X B . 1050-X C . 50100-X D . 5010-X ⒊ 设),2(~2σN X ,已知4.0)42(=≤≤x P ,则=≤)0(x P ( ). A . 0.4 B . 0.3 C . 0.2 D . 0.14. 已知X N ~(,)222,若aX b N +~(,)01,则有( )A . a b ==-22,B . a b =-=-21,C . a b ==-121, D . a b ==122, 5. 已知1)(-=X E ,3)(=X D ,则=-)]2(3[2X E ( ). A . 30 B . 9 C . 6 D . 366. 设随机变量X 的密度函数为f x (),则E X ()2=( )A .xf x x ()-∞+∞⎰d B . x f x x 2()-∞+∞⎰d C . xf x x 2()-∞+∞⎰d D . (())()x E X f x x --∞+∞⎰2d 三、解答题1.设随机变量X 的密度函数为f x x x ()()=-≤≤⎧⎨⎩311202其它, 求:⑴ P X (..)1525<<; ⑵ E X ().2.盒中装有分别标12345,,,,数字的球,从中任取2个,用X 表示所取2球中最大的数字. 求X 的概率分布.3.设)5.0,3(~2N X ,求)6.32(≤≤X P .已知9772.0)2(,8849.0)2.1(=Φ=Φ.4.在一次数学考试中,其分数服从均值为65,标准为10的正态分布,求分数在60~75的概率. (6915.0)5.0(=Φ,8413.0)1(=Φ)。
【高等数学】概率论与数理统计-随机变量的数字特征专项试卷及答案解析

CA)P{Y=-2X-1} = 1.
+ (C)P{Y =-ZX 1} = 1.
(B)P{Y = 2X-1} = 1. (D)P{Y = 2X+l} = 1.
(5)将长度为lm的木棒随机地截成两段,则两;段长度的相关系数为
CA)l.
ω÷
(C) 一 ÷
CD) -1.
ω 已知随机变量 X,Y 均服从分布BCl,f),且仰 = ÷,则P{X+Y ζl}等于
P(B) + P(AB)
= 4P(AB) -2P(A) -2P(B)十1.
因此 E(XY) - EXEY = 4P(AB) -2P(A) - 2PCB) + 1 一 [2P(A) -1][2PCB) - l]
= 4P(AB) - 4P(A)P(B),
所以X与Y不相关等价子 P(AB) = P(A)P(B) ,即 A,B 相互独立.
专 =1-d=
(旧,Y均服从B(2,÷)分布
Cov(X,Y) E(XY)-EX • EY
ρXl' = ft5X" ./f5V =
� ./f5V
。XY
1
试验只重复2次, XY 的分布为 p
7 9
2 9
f f EX= EY= ,DX=DY= t,E(XY)= ,1.!iJ.pxy = 一 ÷
【 i平注】 本题也可用对称性求解:
I I (3)£Y =
E[max(I
X
1,1)]
=
J IXl>l
Ix I
f(x)dx+ J
1
IXI运l
•
f(x)dx
>. 士 = 2f
dx+
[1 1
第3章随机变量的数字特征_答案_

第3章随机变量的数字特征_答案_第3章随机变量的数字特征⼀.填空题1.(90-1-2)已知随机变量X 服从参数为2的泊松分布22{},0,1,2...!k P X k e k k ?===则随机变量32Z X =?的数学期望E (Z)= (4)解: ()()()()~(2), 2,32323224X P E X E Z E X E X ==?=?=×?=2.设随机变量X 的密度函数为+=0)(B Ax x f 则且其它,127)(,10=≤≤X E x A =_____,B =______. (1,1/2)解:1()112f x dx A B +∞∞=?+=∫, 7117()123212EX xf x dx A B +∞∞==?+=∫, 11,2A B ∴==3. (92-1-3)已知随机变量X 服从参数为1的指数分布, 则数学期望()2XE X e+= (4/3)解:()()()()222300, 011~(1), 1, , 330, 0x X x x x x e x X E E X f x E e e f x dx e e dx e x ?+∞+∞+∞∞?>=====?=?≤?∫∫ ()211/34/3X E X e ?+=+=4.(95-1-3)设X 表⽰10次独⽴重复射击命中⽬标的次数,每次射中⽬标的概率为0.4,则2x 的数学期望()2E X= (18.4)解:()()()()()()222~(10,0.4),100.44,(1)100.410.4 2.4, 2.4418.4X B E X D X np p E X D X E X =×==?=×?==+=+=5. (99-4-3)设~(),X P λ已知[(1)(2)]1E X X ??=,则λ= (1) 解:()()()()()222~(),,,X P E X D X E XD XE X λλλλλ===+=+,222[(1)(2)][132)]()3()2211E X X E X X E X E X λλλ??=?+=+=?+=?=?6. (95-4-3)设X 是随机变量,其概率密度为1,10()1, 010,x x f x x x +?≤≤??=?<≤,则⽅差DX 为 (1/6)解:()()00110123231100101111(1)(1)02323E X xf x dx x x dx x x dx x x x x +∞∞?==?++??=++?=∫∫∫()()0011012222343411001011111(1)(1)34346E X x f x dx x x dx x x dx x x x x +∞∞?==?++??=++?=∫∫∫()()()221/601/6D X E X E X =?=?=7.(90-4-3)设随机变量X 和Y 独⽴,~(3,1),~(2,1)X N Y N ?,则27, Z ~Z X Y =?+ (0,5)N 解:()()2()732270,()()4()145~(0,5)E Z E X E Y D Z D X D Y Z N =?+=??×+==+=+=∴8.设两个相互独⽴的随机变量X 和Y均服从(1,1/5)N ,若随机变量X aY ?满⾜条件2()[()]D X aY E X aY ?=?,则a = . (1) 解:()0,()()01101E X aY E X aE Y a a ??=??==?=9.(03-3-4) 随机变量 X 与Y 的相关系数为0.9,若0.4Z X =?则Y 与Z 的相关系数为 (0.9) 解:()()0.4,,cov(,)cov(,0.4)cov()cov(),Z X D Z D X Y Z Y X Y X X Y =?==?==,,0.9YZ ρ===10.(03-4-4)设随机变量X 和Y 的相关系数为0.5,2202EX EY EX EY ====,,试求2E X Y +()= (6) 解: 2202EX EY EX EY ====∵,,()()()222,D X E X E X ∴=?= ()()()222D Y E Y E Y =?=0.5,0 ()0.51XY XY EX EY E XY ρρ====?===222222)2()()2226E X Y E X XY Y E X E XY E Y +=++=++=++=()()(⼆.选择题1.(91-3-3)若随机变量X 与Y 的协⽅差()()()E XY E X E Y =,则下列结论必正确的是( ). 解B (A ) ()()()D XY D X D Y =; (B ) ()D X Y DX DY +=+; (C ) X 与Y 独⽴; (D ) X 与Y 不独⽴2.若随机变量X 与Y 的协⽅差(,)0Cov x y =,则下列结论必正确的是( ). 解C (A ) X 与Y 独⽴; (B )()()()D XY D X D Y =; (C )()D X Y DX DY +=+; (D )()D X Y DX DY ?=?.3.(90-4-3)已知()()~(,), 2.4, 1.44X B n p E X D X ==则,n p 的值( ). 解B (A )4,0.6n p ==; (B ) 6,0.4n p ==; (C ) 8,0.3n p ==; (D ) 24,0.1n p ==. 解:()()1.44, 2.4,1 1.44/2.40.60.4,6D X npq E X np q p p n =====?==?==4.(97-1-3)设两个相互独⽴的随机变量X 和Y 的⽅差为4和2,则随机变量32X Y ?的⽅差是( ) 解D (A) 8; (B)16; (C)28; (D)44 分析: ()329()4()944244D X Y D X D Y ?=+=×+×=5.(95-3-3)设随机变量X,Y 独⽴同分布,记,U X Y V X Y =?=+,则U 和V 必然( ) 解D (A )独⽴; (B)不独⽴; (C ) 相关系数不为0; (D )相关系数为0. 分析: X,Y 独⽴同分布,()(),D X D Y =cov(,)cov(,)cov(,)cov(,)cov(,)cov(,)()()00U V X Y X Y X X X Y Y X Y Y D X D Y ρ=?+=+??=?=?=6.(08-1,3,4-4) (0,1),(1,4),1XY X N Y N ρ=~~,则(). 解D (A)(21)1P Y X =??=. (B)(21)1P Y X =?=. (C)(21)1P Y X =?+=.(D)(21)1P Y X =+=. 分析:,1,0XY Y aX b a ρ=+=∴>,排除A,C,()0,()1,()101E X E Y EY aE X b a b b ===+?=?+?=∵,选D三.计算题 1. 设随机变量X 的分布函数()0, 10.2, 100.5, 011, 1x x F x x x,求EX ,DX (0.3,0.61)解:分析,由()F x 是离散型的分布函数,先求分布律(直接计算分段点的跳跃度(值差)即可)()10.210.50.3EX =?×+×=,()22210.210.50.7EX =?×+×=,2220.70.30.61DX EX E X =?=?=2. 若已知是分布函数()0, 10, 011, 1x F x x x x ?≤=≤,求EX ,DX (1/2,1/12)(思考:如何判别分布函数()F x 是离散型还是连续型?)解:分析,由()F x 是连续型的分布函数,先求导数,()1, 01'()0, x F x f x ≤其他,1120 011122EX x dx x =?==∫, 112230 011133EX x dx x =?==∫,2221113212DX EX E X ??=?=?=3.(89-4-3)设随机变量2123~(0,6),~(0,2),~(3)X U X N X P 相互独⽴,令32132X X X X +?=,求EX ,DX (12, 46) 解:12306 ()()2()3()2033122E X E X E X E X +=?+=×+×= 22123(60)()()4()9()42934612D X D X D X D X ?=++=+×+×=4、设[]~2,6X U ,对X 进⾏20次独⽴观测,Y 表⽰20次观测值中事件{}5X >发⽣的次数,求()2 YE (115/4).解:[]~2,6X U ,()1, [2,6]40, x f x ?∈?=其他,{} 6 511544P X dx >==∫.,据题意 (,)Y B n p ~,120,4n p == 1315205,5444EY np DY npq ==×===×=,()222153528E Y DY E Y =+=+= 5.(02-4-3) 已知随机向量(X ,Y )的联合分布律为,求,,(,),EX DX Cov X Y xy ρ (0.6,0.24,0,0)X -1 0 11/3 0.2 0.3 0.5解:0.6,EX =20.6,EX =220.60.360.24DX EX E X =?=?=,()10.1510.350.2EY =?×+×=(1,1)(1,1)()0.080.20.12E XY xy xy ?=×+×=, (,)0,0xy Cov X Y ρ=∴= 6、已知随机变量),(Y X 服从区域()}{,01,D x y x x y x =<解:依题意,()11, (,),0, x y Df x y d ?=∈?=其他(注意,函数区间利⽤⼆重积分计算)2222(,((,EX xf x EX x f DX EX E X EY yf x y +∞+∞∞∞+∞+∞∞∞+∞∞===?==∫∫∫∫∫()(,EXY xyf Cov X Y EXY +∞+∞∞∞==?∫∫∫7. (05-1,3,4-9)设⼆维随机变量 (X,Y) 的密度函数为()1,01,02,0,x y xf x y <<<其他 1)求边缘概率密度()X f x ,()Y f y . 2)判断X,Y 的独⽴性(补). 3)判断X,Y 的相关性(补解: 1) 01 x <<,()()20,12xX f x f x y dy dy x +∞∞===∫∫2, 01()0, X x x f x <02y <<,()()1/2,112Y y y f y f x y dx dx +∞∞===?∫∫,1, 02()20, Y yy f y ??<2) 显然(,)()()X Y f x y f x f y ≠?,X Y ∴,不独⽴.3) 121122002()(,)23E X xf x y dxdy xdxdy x y dx x dx +∞+∞∞∞=====∫∫∫∫∫∫, 1211222000012()(,)223xx E Y yf x y dxdy ydxdy y dx x dx +∞+∞∞∞=====∫∫∫∫∫∫1211223000011()(,)222xx E XY xyf x y dxdy xydxdy x y dx x dx +∞+∞∞∞=====∫∫∫∫∫∫显然(,)()()()0Cov X Y E XY E X E Y =?≠∴Y X ,相关.8. (07-1,3,4-11)设⼆维随机变量 (X,Y) 的密度函数为()2,01,01,0,x y x y f x y ??<<<其他1) 求{2}P X Y >, 2)判断X,Y 的独⽴性(补), 3)判断X,Y 的相关性(补) (7/24, 不独⽴.相关) 解1) ()1/220001{2}2(2)2x x P X Y x y dxdy y xy y dx >==∫∫∫1205157()822424x x dx =?=?=∫ 2)112001301()(,)(2)(2)22X x f x f x y dy x y dy y xy y x +∞∞≤≤==??=??=?∫∫,,3/2, 01()0, X x x f x ?≤≤?∴=??其他112001301,()(,)(2)(2)22Y y f y f x y dx x y dx x x xy y +∞∞≤≤==??=??=?∫∫3/2, 01()Y y y f y ?≤≤?∴=?显然(,)()()X Y f x y f x f y ≠?, X Y ∴,不独⽴3)1123003315()()()()24312X E X xf x dx x x dx x x +∞?∞==?=?=∫∫,1123003315()()()()24312Y E Y yf y dy y y dy y y +∞?∞==?=?=∫∫11111222320000011211()(,)(2)()()23326E XY xyf x y dxdy xy x y dxdy xy x y xy dx x x dx +∞+∞∞∞==??=??=?=∫∫∫∫∫∫ (,)()()()0Cov X Y E XY E X E Y =?≠X Y ∴,相关. 9.(94-1-6)设22~(1,3),~(0,4),X N Y N 且1,2XY ρ=?设32X YZ =+,1)求(),().E Z D Z 2)求XZ ρ,3)问X,Z 是否相互独⽴?为什么? (1/3, 0, 独⽴) 解:1) 22~(1,3),~(0,4),X N Y N 1,2XY ρ=?32X Y Z =+111()()()323E Z E X E Y ?=+= 1(,)3462Cov X Y ρ==?××=?,111111()(,)916(6)3943943D Z DX DY Cov X Y ∴=++=×+×+?=2)111111(,)(,)(,)()(,)9(6)032323232X Y Cov X Cov X X Cov X Y D X Cov X Y +=+=+=?+?=cov ,0XZ X Z ρ∴==3) X,Z 相互独⽴0XZ ρ?=(⼆维正态独⽴的充要条件)10.飞机场送客汽车载有20位乘客,离开机场后共有10个车站可以下车,若某个车站⽆⼈下车则该车站不停车。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 随机变量的数字特征试题答案一、选择(每小题2分)1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=,D (X )=? B. E (X )=,D (X )=C. E (X )=2,D (X )=4?D. E (X )=2,D (X )=2 2、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D (Z )=? (??C?)A. 1 ?B. 3C. 5?D. 6? 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004? B. ? C. ? D. 44、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是(?D ) A . D (X+Y )=D (X )+D (Y ) ?B . D (X+C )=D (X )+C C . D (X-Y )=D (X )-D (Y ) ?D . D (X-C )=D (X )5、设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤-<=4,142,122,0)(x x x x x F ,则E(X)=(D )A .31 ?B . 21 C .23?D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)31,12(~B Y ,则)1(+-Y X D =(C )A . 34 ?B . 37C . 323 ?D . 3267、设随机变量X 服从参数为3的泊松分布,)31,8(~B Y ,X 与Y 相互独立,则)43(--Y X D =(C )A . -13 ?B . 15C . 19 ?D . 23 8、已知1)(=X D ,25)(=Y D ,XY ρ=,则)(Y X D -=(B ) A . 6 ?B . 22 C . 30 ?D . 46 9、设)31,10(~B X ,则)(X E =(C ) A .31 ?B . 1 C . 310?D . 10 10、设)3,1(~2N X ,则下列选项中,不成立的是(B )A. E (X )=1?B. D (X )=3?C. P (X=1)=0?D. P (X<1)= 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C ) A . )(X D +)(Y D ?B . )(X D -)(Y DC .)(XD +)(Y D -2),cov(Y X ?D .)(X D +)(Y D +2),cov(Y X12、设随机变量)21,10(~B X ,)10,2(~N Y ,又14)(=XY E ,则X 与Y 的相关系数XY ρ=(D ) A . ?B . -0.16 C . ?D . 13、已知随机变量X 的分布律为25.025.012p P xX i-,且E (X )=1?,则常数x =( B)A . 2 ?B . 4C . 6 ?D . 814、设随机变量X 服从参数为2的指数分布,则随机变量X 的数学期望是(C ) A. B. 0 C. D. 215、已知随机变量X 的分布函数为F(x)=⎩⎨⎧>--otherx e x12,则X 的均值和方差分别为(?D ) A .4)(,2)(==X D X E ?B . 2)(,4)(==X D X E C .21)(,41)(==X D X E ?D .41)(,21)(==X D X E 16、设二维随机变量(X ,Y )的分布律为则)(XY E =(B ) A . 91-?B . 0 C . 91 ?D . 31 17、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D )A . 2- ?B . 0C . ?D 218、设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B(6,,则E(X-Y)=( A) A . 5.2- ?B . 0.5 C . 2 ?D . 5 19、设二维随机变量(X ,Y)的协方差cov(X ,Y)=61,且D(X)=4,D(Y)=9,则X 与Y 的相关系数XY ρ为(?B ) A .2161 ?B . 361 C . 61 ?D . 1 20、设随机变量X 与Y 相互独立,且X ~N?(0,9),Y ~N?(0,1),令Z=X-2Y , 则D?(Z)=(D ) A . 5 ?B . 7 C . 11 ?D 13 21、设(X ,Y)为二维随机变量,且D?(X)>0,D?(Y)>0,则下列等式成立的是(B ) A . )()()(Y E X E XY E = ? B . )()(),cov(Y D X D Y X XY ⋅=ρC . )()()(YD X D Y X D +=+ ?D . ),cov(2)2,2cov(Y X Y X =22、设n X X X ,,,21Λ是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B ) A . {}22εσεμn n X P ≥<- ?B . {}221εσεμn X P -≥<- C . {}221εσεμn X P -≤≥- ?D .{}22εσεμn n X P ≤≥-23、设随机变量X 的μ=)(X E ,2)(σ=X D ,用切比雪夫不等式估计{}≥<-σ3)(X E X P (C )A .91 ?B . 31 C . 98?D . 1 24、设随机变量 X 服从参数为的指数分布,用切比雪夫不等式估计{}≤≥-32X P (C ) A .91 ?B . 31 C . 94 ?D 21 25、已知随机变量X ~N(0,1),则随机变量Y=2X-1的方差为(D ) A . 1 ?B .2 C .3 ?D4 二、填空(每小题2分) 1、设X~)21,4(B ,则)(2X E =52、设E (X )=2,E (Y )=3,E (XY )=7,则cov (X ,Y )=13、已知随机变量X 满足1)(-=X E ,2)(2=X E ,则)(X D =1 4、设随机变量X ,Y 的分布列分别为216131321iP X414121101iP Y - 且X ,Y 相互独立,则E (XY )= 2413-5、随机变量X 的所有可能取值为0和x ,且3.0}0{==X P ,1)(=X E ,则x =710 6、设随机变量X 的分布律为4.03.02.01.02101iP X -,则)(X D =17、设随机变量X 服从参数为3的指数分布,则)12(+X D =948、设二维随机变量);,;,(~),(222121ρσσμμN Y X ,且X 与Y 相互独立,则ρ=0 9、设随机变量序列ΛΛ,,,,21n X X X 独立同分布,且μ=)(i X E ,0)(2>=σi X D ,Λ,2,1=i ,则对任意实数x ,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-∑=∞→x n n X P n i i n σμ1lim =)(1x Φ-10、设随机变量X 具有分布51}{==k X P ,5,4,3,2,1=k ,则)(X E =3 11、设随机变量X 在区间(0,1)上服从均匀分布,Y=3X-2, 则E?(?Y?)= 12、已知随机变量X 的分布律为2.03.05.0501iP X -,则)}({X E X P <=13、已知E (X )= -1?,D (X )=3,则)23(2-X E =1014、设1X ,2X ,Y 均为随机变量,已知1),cov(1-=Y X ,3),cov(2=Y X ,则),2cov(21Y X X +=515、设)1,0(~N X ,)21,16(~B Y ,且X ,Y 相互独立,则)2(Y X D +=816、将一枚均匀硬币连掷100次,则利用中心极限定理可知,正面出现的次数大于60的概率近似为 (附:Φ(2)=) 17、设随机变量X?~?B (100,),应用中心极限定理计算P{16?X?24}= 附:Φ(1)=18、设随机变量X ,Y 的期望和方差分别为E(X)=,E(Y)=,D(X)=D(Y)=,E(XY)=0,则X ,Y 的相关系数XY ρ=31 19、设随机变量X 的期望E?(X?)=2,方差D?(X?)=4,随机变量Y 的期望E?(Y)=4, D?(Y?)=9, 又E?(XY?)=10,则X ,Y 的相关系数XY ρ=3120、设随机变量X 服从二项分布)31,3(B ,则)(2X E =35 三、计算:每小题5分1、某柜台做顾客调查,设每小时到达柜台的顾客数X 服从泊松分布,则)(~λP X ,若已知}2{}1{===X P X P ,且该柜台销售情况Y (千元),满足2212+=X Y 。
试求:(1)参数λ的值。
(2)一小时内至少有一个顾客光临的概率 (3)该柜台每小时的平均销售情况E (Y ) 解:(1)因为 X 服从泊松分布,则 !}{k e k X P k λλ-==,0;,2,1,0>=λΛk ,又因为 }2{}1{===X P X P所以!2!121λλλλ--=e e ,2=λ所以 !2}{2k e k X P k -==,0;,2,1,0>=λΛk(2)2201!021}0{1}1{---=-==-=≥e e X P X P 所以 一小时内至少有一个顾客光临的概率为21--e 。
(3)因为 X 服从泊松分布,则2)(==λX E ,2)(==λX D , 所以 622)]([)()(222=+=+=X E X D X E2)(21)221()(22+=+=X E X E Y E =52621=+⨯所以该柜台每小时的平均销售情况E (Y )=52、设),(Y X 的密度函数为⎩⎨⎧<<<<--=othery x y x y x f ,010,10,2),(求:)(X E ,)(Y E ,)(X D ,)(Y D ,),cov(Y X ,),(Y X ρ解:)(X E =⎰⎰=--1010125)2(dy y x x dx , )(Y E =⎰⎰=--1010125)2(dy y x y dx)(XY E =⎰⎰=--101061)2(dy y x xy dx , )(2X E =⎰⎰=--10102123)2(dy y x x dx)(2Y E =⎰⎰=--10102123)2(dy y x y dx ,)(X D =14411)125(123))(()(222=-=-X E X E )(Y D =14411)125(123))(()(222=-=-Y E Y E),cov(Y X =144112512561)()()(-=⨯-=-Y E X E XY E ),(Y X ρ=)()(),cov(Y D X D Y X =1111441114411441-=-。