第八章 滑动轴承

合集下载

滑动轴承

滑动轴承

第八章滑动轴承8.1 重点、难点分析本章的重点内容是滑动轴承轴瓦的材料及选用原则;非液体摩擦滑动轴承的设计准则及设计计算;液体动力润滑径向滑动轴承的设计计算。

难点是液体动力润滑径向滑动轴承的设计计算及参数选择。

8.1.1 轴瓦材料及其应用对轴瓦材料性能的要求:具有良好的减摩性、耐磨性和咬粘性;具有良好的摩擦顺应性、嵌入性和磨合性;具有足够的强度和抗腐蚀的能力和良好的导热性、工艺性、经济性等。

常用轴瓦材料:金属材料、多孔质金属材料和非金属材料。

其中常用的金属材料为轴承合金、铜合金、铸铁等。

8.1.2 非液体摩擦滑动轴承的设计计算对于工作要求不高、转速较低、载荷不大、难于维护等条件下的工作的滑动轴承,往往设计成非液体摩擦滑动轴承。

这些轴承常采用润滑脂、油绳或滴油润滑,由于轴承得不到足够的润滑剂,故无法形成完全的承载油膜,工作状态为边界润滑或混合摩擦润滑。

非液体摩擦轴承的承载能力和使用寿命取决于轴承材料的减摩耐磨性、机械强度以及边界膜的强度。

这种轴承的主要失效形式是磨料磨损和胶合;在变载荷作用下,轴承还可能发生疲劳破坏。

因此,非液体摩擦滑动轴承可靠工作的最低要求是确保边界润滑油膜不遭到破坏。

为了保证这个条件,设计计算准则必须要求:p≤[p],pv≤[pv],v≤[v]限制轴承的压强p,是为了保证润滑油不被过大的压力挤出,使轴瓦产生过度磨损;限制轴承的pv值,是为了限制轴承的温升,从而保证油膜不破裂,因为pv值是与摩擦功率损耗成正比的;在p及pv值经验算都符合要求的情况下,由于轴发生弯曲或不同心等引起轴承边缘局部压强相当高,当滑动速度高时,局部区域的pv值可能超出许用值,所以在p较小的情况下还应该限制轴颈的圆周速度v。

8.1.3液体动力润滑径向滑动轴承设计计算液体动力润滑的基本方程和形成液体动力润滑(即形成动压油膜)的条件已在第一章给出,这里不再累述。

1.径向滑动轴承形成动压油膜的过程径向滑动轴承形成动压油膜的过程可分为三个阶段:(1)起动前阶段,见图8-1a;(2)起动阶段,见图8-1b;(3)液体动力润滑阶段,见图8-1c;图8-1 径向滑动轴承形成液体动力润滑的过程对于这一形成过程应掌握如下要点:(1)从轴颈开始转动到轴颈中心达到静态平衡点的过程分析;(2)在给定载荷、轴颈转动方向及偏心距e的大小时,如何确定轴颈的平衡位置;(3)确定轴颈平衡位置后,油膜压力分布的大致情况以及最小油膜厚度h min的位置;(4)影响轴颈静态平衡点位置的主要因素有外载荷F,润滑油粘度η和轴颈转速n。

机械设计8—滑动轴承

机械设计8—滑动轴承

3. 许用油膜厚度[h] ] 在其他条件不变的情况下, 在其他条件不变的情况下,外载荷 F↑,动压润滑轴承的 ↑ hmin↓ ,轴承、轴颈表面的微观凸峰可能直接接触,而不能实现 轴承、轴颈表面的微观凸峰可能直接接触, 液体润滑。 液体润滑。 显然,要想实现液体润滑,应满足如下条件: 显然,要想实现液体润滑,应满足如下条件: hmin ≥ [h]= S ( Rz1 + Rz2 ) ] 式中: 式中: S — 安全因数 , S ≥2,一般可取 S=2 一般可取 RZ1,RZ2 —轴颈和轴承孔表面粗糙度,µm 轴颈和轴承孔表面粗糙度, 轴颈和轴承孔表面粗糙度
特点
应用
2.极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的 3.结构上要求剖分的场合;如曲轴用轴承。 结构上要求剖分的场合; 结构上要求剖分的场合 如曲轴用轴承。 4.受冲击与振动的场合;如轧钢机。 受冲击与振动的场合;如轧钢机。 受冲击与振动的场合
ψ = δ /r → δ = ψ . r =0.001x60 = 0.06mm x χ = 1-[h]/δ = 1 -9.6x10-3/0.06 = 0.84 - ] x
查表12-7,B/d = 108/120=0.9 得到 , / 查表 /
χ
Cp
0.80 3.067
0.85 4.459
插值计算:Cp = 4.181
§8-2 径向滑动轴承的主要类型
一、整体式 结构简单,成本低, 间隙无法 结构简单,成本低,但间隙无法 补偿,且只能从轴端装入, 补偿,且只能从轴端装入,适用 低速、轻载或间歇工作的场合。 低速、轻载或间歇工作的场合。 无法用于曲轴。 无法用于曲轴。 二、对开式(剖分式) 对开式(剖分式)

《机械设计》第8章 轴承

《机械设计》第8章 轴承

四 向心角接触轴承轴向力的计算
1 派生轴向力
R S0
P0 N0
1 派生轴向力
向心角接触轴承的派生轴向力
圆锥滚子轴 承
角接触球轴承
C型
AC型
B型
(α=15°) (α=25°) (α=40°)
S=R/(2Y)
S=eR S=0.68R S=1.14R
2 轴向力A的计算
R1
R2
2 轴向力A的计算
假设Fa+S1>S2,
滑动轴承的特点、应用及分类
在以下场合,则主要使用滑动轴承: 1.工作转速很高,如汽轮发电机。 2.要求对轴的支承位置特别精确,如精密磨床。 3.承受巨大的冲击与振动载荷,如轧钢机。 4.特重型的载荷,如水轮发电机。 5.根据装配要求必须制成剖分式的轴承,如曲轴轴承。
6.径向尺寸受限制时,如多辊轧钢机。
S1
R1 1被放松
A1=S1
S2
ΔS
ΔS
R2
2被压紧
A2=S2+ΔS =S1+Fa
2 轴向力A的计算
假设Fa+S1<S2,
ΔS
S1
R1 1被压紧 A1=S1+ΔS =S2-Fa
S2 R2 2被放松
A2=S2
结论:——实际轴向力A的计算方法
1)分析轴上派生轴向力和外加轴向载荷,判定被 “压紧”和“放松”的轴承。
1.基本概念
⑴轴承寿命
⑵基本额定寿命L10 ——同一批轴承在相同工作条件下工作,其中90%
的轴承在产生疲劳点蚀前所能运转的总转数L10(以106r 为单位)或一定转速下的工作时数 Lh ⑶基本额定动载荷C
L10=1时,轴承所能承受的载荷 由试验得到

精品课件-滑动轴承

精品课件-滑动轴承

工程中常用运动粘度,单位是:St(斯)或 cSt(厘斯),量
纲为(m2/s);
润滑油的牌号于运动粘度有一定的对应关系,如:牌号为LAN10的油在40℃时的运动粘度大约为10 cSt。(具体说明)
◆ 选择原则: (1)压力大、温度高、载荷冲击变动大——粘度大的润滑油
(2)滑动速度大 ——粘度较低的润滑油 (3)散热差,工作温度高——粘度较高的润滑油 (4)粗糙或未经跑合的表面——粘度较高的润滑油 2、润滑脂
(7)良好的工艺性和导热性,并应具有抗腐蚀性能。
常 金属材料
轴承合金、铜合金、铸铁、铝基合金。
用 轴
多孔质金属材料
多孔铁、多孔质青铜。
承 材
非金 属材料
酚醛树脂、尼龙、聚四氟乙烯。

轴承材料是指在轴承结构中直接参与摩擦部分的材料,如轴瓦 和轴承衬的材料。轴承材料性能应满足以下要求:
◆ 减摩性:材料副具有较低的摩擦系数。
及轴颈直径
,用下式验算:
B-轴承宽度,mm。根据宽径比B/d确定,推荐B/d=0.5~1.5 [p]-轴瓦材料的许用压强,MPa,其值见表15-1和15-2
2.验算轴承的pv值 pv值越高,轴承温升越高,越容易引起边界油膜的破裂,
按下式验算:
式中 n---轴的转速,r/min [pv]—轴瓦材料的许用值,其值见表15-1和表15-2.
此外还应有足够的强度和抗腐蚀能力、良好的导热性、工艺性 和经济性。
类型 特点 应用
轴承合金
锡基轴承合金 铅基轴承合金
嵌入性和摩擦顺应性 最好 ,易于轴颈磨合, 但强度低,价格较贵。
重载、中高速场合。
类型 特点 应用
铜合金
锡青铜 铅青铜 铝青铜

《滑动轴承》PPT课件

《滑动轴承》PPT课件

聚四氟乙烯
4、气体润滑剂——空气
ppt课件
25
1、润滑油
用作润滑剂的油类有三类:①有机油, 通常是动植物油;②矿物油,主要是石油产 品;③化学合成油。
(1)粘度——表征润滑油的内摩擦特性。
1)动力粘度 牛顿粘性液体摩擦定律(简称粘性定律): 在流体中任意点处的切应力均与该处流体的 速度梯度成正比。
➢ 滑动轴承具有一些独特的优点,在某些不 能、不便或使用滚动轴承没有优势的场合, 如工作转速特高、特大冲击与振动、径向 空间尺寸受到限制或必须剖分安装(如曲轴 的轴承)、以及需在水或腐蚀性介质中工作 等条件下,占有重要地位。在轧钢机、汽 轮机、内燃机、铁路机车及车辆、金属刨 削机床中应用广泛。
ppt课件
3
§01 摩擦状态
干摩擦
摩擦
静摩擦 动摩擦
滑动摩擦 滚动摩擦
边界摩擦(润滑) 流体摩擦(润滑) 混合摩擦(润滑)
ppt课件
4
干摩擦
边界摩擦
流体摩擦
ppt课件
5
➢ 干摩擦是指表面间无任何润滑剂或保护膜的
纯金属接触时的摩擦。 ➢ 当运动副的摩擦表面被吸附在表面的边界膜
隔开,摩擦性质取决于边界膜和表面的吸附
单位换算:
1St(斯)=1cm2/s=100cSt(厘斯)=10-4m2/s
3)条件粘度
条件粘度是在一定条件下,利用某种规格的粘度
计,通过测定润滑油穿过规定孔道的时间来进行计量
的粘度。我国常用恩氏度(0Et)作为条件粘度单位。
ppt课件
28
➢ 流体的粘度,特别是
润滑油的粘度,随温
度而变化的情况十分
可塑性差,不易跑合,与之相配的轴颈必须淬硬。
➢青铜可以单独做成轴瓦。为节省有色金属,也可将

滑 动 轴 承

滑 动 轴 承
油沟形式
1.1 滑动轴承的类型
1.1.3 止推滑动轴承
轴上的轴向力应采用止推轴承来承受。止推面可以利用轴的端面,或在轴的中段 做出凸肩(图1)或装上止推圆盘。也可以沿轴承止推面按一块块扇形面积开出楔形, 如图2(a)所示的固定瓦动压止推轴承,其楔形的倾斜角固定不变,在楔形顶部留出 平台,用来承受停车后的轴向载荷。
轴承用来支承轴及轴上零件、保持轴的旋转精度和减少转轴与支承之间的摩擦 和磨损。轴承一般分为两大类:滚动轴承和滑动轴承。滚动轴承有着起动灵敏、效 率高、易于互换等一系列优点,在一般机器中获得了广泛应用。但是在高速、高精 度、重载、结构上要求剖分等场合下,滑动轴承就体现出它的优异性能。因而在汽 轮机、离心式压缩机、内燃机、大型电机中多采用滑动轴承。此外,在低速而带有 冲击的机器中,如水泥搅拌机、滚筒清砂机、破碎机等也采用滑动轴承。
1. 润滑油 2. 润滑脂 3. 固体润滑剂
1.2 滑动轴承材料及润滑
1.2.5 润滑装置
为了获得良好的润滑效果,需要正确选择润滑方法和相应的润滑装置。利用油 泵供应压力油进行强制润滑是重要机械的主要润滑方式。此外,还有不少装置实现 简易润滑。
图(a)是针阀式油杯。油杯接头与轴承进油孔相连。图(b)为油芯式油杯。 图(c)是润滑脂用的油杯,定期旋转杯盖,使空腔体积减小而将润滑脂注入轴承 内,它只能间歇润滑。
常用的轴瓦和轴承衬材料有下列几种。
1.2 滑动轴承材料及润滑
1.2.1 轴承合金
轴承合金(又称白合金、巴氏合金)有锡锑轴承合金和铅锑轴承合金两大类。锡锑轴承 合金的摩擦系数小,抗胶合性能良好,对油的吸附性强,耐蚀性好,易跑合,是优良的轴承 材料,常用于高速、重载的轴承。但价格贵且机械强度较差,因此只能作为轴承衬材料而浇 铸在钢、铸铁[图(a)、(b)]或青铜轴瓦[图(c)]上。用青铜作为轴瓦基体是因 其导热性良好。这种轴承合金在110℃开始软化,为了安全,在设计运行时常将温度控制在 110℃以下。

滑动轴承-课件

滑动轴承-课件

轴瓦检查项目
• 轴承合金无脱胎、裂纹、砂眼、气孔等缺陷; • 轴径与轴瓦的接触角,接触面积; • 调整垫片与轴承座配合情况,球形瓦的球面能起到调心
作用(对于没有垫片小型轴瓦外部与轴承座应检查接触 情况)。 • 轴瓦结合面是否平整,有无毛刺、变形存在。
轴瓦着色检 查脱胎、裂 纹
径向轴瓦研刮及接触情况
• 轻微锈蚀也可用涂油细砂布衬在布带上,沿轴绕两圈,用手 来回拉动研磨。
瓦顶隙测量
• 多油楔轴瓦上部是空的,用圆瓦测量的方法无法测量顶隙,测量时借助 百分表,在轴承支架没有安装以前,将上下轴瓦扣在一起,并紧固连接 螺栓,通过轴瓦的上下活动量测量轴瓦顶隙。
轴瓦上下移动 测量顶部间隙
轴颈
铅丝 1.5-2倍间隙 长度10-40mm
滑动轴承
讲课:钟旭
滑动轴承的应用
• 滑动轴承具有结构简单,承载能力大运行平稳,能长周期、安全、 稳定运行,在炼化企业应用广泛。
优点:1)承载能力高;2)工作平稳可靠、噪声低;3)径向尺寸 小;4)精度高;5)流体润滑时,摩擦、磨损较小;6)油膜有一 定的吸振能力。
缺点:1)非流体摩擦滑动轴承、摩擦较大,磨损严重。2)流体摩 擦滑动轴承在起动、行车、载荷、转速比较大的情况下难于实现流 体摩擦;3)流体摩擦、滑动轴承设计、制造、维护费用较高。
侧间隙:1-3倍的顶间隙。
径向滑动轴承
• 多油楔瓦: 轴瓦内孔有三个或四个楔形油膜;据有关资料介绍该瓦在正常
运行情况下,在轻载时有稳定作用,在中等载荷时其稳定性并不 理想,该瓦的耗能要比椭圆瓦多30%,此值对大容量机组而言绝非 小数,同时从制造、检修、运行诸多方面进行比较,该瓦也不占 优势。
但由于油楔不对称性, 只允许轴颈单向旋转。

滑动轴承

滑动轴承

机械设计
轴瓦上开设油孔和油沟
其余
25
滑动轴承
10
6.3
6.3
6.3
3.2
3.2 3.2
D( H8 )
3.2
D0 (
K6)
机械设计
滑动轴承
11
注意: 油沟、油孔:不能开在油膜承载区,否则,承载能力↓ 油沟长度≈0.8B(轴瓦宽度),即不能开通,否则漏油。
周向油槽演示 轴向油槽演示
机械设计
四、轴承材料
接触表面要产生切向阻力(即摩擦力),这种现象称为摩擦。 磨损:使摩擦表面物质不断损失的现象。 —→ 用磨损率衡量 对于要求低摩擦的摩擦副: 液体摩擦是比较理想的的状态,维持边界摩擦或混合摩擦是最低要求; 对于要求高摩擦的摩擦副:
则希望处于干摩擦状态或边界摩擦状态。
2、根据承载方向 分 径向轴承 —→ 承受径向载荷(受力垂直于轴的中心线) 推力轴承 —→ 承受轴向载荷(受力与轴中心线平行)
b. 油性(润滑剂) 油吸附于摩擦表面的性能,边界润滑取决于油的吸附能力。
机械设计
2)选择原则
滑动轴承
17
润滑油的选择应综合考虑滑动轴承的承载量、轴颈转速、环境温度、 轴承的表面状况、润滑方式等因素。 一般原则如下: a. 高温时,粘度应高一些;低温时,粘度可低一些;
b. 转速高、载荷小时, 为了减小摩擦功耗可选择粘度小的润滑油;
机械设计
滑动轴承
4
3、液体润滑滑动轴承按压力油膜形成原理 分 静压轴承:外部一定压力的流体进入摩擦面,建立压力油膜。 流体动压润滑轴承:无外部压力源,借助流体粘性,靠摩擦面 间的相对运动而自动形成压力油膜。
二、特点及应用场合 1、寿命长、宜于高速; 2、耐冲击、振动;油膜有吸振作用; 3、结构简单,有的可用于曲轴; 4、承载能力高(重载)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章滑动轴承8.1 重点、难点分析本章的重点内容是滑动轴承轴瓦的材料及选用原则;非液体摩擦滑动轴承的设计准则及设计计算;液体动力润滑径向滑动轴承的设计计算。

难点是液体动力润滑径向滑动轴承的设计计算及参数选择。

8.1.1 轴瓦材料及其应用对轴瓦材料性能的要求:具有良好的减摩性、耐磨性和咬粘性;具有良好的摩擦顺应性、嵌入性和磨合性;具有足够的强度和抗腐蚀的能力和良好的导热性、工艺性、经济性等。

常用轴瓦材料:金属材料、多孔质金属材料和非金属材料。

其中常用的金属材料为轴承合金、铜合金、铸铁等。

8.1.2 非液体摩擦滑动轴承的设计计算对于工作要求不高、转速较低、载荷不大、难于维护等条件下的工作的滑动轴承,往往设计成非液体摩擦滑动轴承。

这些轴承常采用润滑脂、油绳或滴油润滑,由于轴承得不到足够的润滑剂,故无法形成完全的承载油膜,工作状态为边界润滑或混合摩擦润滑。

非液体摩擦轴承的承载能力和使用寿命取决于轴承材料的减摩耐磨性、机械强度以及边界膜的强度。

这种轴承的主要失效形式是磨料磨损和胶合;在变载荷作用下,轴承还可能发生疲劳破坏。

因此,非液体摩擦滑动轴承可靠工作的最低要求是确保边界润滑油膜不遭到破坏。

为了保证这个条件,设计计算准则必须要求:p≤[p],pv≤[pv],v≤[v]限制轴承的压强p,是为了保证润滑油不被过大的压力挤出,使轴瓦产生过度磨损;限制轴承的pv值,是为了限制轴承的温升,从而保证油膜不破裂,因为pv值是与摩擦功率损耗成正比的;在p及pv值经验算都符合要求的情况下,由于轴发生弯曲或不同心等引起轴承边缘局部压强相当高,当滑动速度高时,局部区域的pv值可能超出许用值,所以在p较小的情况下还应该限制轴颈的圆周速度v。

8.1.3液体动力润滑径向滑动轴承设计计算液体动力润滑的基本方程和形成液体动力润滑(即形成动压油膜)的条件已在第一章给出,这里不再累述。

1.径向滑动轴承形成动压油膜的过程径向滑动轴承形成动压油膜的过程可分为三个阶段:(1)起动前阶段,见图8-1a;(2)起动阶段,见图8-1b;(3)液体动力润滑阶段,见图8-1c;图8-1 径向滑动轴承形成液体动力润滑的过程对于这一形成过程应掌握如下要点:(1)从轴颈开始转动到轴颈中心达到静态平衡点的过程分析;(2)在给定载荷、轴颈转动方向及偏心距e的大小时,如何确定轴颈的平衡位置;(3)确定轴颈平衡位置后,油膜压力分布的大致情况以及最小油膜厚度h min的位置;(4)影响轴颈静态平衡点位置的主要因素有外载荷F,润滑油粘度η和轴颈转速n。

当外载荷F、润滑油粘度η和轴颈转速n发生变化时,轴心的位置也将随之改变,即e在变化。

2.径向滑动轴承的几何参数设R为轴承孔半径,r为轴颈半径,B为轴承宽度,则径向滑动轴承的主要几何参数为:图8-2 径向滑动轴承的几何参数(1)轴承宽径比B/d(2)轴承半径间隙δ=R-r=(D-d)/2(3)轴承相对间隙ψ=δ/r(4)轴承偏心距e=OO1(5)轴承偏心率χ=e/δ(6)最小油膜厚度h min=δ-e=δ(1-χ)=ψr(1-χ)(7)任意位置油膜厚度h=ψr(1+χcosφ)(8)在φ=φ0处,油膜压力最大,最大油膜压力处的油膜厚度为 h 0=ψr (1+χcos φ0)以上各项几何参数,可结合图8-2明确意义,掌握其相互关系。

对其中有些参数,如轴承宽径比B /d 和相对间隙ψ,还应了解它们对轴承工作能力的影响,掌握其选用原则。

3.承载量系数C P有限宽轴承油膜的总承载能力为:C P 为滑动轴承的承载量系数,无量纲,C P ↑,轴承承载能力↑。

对于在外载荷作用下给定参数的轴承,可用式C P =F ψ2/ηωdB = F ψ2/2ηvB 求得。

C p 取决于轴承包角β、偏心率χ和宽径比B/d 。

可由表格或曲线查得C P 或偏心率χ,由χ计算出最小油膜厚度h min 。

4.参数选择(1)粘度η粘度大小取决于轴承的平均温度t m ,t m ↑,η↓,承载能力偏高;t m ↓,η↑,承载能力偏低。

设计时:先假定t m ——初选η——初步设计。

校核入口温度若t 1=35~40℃则合适;否则重新计算。

低速、重载滑动轴承要选高粘度的润滑油,便于形成油膜;高速滑动轴承应选用低粘度的润滑油。

因为润滑油内摩擦力几乎与转速平方成正比,转速高,摩擦产生的热量大,使润滑油温度升高,粘度下降,同时还会使轴受热膨胀,间隙缩小,易造成油膜破裂、轴承烧伤。

轴承间隙大,不易形成油膜,且端泄大,应选较高粘度的润滑油。

轴承宽径比大,端泄小,应选粘度低的润滑油。

轴承宽径比与润滑油的粘度值约成反比关系。

(2)宽径比B /d一般轴承的宽径比B /d =0.3~1.5。

高转速滑动轴承,应选较小的B /d 值,这样可使端泄流量增大,以减少温升,但是B /d 小,轴承的承载能力也低。

宽径比B /d 大,轴承承载能力大,但温升高,且长轴颈易变形,制造、装配误差的影响也的较大。

因此,只在低速、重载,轴及轴承刚性好,制造及安装精度高时,宽径比B /d 才取较大值。

宽径比对承载能力的影响见图8-3。

宽径比B /d 的选择还与压强p 的选择密切相关,p 选得大些可以减小轴承的尺寸,并提高轴承运转的稳定性;但p 取得过大,会使油膜变薄,容易因油质或加工、装配质量问题而被破坏。

p 2C dB F ψηω=图8-3宽径比对承载能力的影响(3)相对间隙ψ轴承中的一些特性参数是相对间隙ψ或半径间隙δ的函数,承载量系数C p 是ψ2的函数,所以间隙值对轴承性能影响很大。

相对间隙主要根据载荷和速度选取。

速度高时,ψ值应大些;载荷越大,ψ值应越小。

直径大、宽径比小,调心性能好,加工精度高时,ψ值取小些。

一般机器常用的ψ值可查阅有关的技术资料,也可以由经验公式求得。

(4)最小油膜厚度h min↓(即χ↑),轴承的承载能力↑,但h min不能无限缩小。

为确保轴承在液体润滑条件下安全运转,应使最小油膜厚度大于轴颈、轴瓦工作表面粗糙度十点高度Rz1、R z2之和,即h min =rψ(1-χ)≥[h],[h]=S(Rz1+R z2)式中S——安全系数,常取S≥2。

8.2 典型题解析例8.1 试设计一个起重机卷筒的滑动轴承。

已知轴承的径向载荷F r=2×105N,轴颈直径d=200mm,轴的转速n=300 r/min。

要点分析:非液体摩擦滑动轴承的设计计算。

解:(1)确定轴承的结构型式根据轴承的重载低速的工作要求,按非液体摩擦滑动轴承设计。

采用剖分式结构以便于安装和维护,润滑方式采用油脂杯用脂润滑。

由机械设计手册初步选择2HC4-200号径向滑动轴承。

(2)选择轴承材料按重载低速的工作条件,由机械设计手册选用轴瓦材料为ZCuA110Fe3,根据其材料特性查得:[p ]=15 MPa , [pv ]=12 MPa ·m/s , [v ]=4 m/s(3)确定轴承宽度对起重装置,宽径比可以取大些,取B /d =1.5,则轴承宽度B =B /d ·d =1.5×200 mm =300 mm(4)验算轴承压强p =dB F r =3002001025⨯⨯MPa =3.33 MPa < [p ] (5)验算v 及pv 值v =10006030020014.3100060⨯⨯⨯=⨯dnπm/s =3.24 m/s < [v ] [pv ]=3.33×3.14 MPa ·m/s =10.47 MPa ·m/s < [pv ]从上面验算可知所选材料合适。

(6)选择配合 滑动轴承常用的配合有f6H7,f7H8,d9H9。

一般取d9H9。

例8.2 有一混合摩擦径向滑动轴承,轴颈直径d =60mm ,轴承宽度B =60mm ,轴瓦材料为ZCuA110Fe3,试求:(1)当载荷F r =36000N ,转速n =150 r/min 时,校核轴承是否满足非液体润滑轴承的使用条件;(2)当载荷F r =36000N 时,轴的允许转速;(3)当轴的转速n =900 r/min 时的允许载荷F r ;(4)轴的允许最大转速n max 。

要点分析:滑动轴承的条件性计算。

解:根据轴瓦材料的型号ZCuA110Fe3,可查相关手册得:[p ]=15 MPa ,[v ]=4m/s ,[pv ]=12 MPa ·m/s(1)当载荷F r =36000N ,转速n =150 r/min 时,606036000r ⨯==Bd F p MPa=10 MPa <[p ]=15MPa s m v s m s m dnv /4][/471.0/1000601506014.3100060=<=⨯⨯⨯=⨯=π=0.471/ 71.4/471.010=⋅⨯=s m MPa pv MPa ·m/s <][pv =12 MPa ·m/s 由此可知,满足使用要求。

(2)求轴的允许转速n由pv =100060.r ⨯dn Bd F π<[pv ] 可得:n ≤2.382min /3600014.31260100060][100060r =⨯⨯⨯⨯=⨯⨯⨯r F pv B πr/min 故,最大允许转速为382.2 r/min(3)由pv =100060.r ⨯dn Bd F π<[pv ]得 F r ≤6.15286N 90014.31260100060][100060=⨯⨯⨯⨯=⨯⨯⨯n pv B πN 所以允许的最大载荷F r =15286.6N(4)v =100060⨯dnπ,因为v ≤[v ]=4m/s所以,n max ≤6014.34100060][100060⨯⨯⨯=⨯d v π r/min =1273.9 r/min 例8.3 已知某发电机转子的径向滑动轴承轴瓦的包角为180°,轴颈直径d =150mm ,宽径比B /d =1,半径间隙δ=0.0675mm ,承受工作载荷F =50000N ,轴颈转速n =1000 r/min ,采用锡青铜,其[p ]=15 MPa ,[pv ]=20 MPa ·m/s ,[v ]=10m/s ,轴颈的表面微观不平度的十点平均高度R Z1=0.002mm ,轴瓦的表面微观不平度的十点平均高度R Z2=0.003mm ,润滑油在轴承平均温度下的粘度η=0.014Pa ·s 。

(1)验算此轴承是否产生过度磨损和发热。

(2)验算此轴承是否能形成液体动力润滑。

附:vB F C ηψ22p =,100060⨯=dn v π(m/s )要点分析:液体动力润滑条件下,载荷越大,油膜厚度就越小,偏心率χ就越大。

而最小油膜厚度又要受到轴颈和轴承表面粗糙度等的限制。

相关文档
最新文档