建筑力学复习总结

合集下载

施工员培训建筑力学

施工员培训建筑力学

《建筑力学》第一章复习要点1.静力学的研究对象是刚体,材料力学的研究对象是变形固体。

(P1)2.力的三要素是大小、方向、作用点。

(P2)3.作用在刚体上的两个力,使刚体处于平衡的充分与必要条件是,这两个力大小相等、方向相反、作用在同一直线上。

(二力平衡公理)(P2)4.两个物体之间的作用和反作用总是大小相等、方向相反、分别作用在两个物体上。

(作用和反作用公理)(P3)5.柔索约束的约束反力沿着柔索的中心线,只能是拉力。

(即提供一个拉力)光滑接触面约束的约束反力是压力,在接触面的公法线方向。

(提供一个压力)固定铰支座的反力有二个,方向未定,可动铰支座的反力有一个,方向未定,(可能是拉力也可能是压力)固定端支座的约束反力有三个,方向未定(P3-5)6.力在坐标轴上的投影(记住公式F x(或F y)=F cosα的应用,记住特殊角度α=30°45°60°90°的投影值)(P8)7.合力投影定理:合力在任意轴上的投影,等于力系中各分力在同一轴上的投影的代数和。

(注意,此时不需要回答矢量和)(P8)8.强度是指构件在荷载作用下抵抗破坏的能力刚度是指构件在外力作用下抵抗变形的能力稳定性是指构件保持其原有平衡形态的能力(即抵抗失稳的能力)(P17)9.合力矩定理:平面力系的合力对平面内任意一点之力矩,等于力系中各分力对同一点力矩的代数和。

(此时不需要回答矢量和)(P11)10.力的可传性:作用在刚体上的力,可沿作用线移动到刚体上一点,而不会改变该力对刚体的运动效应。

(P3)力的平移定理作用在刚体上的一个力,可以平移到同一刚体上的任一点,但必须同时附加一个力偶,附加力偶的力偶矩等于原力对新作用点的矩。

(P12)11.力矩的计算式为Mo(F)= ±Fd,是由一个力产生的,与矩心有关。

力偶的计算式为M ( F F’) = ±Fd,是由一对平行力产生的,与矩心无关。

建筑力学1知识点总结

建筑力学1知识点总结

建筑力学1知识点总结建筑力学是土木工程中的一门基础课程,它研究的是建筑结构在受力作用下的力学性能。

通过建筑力学的学习,可以掌握建筑结构的受力分析、设计和计算方法,为工程实践提供科学依据。

建筑力学的知识点涉及很广,包括静力学、结构分析、材料力学等方面。

本文将从静力学、结构分析和材料力学三个方面进行知识点总结。

一、静力学1.1 受力分析受力分析是建筑力学的基础,它主要研究物体在受力作用下的平衡状态。

受力分析包括平衡条件、力的合成与分解、力的作用点、力的传递等内容。

学习受力分析可以帮助我们理解建筑结构受力的特点和规律,为后续的结构分析和设计提供基础。

1.2 杆件受力杆件受力是指杆件在受外力作用下的变形和内力状态。

在建筑力学中,我们将杆件分为拉杆和压杆两种,分别对应拉力和压力状态。

学习杆件受力可以帮助我们理解结构中的受力情况,为后续结构设计提供依据。

1.3 荷载分析荷载分析是指对建筑结构所受外部荷载的评估和分析。

建筑结构在使用过程中会受到自重、活载、风载等多种荷载的作用,因此需要进行荷载分析以确定结构的承载能力。

学习荷载分析可以帮助我们理解结构承载能力的来源和计算方法,为结构设计提供依据。

1.4 统计分析统计分析是指对结构受力的概率分布和可靠度进行分析。

在建筑工程中,由于结构受力的不确定性,需要进行统计分析来评估结构的安全性。

学习统计分析可以帮助我们理解结构受力的概率分布和可靠度计算方法,为工程实践提供科学依据。

二、结构分析2.1 结构体系结构体系是指建筑结构中的组成部分和相互作用关系。

在建筑力学中,我们将结构体系分为框架结构、桁架结构、悬索结构、索塔结构等多种类型。

学习结构体系可以帮助我们理解结构的受力路径和受力传递规律,为结构设计提供依据。

2.2 静定系统静定系统是指结构中的部件数目与未知反力数目相等的系统。

在建筑力学中,我们将静定系统分为平面桁架、空间桁架、梁系、拱系等多种类型。

学习静定系统可以帮助我们理解结构的受力分析和计算方法,为结构设计提供依据。

建筑力学知识点总结约束

建筑力学知识点总结约束

建筑力学知识点总结约束一、基本概念1. 受力分析在建筑力学中,受力分析是一个基本概念。

它研究结构体系在外载荷作用下的受力情况,包括内力分布、应力分布等参数的计算和分析。

受力分析是结构设计的基础,只有深入理解结构受力规律才能设计出安全、经济的结构。

2. 变形分析结构在受力作用下会发生变形,变形分析是研究结构变形规律的过程。

通过变形分析可以得到结构的位移、变形、变形角等参数,为结构设计和施工提供准确的数据支持。

3. 结构设计结构设计是建筑力学的一个重要内容,它包括结构的选型、结构参数的确定、结构构件的尺寸设计等内容。

结构设计需要结合受力分析和变形分析的结果,保证结构在使用性能和安全性方面都能够满足设计要求。

二、结构受力分析1. 内力分析内力是结构体系中各构件内部的受力情况,包括拉力、压力和弯矩等。

内力分析是研究结构内力分布规律的过程,通过内力分析可以确定结构各个部位的受力情况,为结构设计和构件选型提供依据。

2. 应力分析应力是材料内部的受力状态,它反映了材料的受力强度和变形性能。

应力分析是研究结构在外载荷作用下的应力分布规律,通过应力分析可以确定结构材料的受力状态,为结构的耐久性和安全性评估提供依据。

3. 连接件受力在实际工程中,结构构件通过连接件相互连接成体系,连接件的受力情况直接影响到整个结构的受力性能。

连接件受力分析是研究连接件在作用力下的受力情况,通过分析连接件的受力情况可以保证结构的稳定性和安全性。

三、结构设计原则1. 安全性结构设计的首要原则是保证结构的安全性。

在设计结构时需要考虑结构在外载荷作用下的承载能力,通过合理的受力分析和计算可以明确结构的极限状态和使用状态下的安全性,从而保证结构的安全使用。

2. 经济性结构设计还需要考虑结构的经济性,即在保证结构安全性的前提下尽可能减少结构的材料消耗和施工成本。

通过合理的材料选用和结构构件设计可以实现结构的经济性优化,降低工程造价。

3. 美观性结构设计不仅要满足功能性和安全性的要求,还需要考虑结构的美观性。

建筑力学复习知识要点

建筑力学复习知识要点
平面一般力系的平衡方程及其应用一平衡方程的三种形式1基本形式若平面上有一点a满足x轴不于ab连线垂直则这个力系就不能简化为力偶此力系可能平衡也可能有一个通过a点的合力若平面上有另一点b且满足则这个力可能平衡也可能有一个通过ab两点的合力r
一、《建筑力学》的任务 设计出既经济合理又安全可靠的结构
二、《建筑力学》研究的对象 静力学:构件、结构——外力 材料:构件——内力 结力:平面构件(杆系结构)——外力
二、刚体和平衡的概念。 1、刚体:
2、平衡:
三、力系、等效力系、平衡力系。
1、力系: a、汇交力系 b、力偶系 c、平面力系。(一般)
2、等效力系: a、受力等效——力可 b、变形等效。
M2
P3
3、平衡力系:
M1
a、汇交力系: ΣX=0, ΣY=0
M3
3、单位:国际单位制 N、KN 。
传递性。
P1
P1
T
T
A
A
N
(a)
(b)
图 1-8
在( a)图中,对球体来看:球体虽在A处与墙体有接触,但球体没有运动趋势,所以没有 (运动)反力。在( b)图中,球体与墙在A点不仅有接触点,球体同时还有向左的运动趋势。 二、约束的几种基本类型和约束的性质。 1、柔体约束:方向:指向:背离被约束物体。(拉力) 方位:在约束轴线方位。表示:T。 2、光滑接触面:方向:指向:指向被约束物体。(压力)
( 4 )力系 p, p , p 组成两个基本单元,一是力 p ,一是 p 和 p 组成的力偶,其力偶矩为
M pd
因此,作用于A点的力P可用作用于O点的力 p 和力偶矩 M F d 来代替。
即: M 0( P )= M 0( P X )+ M0( P Y) 由此得:合力对力系作用平面内某一点的力矩等于各分力对同一点力矩的代数和。 讲例题

大一建筑力学知识点

大一建筑力学知识点

大一建筑力学知识点建筑力学是建筑工程中的基础学科,是建筑师和工程师必须熟悉的一门学科。

它涵盖了结构力学、材料力学、力学原理和计算方法等内容。

本文将对大一建筑力学的知识点进行介绍和总结,以帮助读者了解和掌握这门学科。

一、结构力学1.受力分析:结构的受力分析是为了了解和计算结构物上的各个构件受力情况。

其中常见的受力分析方法有平衡条件法、截面等效法和切割法等。

通过这些方法,可以求解出结构物上各个构件的受力情况,并作出相应的设计和改进。

2.弹性力学:弹性力学主要研究物体在受力作用下的形变和应力分布规律。

其中常见的弹性概念有针对材料的弹性模量、材料中的弹性极限和临界状态等。

在建筑工程中,弹性力学的理论应用十分广泛,能够帮助工程师进行结构的设计和分析。

二、材料力学1.材料性质:材料力学关注材料的物理和机械性质,例如强度、刚度、韧性、脆性等。

在建筑工程中,根据实际的使用需求和安全要求,需要选择适合的材料,并通过计算和实验等手段确定其性能。

2.材料的强度:材料的强度是指抵抗外部力量破坏的能力。

在建筑力学中,对于不同的材料有不同的强度计算方法。

常见的材料强度有抗拉强度、抗压强度、抗剪强度等。

三、力学原理和计算方法1.静力学原理:静力学是力学的一部分,主要研究物体在力和力矩平衡条件下的运动和静止情况。

在建筑力学中,静力学原理被广泛应用于结构物的稳定性分析和力学计算。

2.静力学计算方法:静力学计算方法主要包括力的平衡条件、受力分析、力矩平衡、曲杆平衡等。

这些计算方法能够帮助工程师计算结构物上各个点的受力情况和承载能力。

结语:以上是关于大一建筑力学的一些基本知识点的介绍和总结。

建筑力学作为建筑工程中的重要学科,对于设计、分析和改进结构物起着至关重要的作用。

希望本文的内容能够帮助读者更好地理解和掌握大一建筑力学相关知识,为将来的学习和实践打下坚实的基础。

建筑力学知识点总结

建筑力学知识点总结

建筑力学知识点总结一、静力平衡静力平衡是建筑力学中的基础知识点,它涉及到建筑结构各部分之间的受力关系。

在静力平衡中,我们需要掌握以下内容:1. 应力分析:建筑结构受到不同方向的力,需要进行应力分析,并确定各部分的受力情况。

2. 受力分析:对不同形状、结构的建筑进行受力分析,包括梁、柱、板、框架等。

3. 各种受力形式:拉力、压力、剪力、弯矩等受力形式的分析和计算。

4. 杆件受力:对杆件在受力时的受力情况进行分析,包括张力、挠度、位移等。

5. 平衡条件:在建筑结构中,各部分之间需要满足外力和内力平衡的条件,需要进行平衡分析。

二、结构稳定性结构稳定性是建筑力学中的重要知识点,它涉及到建筑结构在承受外部荷载时的稳定性情况。

在结构稳定性中,我们需要掌握以下内容:1. 稳定条件:建筑结构需要满足一定的稳定条件,包括受力平衡、几何稳定、材料稳定等。

2. 稳定性分析:对不同形式的建筑结构进行稳定性分析,包括平面结构、空间结构、倾斜结构等。

3. 屈曲分析:对建筑结构在受力时的屈曲情况进行分析和计算,包括临界载荷、屈曲形式等。

4. 建筑高度:建筑结构的高度对其稳定性有一定的影响,需要进行高度稳定性分析。

5. 结构材料:不同材料的建筑结构在受力时的稳定性情况有所不同,需要进行材料稳定性分析。

三、弹性力学弹性力学是建筑力学中的重要分支,它涉及到建筑结构在受力时的弹性变形情况。

在弹性力学中,我们需要掌握以下内容:1. 弹性模量:建筑结构在受力时的弹性模量情况对其受力性能有一定的影响,需要进行弹性模量分析和计算。

2. 应变分析:建筑结构在受力时会产生一定的应变,需要进行应变分析和求解。

3. 弹性极限:建筑结构在受力时会产生一定的弹性极限,需要进行弹性极限分析和计算。

4. 应力-应变关系:建筑结构在受力时的应力和应变之间存在一定的关系,需要进行应力-应变关系分析和求解。

5. 弹性能力:建筑结构的弹性能力对其受力性能有一定的影响,需要进行弹性能力分析和评定。

建筑力学总结

建筑力学总结

建筑力学总结一、建筑力学概述建筑力学是研究建筑结构在受到外部荷载作用下的变形、应力和破坏等问题的一门学科。

它是现代建筑工程设计和施工的基础,包括静力学、动力学和稳定性等方面。

二、静力学静力学是建筑力学的基础,主要研究建筑结构在静止状态下的平衡条件和受力情况。

其中,平衡条件包括平衡方程、支反力平衡、杆件内部受力平衡等;受力情况包括弯曲、剪切、轴向拉伸或压缩等。

在实际工程中,需要根据不同荷载情况进行结构分析和设计。

三、动力学动力学是建筑结构在受到外部荷载作用下的振动特性和响应规律。

其中,振动特性包括固有频率、振型等;响应规律包括自由振动和强迫振动等。

在实际工程中,需要考虑地震、风荷载等因素对结构的影响。

四、稳定性稳定性是指建筑结构在受到外部荷载作用下的承载能力和变形能力。

其中,承载能力包括抗弯承载力、抗剪承载力、抗压承载力等;变形能力包括刚度和变形限制等。

在实际工程中,需要考虑结构的稳定性和安全性。

五、常见结构类型常见的建筑结构类型包括框架结构、拱形结构、索结构和悬索结构等。

其中,框架结构是最常见的一种,由水平和垂直杆件组成;拱形结构则是一种受压弯曲的结构,具有较好的稳定性;索结构则是由钢缆组成的轻型建筑,适用于大跨度场馆等。

六、建筑材料建筑材料对于建筑力学来说至关重要。

常见的建筑材料包括混凝土、钢材、木材和砖块等。

不同材料具有不同的特性,在设计和施工中需要根据实际情况进行选择。

七、总体设计流程建筑力学在实际工程中需要遵循一定的设计流程,主要包括以下几个步骤:确定荷载;选择结构类型和材料;进行设计计算;进行模拟分析;进行结构优化和验算等。

八、实际应用建筑力学在实际工程中具有广泛的应用,包括房屋建筑、桥梁、隧道、大型场馆等。

在这些工程中,建筑力学的应用可以保证结构的稳定性和安全性,同时也能够提高工程质量和效率。

九、结语建筑力学是现代建筑工程设计和施工的基础,它涉及到静力学、动力学和稳定性等方面。

在实际工程中,需要根据不同荷载情况进行结构分析和设计,并考虑材料特性以及稳定性和安全性等因素。

建筑力学总复习

建筑力学总复习

σmax =
σM =
F Mmax N + A W z
危险点处- 危险点处-单向应力
物体系的平衡问题
2011-11-17
物体系平衡 ⇔ 系统中每个刚体平衡 系统中每个刚体 每个刚体平衡
变形体静力学( 变形体静力学(6-15章) 章
研究对象
构件(一维) 构件(一维)
可能的变形
轴向拉压 拉杆
承 载 能 力
剪切
扭转
弯曲
组合变形
压杆 强度 刚度 稳定 强度 刚度 强度 刚度
强度 刚度
强度
2x τ tan2 0 = − α σx −σ y
τmax =± τmin
σx −σy 2
2
2 +τx
2011-11-17
平面应力状态分析 强度理论
内容提要: 内容提要: 主应力: 主应力: 极值正应力
σ1 ≥σ2 ≥σ3 按代数值排列) (按代数值排列)
相当应力σ i = ?
My z Mz y σ= + =0 Iy Iz
2011-11-17
位于离中性轴 最远点a与b 处
外载荷 内力 应力 强度
组合变形
内容提要: 弯拉( 内容提要: 弯拉(压)组合分析
内力-FN,Mmax 内力
Mmax y Iz F Mmax y σ =σN +σM = N + A Iz
F σN = N A
bh3 bh3 2 bh2 Iz = W= = z 12 12 h 6
圆形截面
Ip = ∫ ρ2dA= Iz + Iy Ip = 2Iz
A
Iz =
2011-11-17
Ip 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论
一、按照几何特征将建筑工程结构分为三种类型。

(1)杆系结构—由若干根长度远大于截面高度和宽度
的杆件所组成的结构。

(2)薄壁结构—厚度远小于其他两个尺度的结构。

分为薄板和薄壳。

(3)实体结构––长、宽、厚三个方向尺度为同量级的结构。

二、对理想变形体固体材料的假设
1. 连续性假定
2. 均匀性假定
3. 各向同性假定
按照连续、均匀、各向同性假设而理想化了的一般变形固体称为理想变形固体。

四、荷载的分类
1、根据荷载作用的范围分为:分布荷载、集中荷载。

2、根据荷载作用时间的长短分为:恒载、活载。

3、按荷载作用的性质:静力荷载、动力荷载。

第二章计算简图受力分析
一、常见的几种类型的约束
1、柔绳、链条、胶带构成的约束:
2、理想光滑接触面约束
3、光滑圆柱铰链约束
4、活动铰支座
5固定铰支座
6 固定支座(固定端)
7链杆约束
8定向支座
二、结点的简化及分类
结点可分为铰结点、刚结点和组合结点。

共点力系平衡的充要解析条件:
力系中所有各力在各个坐标轴中每一轴上的投影的代数和分别等于零。

平面共点力系的平衡方程:
0x F =∑0y F =∑
力对点的矩
一、力矩的定义——力F 的大小乘以该力作用线到某
点O 间距离d,并加上适当正负号,称为力F对O 点的矩。

简称力矩。

二、力矩的正负号规定:按右手规则,当有逆时针
转动的趋向时,力F 对O 点的矩取正值。

三、力矩的单位:N·m。

四、力矩的性质
1、力沿作用线移动时,对某点的矩不变
2、力作用过矩心时,此力对矩心之矩等于零
3、互成平衡的力对同一点的矩之和等于零
力偶、力偶矩
合力矩等于零,即力偶系中各力偶矩的矢量和等于零。

i l =∑4、平面力偶系平衡的充要条件
力的等效平移
第四章平面力系的简化与平衡方程
一、平面任意力系向面内任一点的简化结果,是一个作用在简化中心的主矢;和一个对简化中心的主矩。

二、平面任意力系平衡的充要条件:
力系的主矢等于零,力系对任一点的主矩也等于零。

平衡方程:
()
0 , 0 , 0
x y o
F F m
===∑∑∑F
三、平面平行力系平衡的充要条件:
力系中各力的代数和等于零,以这些力对任一点的矩的代数和也等于零。

()∑∑==
0 , 0 F O y m F 一矩式:
自由度计算
(1)通用公式:W=3m-2h-r
其中:m---刚片数; h ---单铰数; r ---支座链杆数
如遇复铰:相当于(n-1)个单铰。

1 W﹥0,表明体系缺乏足够的自由度,体系几何可变。

2 W=0,表明体系具有保证其几何不变所需最少约束数量。

3 W﹤0,表明体系具有多于保证其几何不变所需的最少约束数量。

几何不变体系的组成规则
一、几何不变体系组成规则
不全平行也不全交于一点的链杆相连,两刚片用三根既不全
所组成的体系是没有多余约束的几何不变体系。

三个刚片用三个不共线单铰两两相连,所组成的体系是没有多余约束的几何不变体系。

在一个刚片上增加一个二元体仍为几何不变体系。

二、利用规则进行几何组成分析的注意事项:
(a)体系只用三根不全交于一点也不全平行的支座链杆与基础相连,只需对体系本身作几何组成分析。

(b)如体系上有二元体,应逐个拆除暴露在体系最外面的二元体,而不可从体系中任意抽取。

(c)利用规则3,从一个刚片或一个铰结三角形开始依次增加二元体,将体系中的刚片数应尽量减少,便于分析。

三、虚铰位于无限远情况
(1)规则2中,若有一个连接两刚片的虚铰位于无限远,
则当其余两铰(实铰或虚铰)的连线与形成无限远虚铰的两根链杆不平行时,体系为几何不变;
平行时体系为瞬变体系。

(2)规则2中,若有两个位于无限远的虚铰时,
则当形成两个无限远虚铰的四根链杆不全平行时(只有两
两平行时),体系为几何不变;
四根链杆全平行时,体系为瞬变体系。

(3)规则2中,若有三个位于无限远的虚铰,则可看成其位于同一直线,体系为瞬变体系。

无多余约束的几何不变体系
第六章静定结构的内力计算
轴力
—截面上应力垂直于截面方向的合力,使杆拉伸为正;
剪力—截面上应力平行于截面
方向的合力, 使隔离体有顺时针转
动趋势为正;
弯矩—截面上应力对截面形心的
力矩之和, 对于水平梁,梁下边纤维
受拉为正。

F N F N F Q F Q M M
一、内力正方向
内力图
一、内力图:表示结构上各截面弯矩、剪力、轴力变化规律的图
形。

F N F N
画轴力图要注明正负号;习惯上正值画在杆的上方,负值画下方。

F Q F Q M M 画剪力图要注明正负号;
弯矩图画在杆件受拉一侧;
二、载荷集度、剪力和弯矩关系:
1. q=0,F s=常数,剪力图为水平直线;
M(x) 为x 的一次函数,弯矩图为斜直线。

2. q=常数,F s(x) 为x 的一次函数,剪力图为斜直线;
M(x) 为x 的二次函数,弯矩图为抛物线。

分布载荷向上,抛物线呈凸形;
分布载荷向下,抛物线呈凹形。

3.剪力F s=0处,弯矩取极值。

4.集中力作用处,剪力图有突变,突变值即为该处集中力
的大小,弯矩图在此为一折角;
5. 集中力偶作用处,剪力图没有变化,弯矩图有突变,
突变值即为该处集中力偶的力偶矩。

静定平面刚架
一、刚架受力分析一般是先求出支座反力和约束力,再计算刚架内力,其基本方法仍是截面法。

二、内力图符号规定:
轴力以拉力为正,可画在杆件任一侧,须标明正负号;
剪力以绕隔离体顺时针方向转动为正,可画在杆件任一侧,须标明正负号;
弯矩画在纤维受拉一侧,无须标明正负号。

B
D
A
40
160
160
40
M 图(单位:kN.m )
F Q 图(单位:kN )A
+80
2060
20
60-
B
D
A
C 20
20

A
M图4
4
1 4
Pl
静定平面桁架
二、结点汇交力系平衡的特殊情况及简化计算
注意:下述汇交力系中的力包括了杆轴力和外载。

a、结点汇交力系为不共线的两个力,则该两力都等于零。

b、结点汇交力系为三个力,其中两力共线,则另一个力必为零。

c、结点汇交力系为四个力,两两共线,则每一对共线的两个力大小相等性质相同。

d、K型结点(对称)
k F
F
αα
A
B
C
A
αα
四、低碳钢(塑性材料)拉伸试验1、明显的四个阶段1)弹性阶段
—P σ比例极限
—e σ弹性极限
2)屈服阶段(失去抵抗变形的能力)
—s σ屈服极限
3)强化阶段(恢复抵抗变形的能力)
4)局部径缩阶段
强度极限
—b σ
剪切和挤压
扭转
1 扭矩图:
扭矩用矢量表示,采用右手螺旋法则:扭矩矢量指离截面为+,指向截面为-。

相关文档
最新文档