分式方程应用题专题训练
分式方程应用题 专项训练

一.列式1.某市要修一水坝,需要规定日期内完成,如果由甲队去做,恰能如期完成,如果由乙队去做,需超过规定日期三天,现由甲乙两队合作2天后,余下的由乙队单独完成,恰好在规定日期内完成,求规定在多少天完成?2.某河两地相距S千米,船在静水中的速度为a千米/时,水流速度为b千米/时,船往返一次所用的时间为多少?3.如果a个人完成一项工作需要m天,则(a+b)个人完成此项工作需要多少天?4.五一江北水城文化旅游节期间,几名同学包租一辆面包车去游览,面包车的租价为180元,出发时,又增加了两名同学,结果每个同学被原来少分摊了3元车费,则参加游览的学生共有多少人?5. 某化肥厂计划在x天内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨所用的时间相等.则所列方程为6. 甲乙两班学生绿化校园,如果两班合作,6天可以完成,如果单独工作,甲班比乙班少用5天,两班单独工作各需多少天完成?7. 某学校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达目的地,已知快车速度是慢车的1.5倍,求慢车的速度是多少?8.某中学图书馆添置图书,用240元购进一种科普图书,同时用200元购进一种文学书,由于科普书单价比文学书的单价高出一半,因此学校购买的文学书比科普书多4本,求文学书的单价是多少?9.某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,求原计划每天挖多少米?二.解答题1.某质检部门抽取甲、乙两场相同数量的产品进行质量检测,测得甲厂有合格产品48件,乙厂有合格产品45件,甲的合格率比乙的合格率多5%,问甲乙的合格率是多少?2.张明同学到百货大厦买了两种信封,共30个,其中A种信封用了1元5角,买B种信封用了1元2角,B种信封比A种信封每个便宜2分,两种信封的单价各是多少?3.某公司投资某个项目,现有甲乙两个工程队有能力承包这个项目,公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲乙合作完成工程的时间需要20天,甲队每天的工作费是1000元,乙队每天的工作费是550元,根据以上信息,从节约资金的角度考虑,该公司应该选择那个工程队,应付工程队的费用多少元?。
分式方程应用题专项训练

分式方程应用题专题训练一.行程问题(1)一般行程问题1、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的高速公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
2、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
(2)水航问题3、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
二.工程问题1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?2、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?三.利润(成本、产量、价格、合格)问题1、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
2、某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料0.5kg少3元,比乙种原料0.5kg多1元,问混合后的单价0.5kg是多少元。
3、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?四.其它开放性新题型1、某农场原有水田400公顷,旱田150公顷,为了提高单位面积产量,准备把部分旱田改为水田,改完之后,要求旱田占水田的10%,问应把多少公顷旱田改为水田。
(完整版)分式方程应用题专项练习50题

(完整版)分式方程应用题专项练习50题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN分式方程应用题专项练习1、老城街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.;求甲、乙两队单独完成这项工程各需多少天2.某工厂为了完成供货合同,决定在一定天数内生产原种零件400个,由于对原有设备进行了技术改进,提高了生产效率,每天比原计划增产25%,结果提前10天完成了任务.原计划每天生产多少个零件?3、某项工程如果甲单独做,刚好在规定的日期内宛成,如果乙单独做,则要超出规定日期3天,现在先由甲、乙两人合做两天后,剩下的任务由乙完成,也刚好能按做时完式,问规定的日期是几天?4、某工程由甲、乙两队合做6天完成,厂家需会甲、乙两队共8700元;乙、丙两队合做10天完成,厂家需付乙、丙队共9500元;甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元。
(1) 求甲、乙、丙各队单独完成全部工程各需多少天?(2) 若工期要求不超过15天完成全部工程,问:可由哪个单独承包此项工程花钱最少?请说明理由。
5.一个水池有甲乙两个进水管,甲管注满水池比乙管快4小时,如果单独放甲管5小时,再单独开放乙管6小时,就可以注满水池的一半,求单独开放一个水管,注满水池各需多长时间6、轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相同,已知水流的速度是3千米/时,求轮船在静水中的速度。
7.一列客车长200米一列货车长280米,在平行轨道上相向而行,从车头相遇到车尾相离一共经过8秒钟.已知客车与货车的速度之比为5∶3.求两车的速度.8、如图,小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3km,王老师家到学校的路程为0.5km,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问王老师的步行速度及骑自行车的速度各是多少?9、一小船由A港到B顺流航行需6小时,由B港到A港逆流航行需8小时,小船从早晨6时由A 港到B港时,发现一救生圈在途中掉落水中,立即返航,2小时后找到救生圈。
分式方程应用题专题训练2024-2025学年人教版数学八年级上册+附答案

2023-2024学年人教版数学八年级上册分式方程应用题专题训练1.甲、乙两人加工同一种零件,乙每天加工的数量比甲每天加工数量多50%,两人各加工600个这种零件,甲比乙多用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)现有3000个这种零件的加工任务,由甲单独加工m天后剩余任务由乙单独完成,试用含m的代数式表示乙单独完成剩余任务的天数(结果要求化简);(3)已知甲、乙两人加工这种零件每天的加工费分别是120元和150元,在(2)的情况下,如果总加工费不超过7800元,那么甲最多加工多少天?2.“走,去永州,品道州脐橙”,道州脐橙果大形正,橙红鲜艳,肉质脆嫩化渣,风味浓甜芳香.2023年11月29日在“道州脐橙”品牌推介活动上,某水果批发商用40000元购进一批道州脐橙后,供不应求,该水果批发商又用90000元购进第二批这种道州脐橙,所购数量是第一批数量的2倍,但每箱贵了10元(1)有水果批发商购进的第一批道州脐橙每箱多少元?(2)若两次购进的道州脐橙按同一价格售出,两批脐橙全部销售完后,获利不低于17000元,则销售单价至少是多少元?3.元宵节是中国的传统节日之一,元宵节主要有赏花灯、吃汤圆、猜灯谜等习俗,某超市节前购进了甲、乙两种畅销口味的汤圆.已知购进甲种汤圆的金额是1200元,购进乙种汤圆的金额是800元,购进的甲种汤圆比乙种汤圆多20袋.甲种汤圆的单价是乙种汤圆单价的1.2倍.(1)求甲、乙两种汤圆的单价分别是多少元;(2)为满足消费者需求,该超市准备再次购进甲、乙两种汤圆共120袋,若总金额不超过1300元,最多购进______袋甲种汤圆.4.甲、乙两人分别从距目的地8km和12km的两地同时出发,甲、乙的速度比是4:5,结果甲比乙提前2h5到达目的地,求甲、乙的速度.5.某工程队承接了45万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前了15天完成了这一任务.(1)用含x的代数式填表(结果不需要化简);工作效率(万平方米/天)工作时间(天)总任务量(万平方米)原计划x______45实际____________45(2)求(1)的表格中的x的值.6.“阅读陪伴成长,书香润泽人生”.万年县某学校为了开展学生阅读活动,计划网购甲、乙两种图书.已知甲种图书每本的价格比乙种图书每本的价格多5元,且用1600元购买甲种图书比用900元购买乙种图书可多买20本.(1)甲种图书和乙种图书的价格各是多少?(2)根据学校实际情况,需一次性网购甲、乙两种图书共300本,购买时得知:一次性购买甲乙两种图书超过100本时,甲种图书可按九折优惠,乙种图书可按八折优惠.若该校此次用于购买甲、乙两种图书的总费用不超过4800元,那么学校最多可购进甲种图书多少本?7.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.长沙某汽车销售决定采购新能源A型和B型两款汽车,已知每辆A型汽车的进价是每辆B型汽车的进价的1.5倍,若用1500万元购进A型汽车的数量比1200万元购进B型汽车的数量少20辆.(1)A型和B型汽车的进价分别为每辆多少万元;(2)该公司决定用不多于1220万元购进A型和B型汽车共100辆,最多可以购买多少辆A 型汽车?8.为开展特色体育,致远中学上学期购买了甲、乙两种不同足球,购买甲种足球用了3000元,购买乙种足球用了2100元,购买甲种足球数量恰好是购买乙种足球数量的2倍,且购买一个甲种足球比购买一个乙种足球少花20元.(1)求购买一个甲种足球和一个乙种足球各需多少元;(2)为了加大开展力度,学校决定本学期再次购买甲、乙两种足球共50个,恰逢商场对两种足球售价进行调整,甲种足球售价比上学期购买时提高了10%,乙种足球售价比上学期购买时降低了10%,如果本学期购买甲、乙两种足球的总费用不超过2800元,并且乙种足球至少要购买5个,那么该校本学期有几种不同购买足球的方案?9.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.某茶店1月份第一周绿茶的销售总额为1500元,红茶的销售总额为900元,且红茶每克售价是绿茶每克售价的1.2倍,红茶的销售量比绿茶的销售量少3000克,设绿茶每克销售价格为x 元.(1)请用含x的代数式填表:售价(元/克)销售量(克)销售总额(元)绿茶x______1500红茶____________900(2)请列出方程,并求出绿茶、红茶每克的售价分别是多少元?10.期末考试在即,某学校准备购进A、B两种奖品对进步学生进行奖励,已知一盒A 种奖品的单价比一盒B种奖品的单价多1元,且花600元购买A种奖品和花500元购买B种奖品的盒数相同.(1)求A,B两种奖品一盒的单价各是多少元?(2)若计划用不超过1100元的资金购进A、B两种奖品共200盒,求A种奖品最多能购进多少盒?11.为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用12万元购买A型充电桩与用18万元购买B型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买20个A,B型充电桩,购买总费用不超过15万元,且A型充电桩购买数量不超过12个.问:共有哪几种购买方案?哪种方案所需购买总费用最少?12.长寿重百商场用50000元从外地购回一批T恤衫,由于销路好,商场又紧急调拨18.6万元采购回是第一次进货件数3倍的T恤衫,但第二次比第一次进价每件贵12元,商场在出售时统一按每件80元的标价出售,为了缩短库存时间,最后的400件按6.5折处理并很快售完.求:(1)商场第一次购买了多少件T恤衫?(2)商场在这两次生意中共盈利多少元?13.某商店购进篮球、足球两种商品,已知每个篮球的价格比每个足球的价格贵16元,用2400元购买篮球的个数恰好与用2000元购买足球的个数相同.求篮球,足球每个的价格各是多少元?14.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?(3)若汽车从甲地到乙地采用油电混合动力行驶,要使行驶总费用不超过60元,求至少需要用电行驶多少千米?15.列方程(组)解应用题:綦江区某校为举行六十周年校庆活动,特定制了系列文创产品,其中花费了312000元购进纪念画册和保温杯若干.已知纪念画册总费用占保温杯总费用的3 10.(1)求纪念画册和保温杯的总费用各是多少元?(2)若每本纪念画册的进价比每个保温杯的进价多20%,而保温杯数量比纪念画册数量的3倍多1200个.求每本纪念画册和每个保温杯的进价各是多少元?。
分式方程应用题专项训练

一、行程问题:这类问题涉及到三个数量:路程、速度和时间。
它们的数量关系是:路程=速度*时间。
列分式方程解决实际问题要用到它的变形公式:速度=路程/时间,时间=路程/速度。
1、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
2、甲、乙两人同时从A、B两地相向而行,如果都走1小时,两人之间的距离等于A、B两地距离的1/8;如果甲走2/3小时,乙走半小时,这样两人之间的距离等于A、B间全程的一半,求甲、乙两人各需多少时间走完全程?3、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。
求先遣队和大队的速度各是多少?4、我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
5、甲、乙两人从相距36千米的两地同时出发相向而行,甲从A地出发至2千米时发现有物品忘在A地,便立即返回,取了物品后又立即从A地向B地行去,这样两人恰好在A、B 的中点相遇,又知甲比乙每小时多走0.5千米,求甲、乙两人的速度。
二、水流问题1、一小艇在江面上顺流航行63千米到目的地,然后逆流回航到出发地,航行时间共5小时20分.已知水流速度为每小时3千米,小艇在静水中的速度是多少?小艇顺流航行时间和逆流回航时间各是多少?2、小芳在一条水流速度是0.01m/s的河中游泳,她在静水中游泳的速度是0.39m/s,而出发点与河边一艘固定小艇间的距离是60m,求她从出发点到小艇来回一趟所需的时间。
3、一小船由A港到B港顺流需行6h,由B港到A港逆流需行8h.一天,•小船早晨6点由A港出发顺流到B港时,发现一救生圈在途中掉落在水中,立即返回,1h后找到救生圈,问:(1)若小船按水流速度由A港到B港漂流多少小时?(2)•救生圈是何时掉入水中的?4、甲乙两地相距360千米,新修的高叔公路开通后,在甲乙两地间行驶的长途客运车平均车速提高了50%,而从甲到乙的时间缩短了2小时,求原来的平均速度三、工程问题:这类问题也涉及三个数量:工作量、工作效率和工作时间。
分式方程应用题专题

分式方程应用题一、工程问题(1)某水泵厂在一定天数内生产4000台水泵,工人为支援四化建设,每天比原计划增产%25,可提前10天完成任务,问原计划日产多少台?(2)现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。
求原来每天装配的机器数.(3)某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的212倍,所以加工完比原计划少用9小时,求原计划和改进操作方法后每小时各加工多少个螺丝?(4)打字员甲的工作效率比乙高%25,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打多少字?二、路程问题(1)某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?(2)某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的2.1倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.(3)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.三、水流问题轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度.分式方程应用题(拓展题)(1)一个两位数,个位上的数比十位上的数大4,用个位上的数去除这个两位数商是3,求这个两位数.(2)大小两部抽水机给一块地浇水,两部合浇2小时后,由小抽水机继续工作1小时完成.已知小抽水机独浇这块地所需时间等于大抽水机独浇这块地所需时间的211倍,求单独浇这块地各需多少时间?(3)一船自甲地顺流航行至乙地,用5.2小时,再由乙地返航至距甲地尚差2千米处,已用了3小时,若水流速度每小时2千米,求船在静水中的速度.(4)假日工人到离厂25千米的浏览区去旅游;一部分人骑自行车,出发1小时20分钟后,其余的人乘汽车出发,结果两部分人同时到达,已知汽车速度是自行车的3倍,求汽车和自行车速度.(6)有一工程需在规定日期内完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,求规定日期是几天?(7)甲、乙两人同时从A 、B 两地相向而行,如果都走1小时,两人之间的距离等于A 、B 两地距离的81;如果甲走32小时,乙走半小时,这样两人之间的距离等于A 、B 间全程的一半,求甲、乙两人各需多少时间走完全程?(8)总价9元的甲种糖果和总价是9元的乙种糖果混合,混合后所得的糖果每千克比甲种糖果便宜1元,比乙种糖果贵5.0元,求甲、乙两种糖果每千克各多少元?综合应用1、玉树地震后,有一段公路急需抢修.此项工程原计划由甲工程队独立完成,需要20天.在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,为抗震救灾赢得了宝贵时间.求乙工程队独立完成这项工程需要多少天.2、某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程.3、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:4、某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.通过这段对话,请你求出该地驻军原来每天加固的米数.。
分式方程应用题专练(含答案)

分式方程应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从直达的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知至的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从直达所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要几天。
5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,可列方程:6、明与强共同清点一批图书,已知明清点完200本图书所用的时间与强清点完300本图书所用的时间相同,且强平均每分钟比明多清点10本,求明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?通过这段对话,请你求出该地驻军原来每天加固的米数.10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为.11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是多少.分式方程 应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从直达的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知至的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从直达所用的时间(结果精确到0.01小时).解:设通车后火车从直达所用的时间为x 小时. 依题意,得29833122x x =⨯+. 解这个方程,得14991x =. 经检验14991x =是原方程的解. 148 1.6491x =≈.2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.解:设每盒粽子的进价为x 元,由题意得20%x ×50-(x2400-50)×5=350 化简得x 2-10x -1200=0解方程得x 1=40,x 2=-30(不合题意舍去)经检验,x 1=40,x 2=-30都是原方程的解,但x 2=-30不合题意,舍去.答: 每盒粽子的进价为40元.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( D ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( D )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、明与强共同清点一批图书,已知明清点完200本图书所用的时间与强清点完300本图书所用的时间相同,且强平均每分钟比明多清点10本,求明平均每分钟清点图书的数量.解:设明平均每分钟清点图书x 本,则强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x -=⨯或其变式,同样得分7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( C )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:解:设原来每天加固x 米,根据题意,得926004800600=-+xx . 去分母,得 1200+4200=18x (或18x =5400)解得 300x =.检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天? 解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, 根据题意,得 10x +1245x =1 解这个方程,得x =25经检验,x =25是所列方程的根10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为22402240220x x-=-.11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售通过这段对话,请你求出该地驻军原来每天加固的米数.价-进价,利润率100%=⨯利润进价)解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分经检验,40x =是原方程的根. 9分答:这种计算器原来每个的进价是40元. 10分12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程240024008(120)x x-=+% .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得: x 1500-401500+x =815, 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200,经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200.答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+=解得:5x =经检验5x =是原方程的解所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元)答:该老板两次售书总体上是赚钱了,共赚了520元.15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 4分 解这个方程,得80x =. 5分经检验,80x =是所列方程的根. 6分80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x ⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得111220x x +=, 解得 30x =.经检验30x =是原方程的解,且30x =,260x =都符合题意.∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元.17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x 解得21=x ,32-=x经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是20千米/时.。
分式方程应用题专题训练

分式⽅方程应⽤用题专题复习⼀一.⾏行行程问题(1)⼀一般⾏行行程问题1、从甲地到⼄乙地有两条公路路:⼀一条是全⻓长600Km的普通公路路,另⼀一条是全⻓长480Km的告诉公路路。
某客⻋车在⾼高速公路路上⾏行行驶的平均速度⽐比在普通公路路上快45Km,由⾼高速公路路从甲地到⼄乙地所需的时间是由普通公路路从甲地到⼄乙地所需时间的⼀一半,求该客⻋车由⾼高速公路路从甲地到⼄乙地所需要的时间。
2、我军某部由驻地到距离30千⽶米的地⽅方去执⾏行行任务,由于情况发⽣生了了变化,急⾏行行军速度必需是原计划的1.5倍,才能按要求提前2⼩小时到达,求急⾏行行军的速度。
3.甲、⼄乙两地相距828km,⼀一列列普通快⻋车与⼀一列列直达快⻋车都由甲地开往⼄乙地,直达快⻋车的平均速度是普通快⻋车平均速度的1.5倍.直达快⻋车⽐比普通快⻋车晚出发2h,⽐比普通快⻋车早4h到达⼄乙地,求两⻋车的平均速度.(2)⽔水航问题3、轮船顺⽔水航⾏行行80千⽶米所需要的时间和逆⽔水航⾏行行60千⽶米所⽤用的时间相同。
已知⽔水流的速度是3千⽶米/时,求轮船在静⽔水中的速度。
⼆二.⼯工程问题1、⼀一台甲型拖拉机4天耕完⼀一块地的⼀一半,加⼀一天⼄乙型拖拉机,两台合耕,1天耕完这块地的另⼀一半。
⼄乙型拖拉机单独耕这块地需要⼏几天?2、某市为治理理污⽔水,需要铺设⼀一段全⻓长3000⽶米的污⽔水输送管道,为了了尽量量减少施⼯工对城市交通造成的影响,实际施⼯工时每天的⼯工效⽐比原计划增加25%,结果提前30天完成了了任务,实际每天铺设多⻓长管道?例例2某⼯工程由甲、⼄乙两队合做6天完成,⼚厂家需付甲、⼄乙两队共8700元,⼄乙、丙两队合做10天完成,⼚厂家需付⼄乙、丙两队共9500元,甲、丙两队合做5天完成全部⼯工程的,⼚厂家需付甲、丙两队共5500元.⑴求甲、⼄乙、丙各队单独完成全部⼯工程各需多少天?⑵若⼯工期要求不不超过15天完成全部⼯工程,问由哪个队单独完成此项⼯工程花钱最少?请说明理理由.三.利利润(成本、产量量、价格、合格)问题1、某煤矿现在平均每天⽐比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大版数学八年级下册第16章分式方程应用题专题训练一、行程问题解题策略:在解行程问题的分式方程应用题时,可以依据时间=路程速度,利用分式来表示时间,根据时间之间的关系建立分式方程。
例:马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.分析:设马小虎的速度是x米/分,列表分析如下。
依据马小虎多走10分钟建立方程。
解:设马小虎的速度是x米/分,根据题意列方程,1600 x -16002x=10解得:x=80经检验,x=80是原方程的根.答:马小虎的速度是80米/分.练习:1、为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18 分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少? 解:设京张高铁最慢列车的速度是x 千米/时. 由题意,得17417418296020x x -=, 解得 180x =经检验,180x =是原方程的解,且符合题意. 答:京张高铁最慢列车的速度是180千米/时.2、早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?解:(1)设小明步行的速度是x 米/分,由题意得:900900103x x=+, 解得:x=60,经检验:x=60是原分式方程的解, 答:小明步行的速度是60米/分;(2)设小明家与图书馆之间的路程是y 米, 根据题意可得:900260180y ≤⨯ 解得:y ≤600,答:小明家与图书馆之间的路程最多是600米.3、甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得600300060030002 122x xx-+=-,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.二、工程问题解题策略:在解工程问题的分式方程应用题时,可以依据工作时间=工作量工作效率,利用分式来表示工作时间,根据工作时间之间的关系建立分式方程。
例:某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为万元,乙队为万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?(1)分析:设乙工程队每天能完成绿化的面积是xm 2,列表分析如下。
依据甲队比乙队少用4天建立方程。
(1)解:设乙工程队每天能完成绿化的面积是xm 2,根据题意得:400x ﹣4002x=4, 解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m 2),答:甲、乙两工程队每天能完成绿化的面积分别是100m 2、50m 2; (2)分析:设安排甲队工作y 天,列表分析如下。
依据这次的绿化总费用不超过8万元建立不等式。
(2)解:设安排甲队工作x 天,根据题意得:18001000.40.25850yx -+⨯≤,解得:x ≥10,答:至少应安排甲队工作10天. 练习:1、为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排放设施进行改造.某施工队承担铺设地下排污管道任务共2200米,为了减少施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管道的长度比原计划多10%,结果提前两天完成任务.求原计划平均每天铺设排污管道的长度. 解:设原计划平均每天铺设排污管道x 米,依题意得220022002(110%)x x-=+ 解这个方程得:x =100(米) 经检验,x =100是这个分式方程的解, ∴这个方程的解是x =100答:原计划平均每天修绿道100米.2、学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?解:(1)设王师傅单独整理这批实验器材需要x 分钟, 由题意,得:112020()140x x++=, 解得:x=80,经检验得:x=80是原方程的根.答:王师傅单独整理这批实验器材需要80分钟. (2)设李老师要工作y 分钟,由题意,得:1(1)304080y -÷≤, 解得:y ≥25.答:李老师至少要工作25分钟.3、某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件? 解:设原来每天制作x 件,根据题意得:48048010(150%)x x-=+, 解得:x=16,经检验x=16是原方程的解, 答:原来每天制作16件.4、济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x 天完成,乙做另一部分用了y 天完成,其中x 、y 均为正整数,且x <46,y <52,求甲、乙两队各做了多少天? 解:(1)设乙工程队单独完成这项工作需要x 天,由题意得301136()1120120x++=,解之得x=80, 经检验x=80是原方程的解. 答:乙工程队单独做需要80天完成;(2)因为甲队做其中一部分用了x 天,乙队做另一部分用了y 天, 所以112080x y+=,即y=80﹣x ,又x <46,y <52,所以28052346xx⎧-<⎪⎨⎪<⎩,解得42<x<46,因为x、y均为正整数,所以x=45,y=50,答:甲队做了45天,乙队做了50天.三、营销问题解题策略:在解营销问题的分式方程应用题时,可以依据数量=金额单价,利用分式来表示数量,根据数量之间的关系建立分式方程。
例:“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?分析:设第一批盒装花的进价是x元/盒,列表分析如下。
依据第二批所购花的盒数是第一批所购花盒数的2倍来建立方程。
解:设第一批盒装花的进价是x元/盒,则2×3000x=50005x-,解得 x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.练习:1、今年是扬州城庆2500周年,东关历史街区某商铺用3000元批发某种城庆旅游纪念品销售,由于销售状况良好,该商铺又筹集9000元资金再次批进该种纪念品,但这次的进价比第一次的进价提高了20%,购进的纪念品数量是第一次的2倍还多300个,如果商铺按9元/个的价格出售,当大部分纪念品售出后,余下的600个按售价的8折售完.(1)该种纪念品第一次的进货单价是多少元?(2)该商铺销售这种纪念品共盈利多少元?解:(1)设该种纪念品第一次的进货单价是x元,则第二次进货单价是(1+20%)x元,由题意,得900030002300 (120%)x x=⨯++,解得x=5,经检验x=5是方程的解.答:该种纪念品第一次的进货单价是5元.(2)[ 3000900055(120%)+⨯+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:商铺销售这种纪念品共盈利5820元.2、由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于万元且不少于万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?解:(1)设今年甲型号手机每台售价为x 元,由题意得,8000060000500x x=+,解得x=1500 经检验x=1500是方程的解.故今年甲型号手机每台售价为1500元. (2)设购进甲型号手机m 台,由题意得,17600≤1000m+800(20﹣m )≤18400, 8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)设总获利W 元,则W=(1500﹣1000)m+(1400﹣800﹣a )(20﹣m ), W=(a ﹣100)m+12000﹣20a .所以当a=100时,(2)中所有的方案获利相同.3、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次购书的进价为元,则第二次购书的进价为x 元. 根据题意得:1200150010 1.2x x+=解得:x=5经检验,x=5是原方程的解。