年金计算题
财务管理年金练习题

财务管理年金练习题1. 年金现值的计算某公司计划为员工设立退休金计划,员工每月将获得1000元的退休金,预计退休后将领取20年,假设年金的贴现率为5%,计算该员工退休金计划的现值。
2. 年金终值的计算假设你每年末存入银行1万元,存款年利率为3%,计算5年后的年金终值。
3. 等额年金的计算张先生计划每年初存入10000元作为孩子的教育基金,连续存10年,如果年利率为4%,计算10年后的教育基金总额。
4. 年金的支付频率某公司员工退休金计划规定每年支付一次,退休金为每月2000元,如果退休金的年贴现率为6%,计算员工退休金计划的现值。
5. 年金的递增支付某公司为员工提供退休金计划,第一年支付1万元,之后每年递增5%,预计共支付20年,假设年金的贴现率为4%,计算该退休金计划的现值。
6. 年金的递减支付某公司为员工提供退休金计划,第一年支付2万元,之后每年递减5%,预计共支付10年,假设年金的贴现率为3%,计算该退休金计划的现值。
7. 年金的期初支付假设你计划每年初存入银行1万元,存款年利率为4%,计算5年后的年金终值。
8. 年金的期末支付某公司员工退休金计划规定每年末支付一次,退休金为每月2500元,如果退休金的年贴现率为5%,计算员工退休金计划的现值。
9. 年金的不规则支付某公司为员工提供退休金计划,第一年支付1万元,第二年支付1.5万元,第三年支付2万元,之后每年递增10%,预计共支付20年,假设年金的贴现率为5%,计算该退休金计划的现值。
10. 年金的提前支付某公司为员工提供退休金计划,员工可以选择在退休前5年提前领取退休金,每年领取金额为1万元,如果年金的贴现率为6%,计算员工提前领取退休金计划的现值。
第二章年金计算题

第⼆章年⾦计算题(⼀)有关年⾦的相关概念1.年⾦的含义年⾦,是指⼀定时期内每次等额收付的系列款项。
具有两个特点:⼀是⾦额相等;⼆是时间间隔相等。
2.年⾦的种类年⾦包括:普通年⾦(后付年⾦)、即付年⾦(先付年⾦)、递延年⾦、永续年⾦等形式。
在年⾦中,系列等额收付的间隔期间只需要满⾜“相等”的条件即可,间隔期间可以不是⼀年,例如每季末等额⽀付的债券利息也是年⾦。
【例题·判断题】年⾦是指每隔⼀年,⾦额相等的⼀系列现⾦流⼊或流出量。
()『正确答案』×『答案解析』在年⾦中,系列收付款项的时间间隔只要满⾜“相等”的条件即可。
注意如果本题改为“每隔⼀年,⾦额相等的⼀系列现⾦流⼊或流出量,是年⾦”则是正确的。
即间隔期为⼀年,只是年⾦的⼀种情况。
【总结】(1)这⾥的年⾦收付间隔的时间不⼀定是1年,可以是半年、⼀个季度或者⼀个⽉等。
(2)这⾥年⾦收付的起⽌时间可以是从任何时点开始,如⼀年的间隔期,不⼀定是从1⽉1⽇⾄12⽉31⽇,可以是从当年7⽉1⽇⾄次年6⽉30⽇。
【总结】在年⾦的四种类型中,最基本的是普通年⾦,其他类型的年⾦都可以看成是普通年⾦的转化形式。
普通年⾦和即付年⾦是年⾦的基本形式,都是从第⼀期开始发⽣等额收付,两者的区别是普通年⾦发⽣在期末,⽽即付年⾦发⽣在期初。
递延年⾦和永续年⾦是派⽣出来的年⾦。
递延年⾦是从第⼆期或第⼆期以后才发⽣,⽽永续年⾦的收付期趋向于⽆穷⼤。
【⼩常识】诺贝尔奖是以瑞典著名化学家、硝化⽢油炸药发明⼈阿尔弗雷德·贝恩哈德·诺贝尔的部分遗产作为基⾦创⽴的。
诺贝尔奖包括⾦质奖章、证书和奖⾦⽀票。
在遗嘱中他提出,将部分遗产(920万美元)作为基⾦,以其利息分设物理、化学、⽣理或医学、⽂学及和平(后添加了经济奖)5个奖项,授予世界各国在这些领域对⼈类作出重⼤贡献的学者。
【例题·单选题】(2010年考题)2007年1⽉1⽇,甲公司租⽤⼀层写字楼作为办公场所,租赁期限为3年,每年12⽉31⽇⽀付租⾦10万元,共⽀付3年。
关于年金方面的计算题

高等教育自学考试财务管理学试题答案(01-07年真题)2001年10月四、计算题(本大题共3小题,每小题8分,共24分) 35.某企业有一个投资项目,预计在2001年至2003年每年年初投入资金300万元,从2004年至2013年的十年中,每年年末流入资金100万元。
如果企业的贴现率为8%,试计算:(1)在2003年末各年流出资金的终值之和 (2)在2004年初各年流入资金的现值之和 (3)判断该投资项目方案是否可行 (已知:FVIFA8%,3=3.246 PVIFA8%,10=6.710 计算结果保留到整数)【答案】解:(1)流出资金终值之和V=A•FVIFA•(1+i)=300×3.246×(1+8%)=1051.7≈1052(万元)(2)流入资金现值之和P=A•PVIFA=100×6.710=671(万元)(3)根据计算可知,流入小于流出,所以该方案不可取。
36.资料(新教材中没有流动资产周转率的计算)红星公司2000年度实际销售收入为14400万元,流动资金全年平均占用额4800万元,该公司2001年度计划销售收入较上年增加10%,同时确定计划流动资金周转天数较上年缩短5%。
要求: (1)计算2001年度流动资金周转天数; (2)计算2001年度流动资金计划需用量; (1)计算2001年度流动资金计划需用量的节约额(全年按360天计算)。
【答案】解:(1)2000年度流动资金周转天数:14400/4800=3(次)或360/3=120(天)(4800×360)/14400=120(天)(2)2001年度流动资金计划需用量:14400×(1+10%)/360×120×(1-5%)=15840/360×114=44×114=5016(万元)(3)2001年度流动资金计划需用量节约额:44×(120-114)=264(万元)替换:红星公司2000年度实际销售收入为14400万元,销售成本率为60%,存货资金全年平均占用额4800万元,该公司2001年度计划销售收入较上年增加10%,同时确定计划流动资金周转天数较上年缩短5%。
第二章年金计算题1

(一)有关年金的相关概念1.年金的含义年金,是指一定时期内每次等额收付的系列款项。
具有两个特点:一是金额相等;二是时间间隔相等。
2.年金的种类年金包括:普通年金(后付年金)、即付年金(先付年金)、递延年金、永续年金等形式。
在年金中,系列等额收付的间隔期间只需要满足“相等”的条件即可,间隔期间可以不是一年,例如每季末等额支付的债券利息也是年金。
【例题·判断题】年金是指每隔一年,金额相等的一系列现金流入或流出量。
()『正确答案』×『答案解析』在年金中,系列收付款项的时间间隔只要满足“相等”的条件即可。
注意如果本题改为“每隔一年,金额相等的一系列现金流入或流出量,是年金”则是正确的。
即间隔期为一年,只是年金的一种情况。
【总结】(1)这里的年金收付间隔的时间不一定是1年,可以是半年、一个季度或者一个月等。
(2)这里年金收付的起止时间可以是从任何时点开始,如一年的间隔期,不一定是从1月1日至12月31日,可以是从当年7月1日至次年6月30日。
【总结】在年金的四种类型中,最基本的是普通年金,其他类型的年金都可以看成是普通年金的转化形式。
普通年金和即付年金是年金的基本形式,都是从第一期开始发生等额收付,两者的区别是普通年金发生在期末,而即付年金发生在期初。
递延年金和永续年金是派生出来的年金。
递延年金是从第二期或第二期以后才发生,而永续年金的收付期趋向于无穷大。
【小常识】诺贝尔奖是以瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德·贝恩哈德·诺贝尔的部分遗产作为基金创立的。
诺贝尔奖包括金质奖章、证书和奖金支票。
在遗嘱中他提出,将部分遗产(920万美元)作为基金,以其利息分设物理、化学、生理或医学、文学及和平(后添加了经济奖)5个奖项,授予世界各国在这些领域对人类作出重大贡献的学者。
【例题·单选题】(2010年考题)2007年1月1日,甲公司租用一层写字楼作为办公场所,租赁期限为3年,每年12月31日支付租金10万元,共支付3年。
财务管理年金练习题

精选版ppt
7
精选版ppt
4
计算题
• 5、Mrs. Kang 将现金2000元存入银行,存期4年,按单利计 算,年利率为10%,到期时,她可得到本利和是多少?
• 解:F=P*(1+i*n)=2000*(1+10%*4)=2800(元)
精选版ppt
5
计算题
• 6、Dr. Ma的公司需用一台实验设备,买价为150 000元, 使用期限为10年。如果租入,则每年年末要支付22 000元。 除此以外,其他情况完全一样,假设利率为8%。计算并 回答该公司购买设备好还是租用设备好。
• 解:P=22000*(P/A,8%,10)=22000*6.7101 • =147622.2(元)
• 147622.2<150000,所以租用好.
精选版ppt
6
计算题
• 7、Emily从现在起准备每年年末等额存入银行一笔钱,目 的在于5年后从银行提取15 000元,用于购买MINI Cooper。如果银行存款利率为12%,每年应存多少才能 达到目的?
• 请帮Angela计算一下,(1)每年按揭支付的钱一共相当于现 在的多少钱?(2)按揭好还是直接付现更划算?
• 解:(1)P=A*(P/A,8%,5)=4*3.9927=15.97(万元) • Angela付给开发商的资金现值:12+15.97=27.97(万元) • 直接付现:120平方米*2500元/平方米=30(万元) • 可见,分期付款对Angela更划算.
精选版ppt
2
计算题
• 3、Mr. S向银行借入一笔款项做火锅店投资,年利率为 10%,前5年不用还本付息,从第6年至第10年每年年末还 本息6000元,请计算Mr.S 向银行借入了多少钱。
年金计算题1

(一)有关年金的相关概念1.年金的含义年金,是指一定时期内每次等额收付的系列款项。
具有两个特点:一是金额相等;二是时间间隔相等。
2.年金的种类年金包括:普通年金(后付年金)、即付年金(先付年金)、递延年金、永续年金等形式。
在年金中,系列等额收付的间隔期间只需要满足“相等”的条件即可,间隔期间可以不是一年,例如每季末等额支付的债券利息也是年金。
【例题·判断题】年金是指每隔一年,金额相等的一系列现金流入或流出量。
()『正确答案』×『答案解析』在年金中,系列收付款项的时间间隔只要满足“相等”的条件即可。
注意如果本题改为“每隔一年,金额相等的一系列现金流入或流出量,是年金”则是正确的。
即间隔期为一年,只是年金的一种情况。
【总结】(1)这里的年金收付间隔的时间不一定是1年,可以是半年、一个季度或者一个月等。
(2)这里年金收付的起止时间可以是从任何时点开始,如一年的间隔期,不一定是从1月1日至12月31日,可以是从当年7月1日至次年6月30日。
【总结】在年金的四种类型中,最基本的是普通年金,其他类型的年金都可以看成是普通年金的转化形式。
普通年金和即付年金是年金的基本形式,都是从第一期开始发生等额收付,两者的区别是普通年金发生在期末,而即付年金发生在期初。
递延年金和永续年金是派生出来的年金。
递延年金是从第二期或第二期以后才发生,而永续年金的收付期趋向于无穷大。
【小常识】诺贝尔奖是以瑞典着名化学家、硝化甘油炸药发明人阿尔弗雷德·贝恩哈德·诺贝尔的部分遗产作为基金创立的。
诺贝尔奖包括金质奖章、证书和奖金支票。
在遗嘱中他提出,将部分遗产(920万美元)作为基金,以其利息分设物理、化学、生理或医学、文学及和平(后添加了经济奖)5个奖项,授予世界各国在这些领域对人类作出重大贡献的学者。
【例题·单选题】(2010年考题)2007年1月1日,甲公司租用一层写字楼作为办公场所,租赁期限为3年,每年12月31日支付租金10万元,共支付3年。
关于年金方面的计算题

高等教育自学考试财务管理学试题答案(01-07年真题)2001年10月四、计算题(本大题共3小题,每小题8分,共24分) 35.某企业有一个投资项目,预计在2001年至2003年每年年初投入资金300万元,从2004年至2013年的十年中,每年年末流入资金100万元。
如果企业的贴现率为8%,试计算:(1)在2003年末各年流出资金的终值之和 (2)在2004年初各年流入资金的现值之和 (3)判断该投资项目方案是否可行 (已知:FVIFA8%,3=3.246 PVIFA8%,10=6.710 计算结果保留到整数)【答案】解:(1)流出资金终值之和V=A•FVIFA•(1+i)=300×3.246×(1+8%)=1051.7≈1052(万元)(2)流入资金现值之和P=A•PVIFA=100×6.710=671(万元)(3)根据计算可知,流入小于流出,所以该方案不可取。
36.资料(新教材中没有流动资产周转率的计算)红星公司2000年度实际销售收入为14400万元,流动资金全年平均占用额4800万元,该公司2001年度计划销售收入较上年增加10%,同时确定计划流动资金周转天数较上年缩短5%。
要求: (1)计算2001年度流动资金周转天数; (2)计算2001年度流动资金计划需用量; (1)计算2001年度流动资金计划需用量的节约额(全年按360天计算)。
【答案】解:(1)2000年度流动资金周转天数:14400/4800=3(次)或360/3=120(天)(4800×360)/14400=120(天)(2)2001年度流动资金计划需用量:14400×(1+10%)/360×120×(1-5%)=15840/360×114=44×114=5016(万元)(3)2001年度流动资金计划需用量节约额:44×(120-114)=264(万元)替换:红星公司2000年度实际销售收入为14400万元,销售成本率为60%,存货资金全年平均占用额4800万元,该公司2001年度计划销售收入较上年增加10%,同时确定计划流动资金周转天数较上年缩短5%。
年金终值和现值得计算

4.永续年金
[例题]:拟建立一项永久性奖学金,每年计划 颁发1万元奖金,若利率为10%,现在应存入 多少钱? P=1/10%=10万元 [例题]:如果有一股优先股,每季分得股息3 元,而利率是年利6%,对于一个准备购买这 种股票的人来说,他愿意出多少前来购买此优 先股? i=6%/4=1.5% P=3/1.5%=200元
3 延期年金 [例题]:某企业向银行借入一笔款项,银行的 贷款利率是8%,银行规定前10年不用还本付 息,但是从第11年到第20年每年年末偿还本息 1000元,问这笔款项的现值应为多少?
P=1000﹡(P/A, 8%, 10) ﹡(P/F, 8%, 10) =100A﹡﹡(P/A, 8%, 20)-A ﹡ (P/A, 8%, 10) =1000﹡(9.818−6.710)=3107 元
PVA=A﹡ (P/A, 8%, 3) =5000﹡2.577=12885元
1.3普通年金现值 [例题]:某企业打算购置一台柴油机更新目前 使用的汽油机,每月可节省燃料费用60元,但 柴油机比汽油机高1500元。请问柴油机是用多 少年才合算?(假设年利率为12%,每月复利 一次)
1500≤60﹡ (P/A, 1%, n) 25≤ (P/A, 1%, n) 查表得:n=30月
A= P/ (P/A, 12%, 8)=2000/4.968=402.6万元
2.1先付年金终值
[例题]:某人每年年初存入1000元,存 款利率i=8%,问第10年末的本利和应是 多少?
F=1000﹡(F/A,8%,10) ﹡(1+8%) =1000﹡14.408﹡1.08=15645元 F=1000﹡ (F/A,8%,11) −1000 =1000﹡(16.645−1)=15645元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)有关年金的相关概念1.年金的含义年金,是指一定时期内每次等额收付的系列款项。
具有两个特点:一是金额相等;二是时间间隔相等。
2.年金的种类年金包括:普通年金(后付年金)、即付年金(先付年金)、递延年金、永续年金等形式。
在年金中,系列等额收付的间隔期间只需要满足“相等”的条件即可,间隔期间可以不是一年,例如每季末等额支付的债券利息也是年金。
【例题·判断题】年金是指每隔一年,金额相等的一系列现金流入或流出量。
()?『正确答案』×『答案解析』在年金中,系列收付款项的时间间隔只要满足“相等”的条件即可。
注意如果本题改为“每隔一年,金额相等的一系列现金流入或流出量,是年金”则是正确的。
即间隔期为一年,只是年金的一种情况。
【总结】(1)这里的年金收付间隔的时间不一定是1年,可以是半年、一个季度或者一个月等。
(2)这里年金收付的起止时间可以是从任何时点开始,如一年的间隔期,不一定是从1月1日至12月31日,可以是从当年7月1日至次年6月30日。
【总结】在年金的四种类型中,最基本的是普通年金,其他类型的年金都可以看成是普通年金的转化形式。
普通年金和即付年金是年金的基本形式,都是从第一期开始发生等额收付,两者的区别是普通年金发生在期末,而即付年金发生在期初。
递延年金和永续年金是派生出来的年金。
递延年金是从第二期或第二期以后才发生,而永续年金的收付期趋向于无穷大。
【小常识】诺贝尔奖是以瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德·贝恩哈德·诺贝尔的部分遗产作为基金创立的。
诺贝尔奖包括金质奖章、证书和奖金支票。
在遗嘱中他提出,将部分遗产(920万美元)作为基金,以其利息分设物理、化学、生理或医学、文学及和平(后添加了经济奖)5个奖项,授予世界各国在这些领域对人类作出重大贡献的学者。
【例题·单选题】(2010年考题)2007年1月1日,甲公司租用一层写字楼作为办公场所,租赁期限为3年,每年12月31日支付租金10万元,共支付3年。
该租金有年金的特点,属于()。
A.普通年金B.即付年金C.递延年金D.永续年金『正确答案』A『答案解析』本题考核普通年金的特点。
年末等额支付,属于普通年金。
(2)即付年金现值的计算【定义方法】即付年金现值,就是各期的年金分别求现值,然后累加起来。
方法一:从上图可以看出,n期即付(先付)年金与n期普通(后付)年金的付款次数相同,但是由于付款时间的不同,在计算现值时,n期即付(先付)年金比n期普通(后付)年金少贴现一期。
所以,可先求出n期普通(后付)年金的现值,然后再乘以(1+i)便可以求出n期即付(先付)年金现值。
方法二:可根据n期即付(先付)年金现值与n-1期普通(后付)年金现值的关系推导出另外一个公式。
n期即付(先付)年金现值与n-1期普通(后付)年金现值贴现期数相同,但比n-1期普通(后付)年金多一期不用贴现的付款A,因此,只要将n-1期普通(后付)年金的现值加上一期不用贴现的付款A,经过整理便可以求出n期即付年金现值。
即付年金现值系数与普通年金现值系数相比,期数减1,系数加1。
【例题·计算题】A公司租赁一设备,在10年中每年年初支付租金5 000元,年利率为8%,求这些租金的现值?『正确答案』【方法一】P(现值)=A×年金现值系数×(1+i)P=A×(P/A,i,n)×(1+i)P=5 000×(P/A,8%,10)×(1+8%)=36 234(元)【方法二】P(现值)=A×年金现值系数,期数减1,系数加1P=A[(P/A,i,n-1)+1]=5 000×[(P/A,6%,9)+1]=5 000×(6.247+1)=36 234(元)【例题·计算题】张先生采用分期付款方式购入商品房一套,每年年初付款15 000元,分10年付清。
若银行利率为6%,该项分期付款相当于一次现金支付的购买价是多少?『正确答案』【方法一】P(现值)=A×年金现值系数×(1+i)P=A×(P/A,i,n)×(1+i)P=15 000×(P/A,6%,10)×(1+6%)=117 025.5(元)【方法二】P(现值)=A×年金现值系数,期数减1,系数加1P=A[(P/A,i,n-1)+1]P=A·[(P/A,i,n-1)+1]=15 000×[(P/A,6%,9)+1]=15 000×(6.8017+1)=117 025.5(元)【例题·计算题】李博士是国内某领域的知名专家,某日接到一家上市公司的邀请函,邀请他作为公司的技术顾问,指导开发新产品。
邀请函的具体条件如下:(1)每个月来公司指导工作一天;(2)每年聘金10万元;(3)提供公司所在地A市住房一套,价值80万元;(4)在公司至少工作5年。
李博士对以上工作待遇很感兴趣,对公司开发的新产品也很有研究,决定应聘。
但他不想接受住房,因为每月工作一天,只需要住公司招待所就可以了,这样住房没有专人照顾,因此他向公司提出,能否将住房改为住房补贴。
公司研究了李博士的请求,决定可以在今后5年里每年年初给李博士支付20万元房贴。
收到公司的通知后,李博士又犹豫起来,因为如果向公司要住房,可以将其出售,扣除售价5%的契税和手续费,他可以获得76万元,而若接受房贴,则每年年初可获得20万元。
假设每年存款利率2%,则李博士应该如何选择?『正确答案』要解决上述问题,主要是要比较李博士每年收到20万元的现值与售房76万元的大小问题。
由于房贴每年年初发放,因此对李博士来说是一个即付年金。
其现值计算如下:P(现值)=A×年金现值系数,期数减1,系数加1P=A[(P/A,i,n-1)+1]P=20×[(P/A,2%,4)+1]=20×[3.8077+1]=20×4.8077=96.154(万元)从这一点来说,李博士应该接受房贴。
如果李博士本身是一个企业的业主,其资金的投资回报率为32%,则他应如何3.递延年金计算递延年金,是指第一次等额收付发生在第二期或第二期以后的年金。
包括递延年金终值和递延年金现值计算(1)递延年金终值计算计算递延年金终值和计算普通年金终值基本一样,只是注意扣除递延期即可。
F(终值)=A(F/A,i,n)式中,“n”表示A的个数,与递延期没有关系【例题·计算题】某投资者拟购买一处房产,开发商提出了三个付款方案:方案一:现在起15年内每年末支付10万元;(分析:普通年金)方案二:现在起15年内每年初支付9.5万元;(分析:即付年金)方案三:前5年不支付,第六年起到15年每年末支付18万元。
(分析:递延年金)假设按银行贷款利率10%复利计息,若采用终值方式比较,问哪一种付款方式对购买者有利?『正确答案』终值点确定为15年末方案一:普通年金F(终值)=A(F/A,i,n)(注:年金终值系数)F=1O×(F/A,10%,15)=10×31.772=317.72(万元)方案二:即付年金F(终值)=A[(F/A,i,n+1)-1](注:年金终值系数,期数+1,系数-1)F=9.5×[(F/A,10%,16)-1]=9.5×(35.950-1)=332.03(万元)方案三:递延年金F=18×(F/A,10%,10)=18×15.937=286.87(万元)从上述计算可得出,采用第三种付款方案对购买者有利。
(2)递延年金现值的计算【方法一】两次折现,把递延期以后的年金套用普通年金公式求现值,这是求出来的现值是第一个等额收付前一期期末的数值,距离递延年金的现值点还有m期,再向前按照复利现值公式折现m期即可。
【例题·计算题】某企业向银行借入一笔款项,银行贷款的年利率为10%,每年复利一次。
银行规定前6年不用还本付息,但从第7年至第10年每年年末偿还本息50万元。
用该方法计算这笔款项的现值。
『正确答案』关注:每年年末收付的递延期数m=7-1=6P(现值)=A(P/A,i,n)×(P/F,i,m)=A×n期的年金现值系数×m期的复利现值系数P=A×(P/A,10%,4)×(P/F,10%,6)=50×3.170×0.564=89.394(万元)【方法二】把递延期每期期末都当作有等额的收付A,把递延期和以后各期看成是一个普通年金,计算出这个普通年金的现值,再把递延期多算的年金现值减掉即可。
【例题·计算题】某企业向银行借入一笔款项,银行贷款的年利率为10%,每年复利一次。
银行规定前6年不用还本付息,但从第7年至第10年每年年末偿还本息50万元。
用该方法计算这笔款项的现值。
『正确答案』P=A×[(P/A,i,m+n)-(P/A,i,m)]=A×[m+n期年金现值系数-m期年金现值系数]P=A×(P/A,10%,10)-A×(P/A,10%,6)=50×[(P/A,10%,10)-(P/A,10%,6)]=50×(6.145-4.355)=89.5(万元)【方法三】先求递延年金终值,再折现为现值。
【例题·计算题】某企业向银行借入一笔款项,银行贷款的年利率为10%,每年复利一次。
银行规定前6年不用还本付息,但从第7年至第10年每年年末偿还本息50万元。
用该方法计算这笔款项的现值。
『正确答案』P=A×[n期年金终值系数×m+n期复利现值系数]P=A×(F/A,i,n)×(P/F,i,m+n)P=50×(F/A,10%,4)×(P/F,10%,10)=50×4.641×0.386=89.5713【例题·计算题】某企业向银行借入一笔款项,银行贷款的年利率为10%,每年年末复利一次。
银行规定前10年不用还本付息,但从第11年至第20年每年年末偿还本息5 000元。
【要求】用3种方法计算这笔款项的现值。
『正确答案』方法一:P=A×年金现值系数×复利现值系数P=A×(P/A,10%,10)×(P/F,10%,10)=5 000×6.145×0.386=11 860(元)方法二:P=A×[m+n期年金现值系数-m期年金现值系数]P=A×[(P/A,10%,20)-(P/A,10%,10)]=5 000×(8.514-6.145)=11 845(元)两种计算方法相差15元,是因小数点的尾数造成的。