数值分析报告

合集下载

数值分析实验报告

数值分析实验报告

数值分析实验报告【引言】数值分析是一门研究利用计算机和数学方法解决实际问题的学科,它在工程、科学和经济领域中有着广泛的应用。

在这个实验报告中,我将分享我在数值分析实验中的一些发现和结果。

【实验目的】本次实验的目的是通过数值方法对给定的问题进行求解,并分析数值方法的精确性和稳定性。

我们选择了经典的插值和数值积分问题来进行实验。

【实验过程】在插值问题中,我使用了拉格朗日插值和样条插值两种方法。

通过使用已知的数据点,这些方法能够通过构造多项式函数来逼近原始函数,从而能够在未知点上进行预测。

通过比较两种插值方法的结果,我发现拉格朗日插值在低维数据上表现更好,而样条插值在高维数据上更能保持插值曲线的平滑性。

在数值积分问题中,我使用了复合梯形公式和复合辛普森公式来进行数值积分。

这两种方法可以将复杂的区间上的积分问题转化为对若干个小区间进行数值积分的问题。

实验结果表明,复合辛普森公式在使用相同的步长时,其数值积分结果更为精确。

【实验结果】我以一个实际问题作为例子来展示实验结果。

问题是计算半径为1的圆的面积。

通过离散化的方法,我将圆划分为多个小的扇形区域,并使用数值积分方法计算每个扇形的面积。

最后将每个扇形的面积相加,即可得到圆的近似面积。

通过调整离散化的精度,我发现随着扇形数量的增加,计算得到的圆的面积越接近真实的圆的面积。

在插值问题中,我选择了一段经典的函数进行插值研究。

通过选择不同的插值节点和插值方法,我发现当插值节点越密集时,插值结果越接近原函数。

同时,样条插值方法在高阶导数连续的情况下能够更好地逼近原始函数。

【实验总结】通过这次实验,我对数值分析中的插值和数值积分方法有了更深入的理解。

我了解到不同的数值方法在不同的问题中有着不同的适用性和精确度。

在实际应用中,我们需要根据具体问题选择合适的数值方法,并进行必要的数值计算和分析,以获得准确可靠的结果。

总的来说,数值分析作为一种重要的工具和方法,在科学研究和工程实践中具有广泛的应用,并且不断发展和创新。

数值分析综合实验报告

数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。

二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。

(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。

(2)Newton法:利用函数的导数信息,通过迭代逼近根。

(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。

3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。

(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。

(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。

三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。

(2)计算插值多项式在未知点的函数值。

2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。

(2)计算插值多项式在未知点的函数值。

3. 方程求根方法(1)输入方程和初始值。

(2)选择求解方法(二分法、Newton法、不动点迭代法)。

(3)迭代计算,直到满足精度要求。

4. 数值积分方法(1)输入被积函数和积分区间。

(2)选择积分方法(矩形法、梯形法、辛普森法)。

(3)计算积分值。

四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。

(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。

(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。

(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。

3. 数值积分方法(1)矩形法:计算简单,但精度较低。

东北大学数值分析实验报告

东北大学数值分析实验报告

数值分析实验班级 姓名 学号实验环境: MATLAB实验一 解线性方程组的迭代法(1)一、实验题目 对以下方程组分别采用Jacobi 迭代法, Gaaus-Seidel 迭代法求解和SOR 迭代法求解。

(2)线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------------------13682438141202913726422123417911101610352431205362177586832337616244911315120130123122400105635680000121324⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-2119381346323125 (2)对称正定线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------------1924336021411035204111443343104221812334161206538114140231212200420424⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡87654321x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---4515221123660(3)三对角线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------------4100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----5541412621357 二、实验要求(1)应用迭代法求线性方程组, 并与直接法作比较。

数值分析实验报告--实验2--插值法

数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。

显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。

龙格(Runge )给出一个例子是极著名并富有启发性的。

设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。

实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。

(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。

(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。

1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。

1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。

Matlab 脚本文件为Experiment2_1_1fx.m 。

可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。

数值分析积分实验报告(3篇)

数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。

通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。

二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。

实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。

2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。

实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。

3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。

实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。

4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。

它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。

实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。

三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。

2. 选取几个不同的函数,对积分区间进行划分。

3. 使用不同方法计算积分近似值,并与实际积分值进行比较。

4. 分析不同方法的精度和效率。

四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。

2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。

3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。

4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。

数值分析实验报告

数值分析实验报告

数值分析实验报告
一、实验背景
本实验主要介绍了数值分析的各种方法。

在科学计算中,为了求解一
组常微分方程或一些极限问题,数值分析是一种有用的方法。

数值分析是
一种运用计算机技术对复杂模型的问题进行数学分析的重要手段,它利用
数学模型和计算机程序来解决复杂的数学和科学问题。

二、实验内容
本实验通过MATLAB软件,展示了以下几种数值分析方法:
(1)拉格朗日插值法:拉格朗日插值法是由法国数学家拉格朗日发
明的一种插值方法,它可以用来插值一组数据,我们使用拉格朗日插值法
对给定的点进行插值,得到相应的拉格朗日多项式,从而计算出任意一个
点的函数值。

(2)最小二乘法:最小二乘法是一种常用的数据拟合方法,它可以
用来拟合满足一定函数的点的数据,它的主要思想是使得数据点到拟合曲
线之间的距离的平方和最小。

(3)牛顿插值法:牛顿插值法是一种基于差商的插值方法,它可以
用来插值一组数据,可以求得一组数据的插值函数。

(4)三次样条插值:三次样条插值是一种基于三次样条的插值方法,它可以用来对一组数据进行插值,可以求得一组数据的插值函数。

三、实验步骤
1.首先启动MATLAB软件。

数值分析实验报告心得(3篇)

数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。

通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。

以下是我对数值分析实验的心得体会。

一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。

2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。

3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。

4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。

二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。

(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。

最后,我们将插值多项式与原始函数进行比较,分析误差。

2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。

(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。

最后,比较不同方法的收敛速度和精度。

3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。

(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。

最后,比较不同方法的计算量和精度。

4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。

(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。

数值分析原理实验报告

数值分析原理实验报告

一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。

二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。

对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。

二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。

(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。

2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。

对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。

牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。

(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。

3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。

对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。

(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB具有高效的数值计算以及符号计算功能,能使用户能够使用户从繁杂的数学运算分析中解脱出来;同时,MATLAB还具有完备的图形处理功能,实现计算结果和编程的可视化;具有友好的界面用户界面和接近数学表达式的自然化语言,更贴近使用者的思路;具有丰富的应用工具箱(如信号处理工具箱、通信工具箱等),为用户提供了大量方便使用的处理工具。
附录
1.newton法计算程序
()
clc,clear
syms x
format long
y1=diff(log(x+sin(x)),x);%对原函数求导
y=log(x+sin(x));
z=input('input');
n=0;
xi=0;
while abs(xi-z)>=1e-8%设置精度
xi=z;
Y1=subs(y1,x,z);%计算函数值
1.000000000000000 0.000016935087808 0.000016933026655
当h=0.2时,
x yΔy
1.0e+03 *
0 0.001000000000000 0
0.000200000000000 0.005000000000000 0.004981684361111
0.000400000000000 0.025000000000000 0.024999664537372
3.3
从上面结果中可以看到,在h=0.1时,绝对误差在逐步变小,因此在这种情况下认为此方法是稳定的。当h=0.2时,绝对误差逐渐扩大,因此在h=0.2时,算法不稳定。
1)用标准的四阶Runge-Kutta算法计算常微分方程时,不同的步长对算法的稳定性有影响。不够稳定的步长下面的计算,误差会越来越大,结果失真严重。
2)从sinx=0的两种方法中可以看出,Newton-Steffensen迭代法明显快于Newton法,且Newton和Newton-Steffensen迭代法在单根附近没有较快的收敛速度,迭代法是否收敛,与初始近似值x0的好坏有重大关系,如在x0=1.6处得到的收敛解很大,这是因为f’(x)=cos(1.6 180/ ) ,很难说明此处的敛散性。
Columns 8 through 14
-18.1566-17.9069-11.0226 2.0284 19.8549 40.3626 61.0840
Columns 15 through 17
79.5688 93.7700 102.3677)
2.2
1)根据题目要求,多项式拟合通过MATLAB提供的polyfit()函数实现,并给出其对应规律的近似多项式。用次数分别为3,4,5,6的多项式进行拟合,根据所编程序,在MATLAB命令窗口输入拟合多项式次数,运行得到结果如下:
X0
NEWTON
Steffensen
迭代次数
收敛解
迭代次数
收敛解
第一问
0.1
6
0.510973429388569
9
0.510973429388569
1
6
0.510973429388569
4
0.510973429388569
1.5
不收敛
6
0.510973429388569
2
24
NaN + NaNi
10
《数值分析上机实习报告》
2015年12月

本次上机实习全部以MATLAB7.0软件作为运算环境进行方程组求解、数值积分、微分的求解。MATLAB(MATrixLABoratory)是1984年MathWork公司研发一种广泛应用于工程计算以及数值分析领域的新型高级语言。经过多年的发展与竞争已经成为国际公认的最优秀的工程应用开发环境。MATLAB功能强大、简单易学、编程效率较高,深受广大科技工作者欢迎。
0.000600000000000 0.125000000000000 0.124999993855788
0.000800000000000 0.625000000000000 0.624999999887465
0.001000000000000 3.125000000000000 3.124999999997939
3
6.283185307179580
3
3
3.141592653589790
3
NaN
1.3
1)从Newton和Newton-Steffensen迭代法可以看出,Newton-Steffensen迭代法明显快于Newton法,从计算结果看出x=0.510973429388569为最终精确解,而x0=0.1和1时收敛速度较快,说明牛顿法与基于牛顿法Steffensen加速法在单根附近有较快的收敛速度,迭代法是否收敛,与初始近似值x0的好坏有重大关系。
利用题目中所给对照数据编程与所求多项式近似函数f(x)进行比对,运行MATLAB得到结果如下:
图2.5对照数据与近似函数对比
由图像可知参照数据基本上在六次多项式拟合得到的近似函数上。根据MATLAB程序得到最大相对计算误差为0.0146,说明拟合程度较好。
由2.6图可知,线性插值方法绘制出的曲线较为粗糙,三次样条插值方法与Hermite插值方法绘制出的曲线较为理想,但就精度而言本例样条插值方法略逊于三次Hermite插值方法。
MATLAB具有以下一些优势:(1)友好的工作平台和编程环境;(2)简单易用的程序语言;(3)强大的科学计算机数据处理能力;(4)出色的图形处理功能;(5)应用广泛的模块集合工具箱;(6)使用的程序接口和发布平台;(7)应用软件开发(包括用户界面)。
选用MATLAB作为本次上机实验的实验环境主要有以下原因:(1)MATLAB语言是的运算过程更加贴近于数学语言,运算过程方便学习相关内容的知识点一级公式等;(2)MATLAB的计算结果可以直接显示函数运算图像,直观清晰地分析计算结果;(3)MATLAB对于一些数值运算过程来说,直接提供了运算方法,比如,一些特殊的矩阵和一些特定的函数,可以直接在运算和程序过程中表达,这为计算的简洁化带来很大的帮助;(4)MATLAB语言的数据运算功能较为强大,充分满足计算精度。
图2.1三次多项式拟合结果示意图图2.2四次多项式拟合结果示意图
图2.3五次多项式拟合结果示意图图2.4六次多项式拟合结果示意图
2)插值多项式计算,通过MATLAB提供的interp1()函数来实现。就本例来讲拟分别采用线性插值、三次样条插值,以及三次Hermite插值方法进行曲线拟合,得到曲线如下所示:
Y=subs(y,x,z);
Y1=double(Y1);
Y=double(Y);
z=z-Y/Y1;
n=n+1;
if n>100%通过循环控制迭代步数
n=0;
z=0;
break;
end
end
n
double(z)
(2)
clc,clear
syms x
format long
y1=diff(sin(x),x);
当h=0.1时,
x yΔy
0 1.000000000000000 0
0.100000000000000 0.333333333333333 0.197998050096721
0.200000000000000 0.111111111111111 0.092795472222377
0.300000000000000 0.037037037037037 0.034558284860371
通过本次上机实践,我学习了一定的MATLAB语言技巧,对今后的科学研究有比较大的帮助。同时,掌握一门享有较高认可度的软件的使用方法是解决问题的一大有利武器。提高的对科学研究以及数学计算的热情。使用MATLAB语言可以很大程度上帮助我们解决繁杂的数值计算问题,得到理想的计算结果,同时可以保证较高计算精度和计算效率,极大地提高了工作效率。同时,MATLAB软件有优良的绘图功能,今后一定会继续挖掘其中的新内容,学习更加精髓的部分,并且熟练应用于解决实际问题和科学研究中。
Columns 8 through 14
4.3000 4.7000 5.1000 5.5000 5.9000 6.3000 6.7000
Columns 15 through 17
7.1000 7.5000 7.9000
yi =
Columns 1 through 7
42.1498 41.4620 35.1182 24.3852 11.2732 -1.7813-12.3006
1
1.1
分别用牛顿法,及基于牛顿算法下的Steffensen加速法求:
1)ln(x+sinx)=0的根,初值x0分别取0.1, 1,1.5,2, 4进行计算。
2)sinx=0的根,初值x0分别取1,1.4,1.6,1.8,3进行计算。
分析其中遇到的现象与问题
1.2
求方程ln(x+sinx)=0的解即求方程x+sinx=1的解。使用Newton法,令f(x)=x+sinx-1,则f’(x)=cosx+1,直至|xk+1-xk|<10-8时,结束迭代。使用Newton-Steffensen迭代法在相同精度下迭代结束。其迭代结果与迭代次数如下:
2
2.1
某过程涉及两变量x和y,拟分别用插值多项式和多项式拟合给出其对应规律的近似多项式,已知xi与yi之间的对应数据如下:
xi=1,2,3,4...........10
yi = 34.658840.3719 14.6448 -14.2721-13.3570 24.8234 75.2795
103.5743 97.4847 78.2392
0.510973429388569
4
相关文档
最新文档