高三第二次月考数学试卷(理科)(附答案)
台州一中2012学年第一学期高三第二次月考数学(理)试卷(附答案)

台州一中2012学年第一学期高三第二次月考试卷数 学(理) 2012.10命题人 蒋健敏 审题人 汤香花 考试时间:120分钟 满分:150分一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|ln(1),}A x y x y R ==-∈,集合2{|,},B y y x x R A B ==∈⋂=则( )A .φB .[0,1)C .(1,+∞)D .(-∞,1)2. 函数3log ,0()2,0xx x f x x >⎧=⎨≤⎩,则(9)(0)f f +=( ) A .0B .1C .2D .33.为了得到函数sin(2)6y x π=+的图像,只需把函数sin(2)3y x π=-的图像( )A .向左平移4π个长度单位 B .向右平移4π个长度单位 C.向左平移2π个长度单位 D.向右平移2π个长度单位4.已知条件2:340p x x --≤;条件22:690q x x m -+-≤,若p 是q 的充分不必要条件,则m 的取值范围是 ( )A. [1,1]-B.[4,4]-C.(,1][1,)-∞-⋃+∞D. (,4][4,)-∞-⋃+∞5.设函数()sin()(0,0,||)2f x A x A πωϕωϕ=+≠><的图像关于直线23x π=对称,且它的最小正周期为π,则 ( )A. ()f x 在区间52[,]123ππ上是减函数 B. ()f x 的图像经过点1(0,)2C.()f x 的图像的一个对称中心是5(,0)12π D. ()f x 的最大值为A 6.设双曲线C :22221x y a b-=(a >0,b >0)的右焦点为F ,左,右顶点分别为A 1,A 2.过F 且与双曲线C 的一条渐近线平行的直线l 与另一条渐近线相交于P ,若P 恰好在以A A 为直径的圆上,则双曲线C 的离心率为 ( )A. B. 2 C. D. 37.从集合{-3-2-1,0,1,2,3},,中,随机取出4个数组成子集,使得这4个数中的任何两个数之和不等于1,则取出这样的子集的概率是 ( )A.435 B. 835 C. 1635D. 27358.若多项式1621601216(1)x a a x a x a x +=++++ ,则1238238a a a a ++++= ( )A.182 B. 172 C. 162 D. 1529.设函数()f x 是定义在R 上的偶函数,且(2)(2)f x f x +=-,当[2,0]x ∈-时,()(1,2xf x =-若在区间[2,6]-内的关于x 的方程()log (2)0(0a f x x a -+=>且1)a ≠恰有4个不同的实数根,则实数a 的取值范围是( )A. (8,)+∞B. (1,8)C. (1,4)D. 1(,1)410.已知函数1(),()ln 22xx f x e g x ==+,对任意,a R ∈存在(0,)b ∈+∞使()()f a g b =,则b a -的最小值为( )A. 1B. 212e - C.2ln 2- D. 2l n 2+二.填空题:本大题共7小题,每小题4分,满分28分. 11.已知复数i z =( i 为虚数单位),则2z = ▲ . 12.二项式6(ax 展开式中的常数项是60,则实数a = ▲ . 13.若(0,),2πα∈且21cos sin(2),22παα++=则tan α= ▲ ..14. 已知直线1:4360l x y -+=和直线0:2=x l ,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 .15.,,,,,A B C D E F 6个同学和1个数学老师站成一排合影留念,数学老师穿白色文化衫,,A B 和,C D 分别穿白色和黑色文化衫,E 和F 分别穿红色和橙色文化衫。
河南省周口市沈丘县长安高级中学2022-2023学年高三上学期第二次月考理科数学试题

B. a∈[ 3 ,1) 4
C. a∈(0, 1 ] 3
D. a∈[ 3 ,2) 4
8.
函数 y
3x 3x
cos
x
在区间
π 2
,
π 2
的图象大致为()
1
A.
B.
C.
D.
9. 已知函数 f (x) sin 2x 3 cos 2x 的图象向左平移 个单位长度后,得到函数 g(x) 的图象,且 g(x) 的
三、解答题:共 70 分,解答必须写出必要的文字说明、证明过程或者演算步骤.
17.
已知幂函数 f x m2 m 1xm1 2在0,
上为增函数.
(1)求实数 m 的值;
(2)求函数 g x f 2x 3 4x 5 的值域.
18. 已知在锐角△ABC 中,角 A,B,C 所对
边分别为
a,b,c,且
A. 2, 4
B. 0, 2, 4
2 f x x2 x 3 ,则 f 1 ()
C. 1,3,5
D. 0, 2, 4,6
A. 6
B. 5
C. 3
D. 2
3. 设命题甲:“ x2 3x 0 ”,命题乙:“ x 1 3 ”,那么命题甲是命题乙的()
A. 充分非必要条件 C. 充要条件
B. 必要非充分条件 D. 既不充分也不必要条件
为 22. 已知函数 f x 2x2ex , gx ax2alnxaR.
(1)求函数 f x 的单调区间和极值;
(2)若函数 h x f x g x 有 2 个零点,求实数 a 的取值范围.
4
tan C
a2
ab b2
c2
.
(1)求角 C 大小;
2020-2021学年湖南省雅礼中学高三(下)第二次月考数学试卷(理科) Word版含解析

2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.45.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.86.设x,y 满足约束条件,则目标函数z=的最小值为()A.2 B.1 C.D.﹣27.设f(x)定义如下面数表,{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),则x2022的值为()x 1 234 5f(x)4 135 2A.4 B.1 C.3 D.28.如图,长沙河西先导区某广场要划定一矩形区域ABCD,并在该区域内开拓出三块外形大小相同的矩形绿化区,这三块绿化区四周和绿化区之间设有1米宽的走道.已知三块绿化区的总面积为800平方米,则该矩形区域ABCD占地面积的最小值为()平方米.A.900 B.920 C.948 D.9689.已知函数,若存在x1<x2,使得f(x1)=f(x2),则x1•f(x2)的取值范围为()A.B.C.D.10.设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为()A.12 B.1 6 C.18 D.20二.填空题:本大题共1小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第11、12、13题中任选两题作答,假如全做,则按前两题给分)【几何证明选讲】11.如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,已知⊙O的半径为3,PA=2,则OE=.【极坐标系与参数方程选讲】12.已知曲线C的参数方程为(θ为参数),直线l的极坐标方程为,它们的交点在平面直角坐标系中的坐标为.【不等式选讲】1011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B=.(二)必做题(14~16题)14.设(其中e为自然对数的底数),则的值为.15.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是.16.已知数列{a n}的前n项和S n=(﹣1)n •n,若对任意正整数n,(a n+1﹣p)(a n﹣p )<0恒成立,则实数P 的取值范围是.三.解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.17.设函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)当时,求函数f(x)的最大值和最小值.18.设数列{a n}的前n项和为S n,已知对任意正整数n,都有S n+2=2a n成立.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求证:T n<3.19.如图所示,在平面四边形ABCD中,,与的夹角为,与的夹角为.(1)求△CDE的面积S;(2)求.20.已知函数f(x )=lnx﹣ax+﹣1(a∈R)(1)当a=﹣1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤时,争辩f(x)的单调性.21.若数列{a n}(n∈N*)满足:①a n≥0;②a n﹣2a n+1+a n+2≥0;③a1+a2+…+a n≤1,则称数列{a n}为“和谐”数列.(1)已知数列{a n},(n∈N*),推断{a n}是否为“和谐”数列,说明理由;(2)若数列{a n}为“和谐”数列,证明:.(n∈N*)22.已知函数f(x)=(1)当x>0时,证明:f(x)>;(2)当x>﹣1且x≠0时,不等式f(x)<恒成立,求实数k的值.2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)参考答案与试题解析一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}考点:交集及其运算.专题:集合.分析:依据集合的基本运算进行求解即可.解答:解:∵A={﹣2,﹣1,0,1,2,3},集合,∴A∩B={﹣1,0,1},故选:B点评:本题主要考查集合的基本运算,比较基础.2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:规律型.分析:推断出“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则能推出A∩B≠∅”确定成立,利用充要条件的有关定义得到结论.解答:解:若“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则有A∩B=A≠∅,所以A∩B≠∅”确定成立,所以A∩B≠∅是A⊆B的必要不充分条件,故选B.点评:本题考查推断一个条件是另一个的什么条件,应当先化简各个条件,若条件是数集的形式,常转化为推断集合间的包含关系.3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.考点:同角三角函数基本关系的运用.专题:计算题.分析:先依据诱导公式化简已知条件,得到sinα的值,然后由α的范围,利用同角三角函数间的基本关系求出cosα的值,把所求的式子利用诱导公式化简后,再依据同角三角函数间的基本关系把切化弦后,将sinα和cosα的值代入即可求出值.解答:解:由,又,得,则.故选B点评:此题考查同学机敏运用诱导公式及同角三角函数间的基本关系化简求值,是一道中档题.同学在求cosα的值时应留意α的范围.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.4考点:简洁空间图形的三视图.专题:计算题;空间位置关系与距离.分析:三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中做出底边上的高的长度,得到结果.解答:解:由题意知三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是,∴侧视图的面积是2故选:A.点评:本题考查简洁的空间图形三视图,考查三视图的面积的计算,考查通过原图观看三视图的大小,比较基础.5.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.8考点:平面对量数量积的运算.。
2019-2020学年云南师大附中高三(下)月考数学试卷(理科)(含答案)

2019-2020学年云南师大附中高三(下)月考数学试卷(理科)(六)一、选择题.1.(5分)已知集合2{|log 1}A x x =<,集合{|||2}B x N x =∈<,则(A B = )A .{|01}x x <<B .{|02}x x <C .{|22}x x -<<D .{0,1}2.(5分)已知i 为虚数单位,则复数3(1)(1)(i i --= )A .2iB .2i -C .2D .2-3.(5分)已知平面向量a ,b 的夹角为30︒,||1a =,1()2a a b -=-,则||(b = )AB .2C .3D .44.(5分)已知实数x ,y 满足约束条件()1221x y x y y +⎧⎪-⎨⎪⎩,则yx 的最大值为( )A .2B .32C .1D .235.(5分)在区间(0,3)上随机地取一个数k ,则事件“直线y kx =与双曲线22:1C x y -=有两个不同的交点“发生的概率为( ) A .13B .12C .23D .16.(5分)已知3(21)()x x a -+展开式中各项系数之和为27,则其展开式中2x 项的系数为( )A .24B .18C .12D .47.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,若sin A =,a =,c a >,则角C 的大小为( )A .3πB .2πC .23πD .34π8.(5分)在下面四个三棱柱中,A ,B 为三棱柱的两个顶点,E ,F ,G 为所在棱的中点,则在这四个三棱柱中,直线AB 与平面EFG 不平行的是( )A .B .C .D .9.(5分)已知椭圆2222:1(0)x y C a b a b +=>>与抛物线2:2(0)E y px p =>有公共焦点F ,椭圆C 与抛物线E 交于A ,B 两点,且A ,B ,F 三点共线,则椭圆C 的离心率为( )A 21B .22C .3D .51-10.(5分)已知数列{}n a 满足:对*n N ∀∈,1log (2)n n a n +=+,设n T 为数列{}n a 的前n 项之积,则下列说法错误的是( ) A .12a a >B .17a a >C .63T =D .76T T <11.(5分)数学家托勒密从公元127年到151年在亚历山大城从事天文观测,在编制三角函数表过程中发现了很多重要的定理和结论,如图便是托勒密推导倍角公式“2cos212sin αα=-”所用的几何图形。
湖北省武汉市2023-2024学年高三下学期数学2月调研考试试卷(含答案)

湖北省武汉市2023-2024学年高三下学期数学2月调研考试试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2024高三下·武月考)已知集合A ={x|2x 2+x −1<0},B ={y|y =lg(x 2+1)},则A ∩B =( ) A .(−1,0]B .[0,12)C .(−12,0]D .[0,1)2.(2024高三下·武汉月考)复数z 满足2z +3z̅=5−2i ,则|z|=( )A .√3B .2C .√5D .√63.(2024高三下·武汉月考)已知ab ≠1,log a m =2,log b m =3,则log ab m =( )A .16B .15C .56D .654.(2024高三下·武汉月考)将3个相同的红球和3个相同的黑球装入三个不同的袋中,每袋均装2个球,则不同的装法种数为( ) A .7B .8C .9D .105.(2024高三下·武汉月考)设抛物线y 2=2x 的焦点为F ,过抛物线上点P 作其准线的垂线,设垂足为Q ,若∠PQF =30°,则|PQ|=( ) A .23B .√33C .34D .√326.(2024高三下·武汉月考)法布里-贝罗研究多光束干涉在薄膜理论中的应用时,用光波依次透过n 层薄膜,记光波的初始功率为P 0,记P k 为光波经过第k 层薄膜后的功率,假设在经过第k 层薄膜时光波的透过率T k =P k P k−1=12k ,其中k =1,2,3…n ,为使得P n P 0≥2−2024,则n 的最大值为( )A .31B .32C .63D .647.(2024高三下·武汉月考)如图,在函数f(x)=sin(ωx +φ)的部分图象中,若TA ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗⃗ ,则点A 的纵坐标为( )A .2−√22B .√3−12C .√3−√2D .2−√38.(2024高三下·武汉月考)在三棱锥P −ABC 中,AB =2√2,PC =1,PA +PB =4,CA −CB =2,且PC ⊥AB ,则二面角P −AB −C 的余弦值的最小值为( ) A .√23B .34C .12D .√105二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分.9.(2024高三下·武汉月考)已知向量a⃗=(cosθ,sinθ),b⃗=(−3,4),则()A.若a⃗//b⃗,则tanθ=−43B.若a⃗⊥b⃗,则sinθ=35C.|a−b⃗|的最大值为6D.若a⃗⋅(a⃗−b⃗)=0,则|a−b⃗|=2√610.(2024高三下·武汉月考)将两个各棱长均为1的正三棱锥D−ABC和E−ABC的底面重合,得到如图所示的六面体,则()A.该几何体的表面积为3√32B.该几何体的体积为√36C.过该多面体任意三个顶点的截面中存在两个平面互相垂直D.直线AD//平面BCE11.(2024高三下·武汉月考)已知函数f(x)=a(e x+1)ln(1+x1−x)−e x+1恰有三个零点,设其由小到大分别为x1,x2,x3,则()A.实数a的取值范围是(0,1e)B.x1+x2+x3=0C.函数g(x)=f(x)+kf(−x)可能有四个零点D.f′(x3)f′(x1)=e x3三、填空题:本题共3小题,每小题5分,共15分.12.(2024高三下·武汉月考)在△ABC中,其内角A,B,C所对的边分别为a,b,c,若B=3π4,b=6,a2+c2=2√2ac,则△ABC的面积为.13.(2024高三下·武汉月考)设椭圆x29+y25=1的左右焦点为F1,F2,过点F2的直线与该椭圆交于A,B两点,若线段AF2的中垂线过点F1,则|BF2|=.14.(2024高三下·武汉月考)“布朗运动”是指微小颗粒永不停息的无规则随机运动,在如图所示的试验容器中,容器由三个仓组成,某粒子作布朗运动时每次会从所在仓的通道口中随机选择一个到达相邻仓或者容器外,一旦粒子到达容器外就会被外部捕获装置所捕获,此时试验结束.已知该粒子初始位置在1号仓,则试验结束时该粒子是从1号仓到达容器外的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.各项均不为0的数列{a n}对任意正整数n满足:1a1a2+1a2a3+⋯+1a n a n+1=1−12a n+1.(1)若{a n}为等差数列,求a1;(2)若a1=−27,求{a n}的前n项和S n.16.(2024高三下·武汉月考)如图,在四棱锥P−ABCD中,底面ABCD是平行四边形,PA=PB,DA= DB=√2,AB=2,PD=1,点E,F分别为AB和PB的中点.(1)证明:CF⊥PE;(2)若PE=1,求直线CF与平面PBD所成角的正弦值.17.(2024高三下·武汉月考)随着科技发展的日新月异,人工智能融入了各个行业,促进了社会的快速发展.其中利用人工智能生成的虚拟角色因为拥有更低的人工成本,正逐步取代传统的真人直播带货.某公司使用虚拟角色直播带货销售金额得到逐步提升,以下为该公司自2023年8月使用虚拟角色直播带货后的销售金额情况统计.若y 与x 的相关关系拟用线性回归模型表示,回答如下问题:附:经验回归方程y ̂=b ̂x +a ̂,其中b̂=∑(x i −x ̅)n i=1(y i−y ̅)∑(x i −x̅)2n i=1=∑x i ni=1y i −nx̅y ̅∑x i 2n i=1−nx ̅2,a ̂=y̅−b ̂x ̅, 样本相关系数r =i ̅ni=1i ̅√∑(x i −x̅)2i=1√∑(y i −y̅)2i=1=i ni=1i ̅̅√∑x i 2i=1−nx̅2√∑y i 2i=1−ny̅2;参考数据:∑x i 6i=1y i =2463.4,√∑(y i −y ̅)26i=1=20√70. (1)试求变量y 与x 的样本相关系数r (结果精确到0.01);(2)试求y 关于x 的经验回归方程,并据此预测2024年2月份该公司的销售金额.18.(2024高三下·武汉月考)已知双曲线E :x 2a 2−y 2b 2=1的左右焦点为F 1,F 2,其右准线为l ,点F 2到直线l 的距离为32,过点F 2的动直线交双曲线E 于A ,B 两点,当直线AB 与x 轴垂直时,|AB|=6.(1)求双曲线E 的标准方程;(2)设直线AF 1与直线l 的交点为P ,证明:直线PB 过定点.19.(2024高三下·武汉月考)已知函数f(x)=e x −1x.(1)求曲线y =f(x)在点(1,f(1))处的切线方程; (2)证明:f(x)是其定义域上的增函数;(3)若f(x)>a x ,其中a >0且a ≠1,求实数a 的值.答案解析部分1.【答案】B【解析】【解答】解:由2x 2+x −1<0,解得−1<x <12,则集合A ={x|−1<x <12},因为x 2+1≥1,所以lg(x 2+1)≥0,则集合B ={y|y =lg(x 2+1)}={y|y ≥0},所以A ∩B =[0,12).故答案为:B.【分析】解一元二次不等式求得集合A ;求对数函数的值域得集合B ,再根据集合的交集运算求解即可.2.【答案】C【解析】【解答】解:设复数z =x +yi,x,y ∈R ,则2z +3z̅=2(x +yi)+3(x −yi)=5x −yi =5−2i ,所以5x =5,−y =−2,解得x =1,y =2,所以|z|=√12+22=√5. 故答案为:C.【分析】设复数z ,根据已知条件结合复数相等求得x,y ,再根据复数模长公式计算即可.3.【答案】D【解析】【解答】解:由换底公式可得:log m a =1log a m =12,log m b =1log b m =13,所以log ab m =1log m ab =1log m a+log mb =65.故答案为:D.【分析】根据对数的换底公式以及对数的运算性质求解即可.4.【答案】A【解析】【解答】解:先将3个红球分成3组,则有0,1,2和1,1,1两种分组形式;当红球分组形式为0,1,2时,将红球放入三个不同的袋中有A 33=3×2×1=6放法, 此时三个不同的袋中依次补充上黑球,使每个袋子中球的总个数为2个即可; 当红球分组形式为1,1,1时,将红球放入三个不同的袋中有1种放法, 此时三个不同的袋中依次补充上黑球,使每个袋子中球的总个数为2个即可,综上所述:将3个相同的红球和3个相同的黑球装入三个不同的袋中,每袋均装2个球,不同的装法种数为6+1=7种. 故答案为:A.【分析】先将红球分组,再分两类研究以上不同形式下红球放入三个不同的袋中的方法数,最后袋中不重上黑球,使每个袋子中球的总个数为2个,将两类情况的方法总数相加即可.5.【答案】A【解析】【解答】解:如图所示:M 为准线与x 轴的交点,因为∠PQF =30°,且|PF|=|PQ|,所以∠PFQ =30°,∠QPF =120°, 因为FM//PQ ,所以∠QFM =30∘,因为tan30∘=|QM||MF|=|QM|1=|QM|=√33,所以|QF|=2√33, 所以|PF|=|PQ|=|QF|21cos30∘=√33√32=23. 故答案为:A.【分析】由题意得∠QFM =30∘,结合正切定义以及|FM|=1可得|QF|,求解即可.6.【答案】C【解析】【解答】解:由题意P n P n−1=12n ,P n−1P n−2=12n−1,⋯,P 1P 0=12,所以P n P 0=12n ×12n−1×⋯×12=12n(n+1)2≥2−2024, 所以n(n+1)2≤2024,即n(n +1)≤4048,易知f(n)=n(n +1)关于n 单调递增,其中n ∈N ∗,又因为f(63)=4032<4048<f(64)=4160,所以n 的最大值为63. 故答案为:C.【分析】通过累乘法以及等差数列求和公式得P n P 0=12n(n+1)2≥2−2024,进一步得 n(n +1)≤4048,再结合数列单调性求解即可. 7.【答案】B【解析】【解答】解:由图可知ωx T +φ=3π2,则x T =3π2ω−φω,则T(3π2ω−φω,0), 设A(x 1,y 1),B(x 2,y 2),因为TA ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗⃗ ,所以{x 2+3π2ω−φω2=x 1y 22=y 1,解得{x 2=2x 1−3π2ω+φωy 2=2y 1, 所以2y 1=y 2=f(x 2)=f(2x 1−3π2ω+φω)=sin(2ωx 1−3π2+2φ) =cos(2ωx 1+2φ)=1−2sin 2(ωx 1+φ)=1−2y 12, 所以2y 12+2y 1−1=0,又因为y 1>0,所以y 1=√3−12.故答案为:B.【分析】由题意求得得T(3π2ω−φω,0),进一步得由TA ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗⃗ 得{x 2=2x 1−3π2ω+φωy 2=2y 1,代入函数表达式结合诱导公式、余弦的二倍角公式求解即可.8.【答案】A【解析】【解答】解:因为PA +PB =4=2a ,所以a =2,点P 的轨迹方程为x 24+y 22=1(椭球),又因为CA −CB =2,所以点C 的轨迹方程为x 2−y 2=1,(双曲线的一支)过点P 作PH ⊥AB,AB ⊥PC ,而PH ∩PC =P,PF,PC ⊂面PHC , 所以AB ⊥面PHC ,设O 为AB 中点,则二面角P −AB −C 为∠PHC ,所以设OH =2cosθ,θ∈(0,π2],PH =√2sinθ,CH =√4cos 2θ−1,所以cos∠PHC =2sin 2θ+4cos 2θ−1−12√2sinθ√4cos θ−1=2cos 2θ2√2sinθ√4cos θ−1=√22⋅1−sin 2θsinθ√3−4sin θ,所以cos 2∠PHC =12⋅(1−sin 2θ)2sin 2θ(3−4sin 2θ),令1−sin 2θ=t,0<t <1,所以cos 2∠PHC =12⋅(1−sin 2θ)2sin 2θ(3−4sin 2θ)=12⋅t 2(1−t)(4t−1)≥12⋅t 2(1−t+4t−12)2=29,当且仅当t =25=1−sin 2θ等号成立,所以当且仅当sinθ=√155,cosθ=√105时,(cos∠PHC)min =√23. 故答案为:A.【分析】根据已知条件求得点P,C 的轨迹方程,进一步作二面角P −AB −C 的平面角∠PHC ,结合轨迹的参数方程以及余弦定理、基本不等式求解即可.9.【答案】A,C,D【解析】【解答】解:A 、若a ⃗ //b ⃗ ,则4cosθ=−3sinθ,解得tanθ=−43,故A 正确; B 、若a ⃗ ⊥b ⃗ ,则−3cosθ+4sinθ=0,解得tanθ=34, 所以sinθ=±35,故B 错误; C 、因为|a |=√cos 2θ+sin 2θ=1,|b ⃗ |=√(−3)2+42=5,而|a −b ⃗ |≤|a |+|b⃗ |=6, 当且仅当a ⃗,b ⃗ 反向时等号成立,在平面直角坐标系中,设向量a ⃗ ,b ⃗ 的起点为坐标原点, 向量a⃗ 的终点在以坐标原点为圆心,半径为1的圆上,向量b ⃗ =(−3,4)终点在第二象限, 当a⃗ ,b ⃗ 反向,则向量a ⃗ =(cosθ,sinθ)的终点应在第四象限,此时cosθ=35,sinθ=−45,故C 正确; D 、若a ⃗ ⋅(a ⃗ −b⃗ )=0,则cosθ(cosθ+3)+sinθ(sinθ−4)=0, 即cos 2θ+3cosθ+sin 2θ−4sinθ=0,所以4sinθ−3cosθ=1,|a −b ⃗ |=√(cosθ+3)2+(sinθ−4)2=√6cosθ−8sinθ+26,所以|a −b ⃗ |=√24=2√6,故D 正确. 故答案为:ACD.【分析】根据a ⃗ //b ⃗ ,有4cosθ=−3sinθ,即可判断A ;根据a ⃗ ⊥b ⃗ ,得−3cosθ+4sinθ=0,即可判断B ;根据向量减法三角形法则有|a −b ⃗ |≤|a |+|b ⃗ |=6,分别求出|a |,|b ⃗ |,有a ⃗ ,b ⃗ 反向时|a −b ⃗ |取得最大值,根据向量的几何意义即可判断C ;根据a ⃗ ⋅(a ⃗ −b⃗ )=0, 得4sinθ−3cosθ=1,又|a −b ⃗ |=√6cosθ−8sinθ+26,可计算|a −b⃗ |,即可判断D. 10.【答案】A,C【解析】【解答】解:A 、S △ABD =12×1×1×√32=√34,所以表面积为6×√34=3√32,故A 正确;B 、如图所示:设点D 在平面ABC 内的投影为O ,M 为BC 的中点,则由对称性可知O 为三角形ABC 的重心,所以AO =23AM =23×1×√32=√33,又因为AD =1,所以正三棱锥D −ABC 的高为DO =√AD 2−AO 2=√1−13=√63,所以几何体的体积为V =2V D−ABC =2×13×√63×√34=√26,故B 错误;C ,由B 选项可知DO ⊥面ABC ,由对称性可知D,O,E 三点共线,所以DE ⊥面ABC ,而DE ⊂面ADE , 所以平面ADE ⊥平面ABC ,故C 正确;D 、建立如图所示的空间直角坐标系:其中Ox 轴平行BC ,因为AO =√33,OM =√32−√33=√36,所以B(12,√36,0),C(−12,√36,0),E(0,0,−√63),BC ⃗⃗⃗⃗⃗ =(−1,0,0),BE ⃗⃗⃗⃗⃗ =(−12,−√36,−√63),设平面BCE 的法向量为n ⃗ =(x,y,z),所以{−x =0−12x −√36y −√63z =0,不妨取z =1,解得y =−2√2,x =0,所以取n ⃗ =(0,−2√2,1),又A(0,−√33,0),D(0,0,√63),AD ⃗⃗⃗⃗⃗ =(0,√33,√63),而AD ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =−2√63+√63=−√63≠0,所以直线AD 与平面BCE 不平行,故D 错误.故答案为:AC.【分析】求其中一个正三角形的面积,即可求得几何体的表面积,判断A ;先求得V D−ABC ,进一步即可验算即可判断B ;证明面ADE ⊥面ABC 即可判断C ;建立适当的空间直角坐标系,验算平面法向量与直线方向向量是否垂直即可判断D.11.【答案】B,C,D【解析】【解答】解:A 、aln(1+x 1−x)=−1−e x e x +1,设p(x)=aln(1+x 1−x ),m(x)=−1−e x e x +1,则p ′(x)=2a 1−x 2,m ′(x)=2e x (e x +1)2,所以p ′(0)=2a,m ′(0)=12,从而0<2a <12,0<a <14,故A 错误; B 、f(x)=0⇔aln(1+x 1−x)+1−e x e x +1=0,设ℎ(x)=aln(1+x 1−x)+1−e xe x +1,则它的定义域为(−1,1),它关于原点对称,且ℎ(−x)=aln(1−x 1+x )+1−e −x e −x +1=−(aln(1+x 1−x )+1−e xe x +1)=−ℎ(x),所以ℎ(x)是奇函数,由题意ℎ(x)=0有三个根x 1,x 2,x 3,则x 1+x 2+x 3=0,故B 正确;C 、由f(x)+kf(−x)=0⇒a(e x +1)ln(1+x 1−x )−e x +1+[a(e −x +1)ln(1−x 1+x)−e −x +1]=0,所以aln(1+x 1−x )+1−e x e x +1+k[a ln(1+x1−x )e x −1−e x e x (1+e x )]=0,所以aln(1+x 1−x )+1−e x e x +1=k e x [aln(1+x 1−x )+1−e x e x +1],即[aln(1+x 1−x )+1−e x e x +1](1−k e x)=0已经有3个实根x 1,x 2,x 3, 当k >0时,令1−ke x =0,则x =lnk ,只需保证lnk ≠x 1,x 2,x 3可使得方程有4个实根,故C 正确;D 、由B 可知,x 1=−x 3,而f ′(x 3)f ′(x 1)=e x 3⇔f ′(x 3)=e x 3f ′(−x 3),又f ′(x)=ae x ln 1+x 1−x +a(e x +1)21−x 2−e x ,e x 3f ′(−x 3)=aln 1−x 31+x 3+a(e x 3+1)21−x 32−1, 所以f ′(x 3)=ae x 3ln 1+x 31−x 3+a(e x 3+1)21−x 32−e x 3 =aln1−x 31+x 3+a(e x 3+1)21−x 32−1+ae x 3ln 1+x 31−x 3−aln 1−x 31+x 3−e x 3+1=e x 3f ′(−x 3)+a(e x 3+1)ln 1+x31−x 3−e x 3+1=e x 3f ′(−x 3),故D 正确;故答案为:BCD.【分析】通过构造函数可得0<p ′(0)=2a <m ′(0)=12,由此即可判断A ;f(x)=0⇔ℎ(x)=0,证明函数ℎ(x)=aln(1+x 1−x )+1−e x e x +1是奇函数即可判断B ;将方程等价变形为[aln(1+x 1−x )+1−e x e x +1](1−k e x)=0,由此即可判断C ;由x 1=−x 3,而f ′(x 3)f ′(x 1)=e x 3⇔f ′(x 3)=e x 3f ′(−x 3),进一步求导运算即可判断D.12.【答案】3【解析】【解答】解:在△ABC 中,B =3π4,b =6,a 2+c 2=2√2ac ,由余弦定理可得b 2=a 2+c 2−2accosB =2√2ac −2accos 3π4=3√2ac ,解得ac =6√2, 所以S △ABC =12acsinB =12×6√2×√22=3. 故答案为:3.【分析】根据B =3π4,b =6,a 2+c 2=2√2ac ,利用余弦定理求得ac =6√2,再由三角形面积公式求解即可.13.【答案】107【解析】【解答】解:设线段AF 2的中垂线与AF 2相交于点M ,易知a =3,b =√5,c =2;由已知可得|AF 1|=|F 1F 2|=2c =4,点A 在椭圆上, 由椭圆定义可得|AF 1|+|AF 2|=2a =6,所以|AF 2|=2,|AM|=|MF 2|=1,在Rt △F 1F 2M 中,cos∠F 1F 2M =|F 2M||F 1F 2|=14,∠F 1F 2M +∠F 1F 2B =π, cos∠F 1F 2B =−14,点B 在椭圆上,根据椭圆定义有:|BF 1|+|BF 2|=2a =6,设|BF 2|=m ,则|BF 1|=6−m ,|F 1F 2|=4,在△F 1F 2B 中由余弦定理有:cos∠F 1F 2B =|F 1F 2|2+|BF 2|2−|BF 1|22|F 1F 2|⋅|BF 2|=16+m 2−(6−m)28m =−14, 解得m =107,即|BF 2|=107. 故答案为:107. 【分析】由椭圆方程确定a ,b ,c 的值,结合已知条件及椭圆定义求出|AF 2|=2,在Rt △F 1F 2M 中,求出cos∠F 1F 2M =|F 2M||F 1F 2|=14,再由诱导公式求出cos∠F 1F 2B =−14,设|BF 2|=m ,则|BF 1|=6−m ,在△F 1F 2B 中由余弦定理构造方程16+m 2−(6−m)28m =−14,解出m 值即可. 14.【答案】1013【解析】【解答】解:设从i 出发最终从1号口出的概率为P i ,所以{P 1=23+13P 2P 2=13P 1+0+13P 3=13P 1+16P 2P 3=12P 2,解得P 1=1013. 故答案为:1013. 【分析】定义从i 出发最终从1号口出的概率为P i ,结合独立乘法、互斥加法列出方程组即可求解.15.【答案】(1)解:由题意1a 1a 2+1a 2a 3+⋯+1a n a n+1=1−12a n+1, 当n ≥2,n ∈N ∗时,1a 1a 2+1a 2a 3+⋯+1a n−1a n=1−12a n , 两式相减得1a n a n+1=12a n −12a n+1⇒a n+1−a n =2,n ≥2, 因为{a n }为等差数列,在式子:1a 1a 2+1a 2a 3+⋯+1a n−1a n=1−12a n 中令n =1, 得1a 1a 2=1−12a 2,所以a 2=1a 1+12, 所以a 2−a 1=1a 1+12−a 1=2⇒a 1=−2或a 1=12, 若a 1=−2,则a 2=0,但这与a n ≠0矛盾,舍去,所以a 1=12. (2)解:因为a 1=−27,所以a 2=−72+12=−3, 而当n ≥2,n ∈N ∗时,a n+1−a n =2,所以此时a n =−3+2(n −2)=2n −7,所以此时S n =−27+(n−1)(−3+2n−7)2=n 2−6n +337, 而n =1也满足上式,综上所述,{a n }的前n 项和S n =n 2−6n +337. 【解析】【分析】(1)由递推关系求得1a n a n+1=12a n −12a n+1⇒a n+1−a n =2,n ≥2,结合已知数列{a n }为等差数列,再令n =1,求解即可;(2)先求a 2,由n ≥2,n ∈N ∗时,a n+1−a n =2,推出{a n }的通项,再根据等差数列的求和公式计算即可.16.【答案】(1)证明:取PE 的中点G ,连接DG ,FG ,由DA =DB =√2,AB =2,易知△DAB 为等腰直角三角形,此时DE =1,又PD =1,所以PE ⊥DG .因为PA =PB ,所以PE ⊥AB ,由FG//EB ,即FG//AB ,所以PE ⊥FG ,此时,CD//AB//FG ,有C ,D ,G ,F 四点共面,FG ∩DG =G ,所以PE ⊥平面CDGF ,又CF ⊂平面CDGF ,所以CF ⊥PE .(2)解:由AB ⊥PE ,AB ⊥DE ,且PE ∩DE =E ,所以AB ⊥平面PDE .由PE =DE =PD =1,得△PDE 为等边三角形,以E 为原点,EB ,ED 所在直线分别为x 轴,y 轴,过E 且与平面ABCD 垂直的直线为z 轴,建立如图所示的空间直角坐标系,P(0,12,√32),D(0,1,0),B(1,0,0),C(2,1,0),F(12,14,√34),DP ⃗⃗⃗⃗⃗⃗ =(0,−12,√32),DB ⃗⃗⃗⃗⃗⃗ =(1,−1,0),设平面PBD 的法向量n ⃗ =(x ,y ,z) 由{n ⃗ ⋅DP ⃗⃗⃗⃗⃗⃗ =0n ⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,即{−12y +√32z =0x −y =0,取z =1,n ⃗ =(√3,√3,1), 又FC ⃗⃗⃗⃗⃗ =(32,34,−√34),设直线CF 与平面PBD 所成角为θ, 则sinθ=|cos⟨n ⃗ ,FC ⃗⃗⃗⃗⃗ ⟩|=|n ⃗⃗ ⋅FC ⃗⃗⃗⃗⃗⃗⃗ ||n⃗⃗ |⋅|FC ⃗⃗⃗⃗⃗⃗⃗ |=2√37⋅3=2√77, 所以直线CF 与平面PBD 所成角的正弦值为2√77. 【解析】【分析】(1)取PE 的中点G ,连接DG ,FG ,通过证明PE ⊥平面CDGF ,再由线面垂直的性质定理证明即可;(2)建立空间直角坐标系,利用空间向量求线面角的公式求解即可.17.【答案】(1)解:x ̅=1+2+3+4+5+66=72,y ̅=15.4+25.4+35.4+85.4+155.4+195.46=85.4, ∑x i 26i=1−6x ̅2=1+4+9+16+25+36−6×494=17.5, 所以r =∑x 6i=1y −6x ̅y ̅√∑x i 2i=1−6x ̅2√∑y i 2i=1−6y ̅2=2463.4−6×72×85.417.5×2070=67020×35≈0.96. (2)解:由题意b ̂=∑x i 6i=1y i−6x ̅y ̅∑x i 26i=1−6x ̅2=2463.4−6×72×85.417.5≈38.3, 所以a ̂=85.4−72×38.3=−48.7, 所以y 关于x 的经验回归方程为y =38.3x −48.7,所以预测2024年2月份该公司的销售金额为y =38.3×7−48.7=219.4万元.【解析】【分析】(1)由题意根据参考公式先分别算得x ̅,y ̅以及∑x i 26i=1−6x̅2,再代入相关系数公式求解即可;(2)根据(1)中的数据以及参数数据依次算得b ̂,a ̂,由此即可得经验回归方程并预测.18.【答案】(1)解:由题意{ c −a 2c =b 2c =322b 2a =6a 2+b 2=c 2⇒{a =1b =√3,所以双曲线E 的标准方程为x 2−y 23=1. (2)证明:由题意l :x =12,设直线AB 的方程为x =my +2,A(x 1,y 1),B(x 2,y 2),F 1(−2,0),{x =my +23x 2−y 2=3,⇒(3m 2−1)y 2+12my +9=0, 所以Δ=144m 2−36(3m 2−1)=36(m 2+1)>0,y 1y 2=93m 2−1,y 1+y 2=−12m 3m 2−1, 直线AF 1的方程为:y =y 1x 1+2(x +2),∴P(12,5y 12(x 1+2)), 所以PB 的方程为y =y 2−5y 12(x 2+2)x 2−12(x −x 2)+y 2,由对称性可知PB 过的定点一定在x 轴上,令y =0⇒x =−y 2(x 2−12)y 2−5y 12(x 1+2)+x 2=−2y 2(x 1+2)(x 2−12)2x 1y 2+4y 2−5y 1+my 2+2 =−2y 2(my 1+4)(my 2+32)2(my 1+2)y 2+4y 2−5y 1+my 2+2 =−2y 2(m 2y 1y 2+32my 1+4my 2+6)+2m 2y 1y 22+8my 22−5my 1y 22my 1y 2+8y 2−5y 1+2 =−8my 1y 2−12y 22my 1y 2+8y 2−5y 1+2, 又{y 1y 2=93m 2−1y 1+y 2=−12m 3m 2−1⇒my 1y 2=−34(y 1+y 2),所以x =6(y 1+y 2)−12y 2−32(y 1+y 2)+8y 2−5y 1+2=6y 1−6y 2132y 2−132y 1+2=1413, 所以直线PB 过定点(1413,0). 【解析】【分析】(1)由右焦点到右准线的距离以及通径长度,结合a,b,c 之间的平方关系求解即可; (2)设直线AB 的方程为x =my +2,A(x 1,y 1),B(x 2,y 2),F 1(−2,0),联立双曲线方程消元整理由韦达定理得my 1y 2=−34(y 1+y 2),用m 以及A,B 的坐标表示出点P 以及PB 的方程,根据对称性可知,只需在PB 的直线方程中,令y =0,证明相应的x 为定值即可.19.【答案】(1)解:由题意f(1)=e −1,即切点为(1,e −1),f ′(x)=xe x −e x +1x 2,k =f ′(1)=1, 所以曲线y =f(x)在点(1,f(1))处的切线方程为y =x −1+e −1,即y =x +e −2;(2)证明:由f ′(x)=(x−1)e x +1x 2,设g(x)=(x −1)e x +1,则g ′(x)=xe x , 所以当x <0时,g ′(x)<0,g(x)单调递减,当x >0时,g ′(x)>0,g(x)单调递增, 又g(0)=0,所以对于任意的x ≠0有g(x)>0,即f ′(x)>0,因此f(x)在(−∞,0)单调递增,在(0,+∞)单调递增,即ℎ(x)=e x −x −1,则ℎ′(x)=e x −1,所以x <0时,ℎ′(x)<0,ℎ(x)单调递减,所以ℎ(x)>ℎ(0)=0,即e x −1>x ,即e x −1x<1, x >0时,ℎ′(x)>0,ℎ(x)单调递增,所以ℎ(x)>ℎ(0)=0,即e x −1>x ,即e x −1x>1, 所以f(x)是其定义域上的增函数.(3)解:由(2)可知,x <0时,f(x)<1,所以a x <1,故a >1,令a =e k ,k >0,F(x)=e (1−k)x −e −kx −x ,由题意x <0时,F(x)<0,x >0时,F(x)>0,若k ≥1,则当x >1时,F(x)=e (1−k)x −e −kx −x ≤1−e −kx −x <0,不满足条件, 所以0<k <1,而F ′(x)=(1−k)e (1−k)x +ke −kx −1,令G(x)=F ′(x),则G ′(x)=(1−k)2e (1−k)x −k 2e −kx =e −kx [(1−k)2e x −k 2], 令G ′(x)=0,得x =2ln k 1−k, F ′(x)在(−∞,2ln k 1−k )单调递减,在(2ln k 1−k ,+∞)单调递增,若2ln k 1−k <0,则当2ln k 1−k<x <0时,F ′(x)<F ′(0)=0,F(x)单调递减,此时F(x)>F(0)=0,不满足题意;若2ln k1−k >0,则当0<x<2lnk1−k时,F′(x)<F′(0)=0,F(x)单调递减,此时F(x)<F(0)=0,不满足题意;若2ln k1−k=0,则当x<0时,F′(x)>F′(0)=0,F(x)单调递增,此时F(x)<F(0)=0,且当x>0时,F′(x)>F′(0)=0,F(x)单调递增,此时F(x)>F(0)=0,满足题意,所以2ln k1−k =0,解得k=12,综上所述,a=√e.【解析】【分析】(1)由题意f(1)=e−1求得切点坐标,再求出切点处的导数值得切线斜率,即可求得切线方程;(2)对f(x)求导后,令g(x)=(x−1)e x+1,对g(x)继续求导发现,对于任意的x≠0有f′(x)>0,故只需要证明x<0时,e x−1x<1,x>0时,ex−1x>1即可;(3)由(2)得a>1,进一步令a=e k,k>0,F(x)=e(1−k)x−e−kx−x,结合题意知x<0时,F(x)<0,x>0时,F(x)>0,对k分类讨论即可求解.。
2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0}, 则A∩()=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}2.下列函数在其定义域内既是奇函数又是增函数的是( ) (A)y=tanx (B)y=3x (C)y= (D)y=lg|x|3.下列四种说法中,错误的个数是( ) ①A={0,1}的子集有3个;②“若am 2<bm 2,则a<b ”的逆命题为真;③“命题p ∨q 为真”是“命题p ∧q 为真”的必要不充分条件;④命题“∀x ∈R,均有x 2-3x-2≥0”的否定是:“∃x 0∈R,使得x 02-3x 0-2≤0”. (A)0 (B)1 (C)2 (D)3 4.已知函数则f(f())的值是( ) (A)9(B)(C)-9(D)-5.若a=log 20.9,则( )(A)a<b<c (B)a<c<b (C)c<a<b(D)b<c<a6.若函数y=-x 2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )()()()()53A B C D 4664ππππ7.已知命题p:函数f(x)=2ax 2-x-1(a ≠0)在(0,1)内恰有一个零点;命题q:函数y=x 2-a 在(0,+∞)上是减函数.若p 且﹁q 为真命题,则实数a 的取值范围是 ( ) (A)a>1(B)a ≤2 (C)1<a ≤2(D)a ≤1或a>28.函数f(x)=的大致图象为( )9.设函数f (x )=x 2+xsinx ,对任意x 1,x 2∈(﹣π,π), 若f (x 1)>f (x 2),则下列式子成立的是( ) A .x 1>x 2B .C .x 1>|x 2|D .|x 1|<|x 2|10函数y=f(x)(x ∈R)满足f(x+1)=-f(x),且x ∈[-1,1]时f(x)=1-x 2,函数()lg x,x 0,g x 1,x 0,x>⎧⎪=⎨-<⎪⎩则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数为( ) (A)7(B)8(C)9(D)10二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知集合M={y|y=x 2﹣1,x ∈R},,则M∩N=_____ 12.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是 [﹣1,0],则a+b= .13.已知p:≤x ≤1,q:(x-a)(x-a-1)>0,若p 是﹁q 的充分不必要条件,则实数a 的取值范围是 .14.若f (x )=是R 上的单调函数,则实数a 的取值范围为 . 15.若方程有正数解,则实数的取值范围是_______三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)已知p :∀x ∈R ,2x >m (x 2+1),q :∃x 0∈R , x+2x 0﹣m ﹣1=0,且p ∧q 为真,求实数m 的取值范围.17、(12分)已知函数.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明f(x)在(0,1)内单调递减.18.(12分)已知函数f(x)=x3﹣ax2﹣3x(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;(2)若x=﹣是f(x)的极值点,求f(x)在[1,4]上的最大值.19.(12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).20. (13分)已知函数f(x)满足()()()x 121f x f 1e f 0x x .2-='-+(1)求f(x)的解析式及单调区间.(2)若f(x)≥x 2+ax+b,求(a+1)b 的最大值.21、 (14分)已知函数21()(21)2ln ()2f x ax a x x a R =-++∈.(Ⅰ)若曲线y=f (x )在x=1和x=3处的切线互相平行,求a 的值; (Ⅱ)求f (x )的单调区间;(Ⅲ)设g (x )=x 2﹣2x ,若对任意x 1∈(0,2],均存在x 2∈(0,2],使得 f (x 1)<g (x 2),求a 的取值范围.高三数学第一次检测题答案解析1. C .2.C.3.D.4.B.5.B.6.D.7.C 8、D.9.【解析】∵f (﹣x )=(﹣x )2﹣xsin (﹣x )=x 2+xsinx=f (x ),∴函数f (x )=x 2+xsinx 为偶函数,又f′(x )=2x+sinx+xcosx ,∴当x >0时,f′(x )>0,∴f (x )=xsinx 在[0,π]上单调递增,∴f (﹣x )=f (|x|);∵f (x 1)>f (x 2),∴结合偶函数的性质得f (|x 1|)>f (|x 2|),∴|x 1|>|x 2|,∴x 12>x 22.故选B .10.选A.由f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以函数f(x)的周期为2,求h(x)=f(x)-g(x)的零点,即求f(x)=g(x)在区间[-5,4]的解的个数.画出函数f(x)与g(x)的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.11、解:∵集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1},={x|﹣},∴M∩N=.故答案为:.12、解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:13.q:x>a+1或x<a,从而﹁q:a≤x≤a+1.由于p是﹁q的充分不必要条件,故a111a2≥⎧⎪⎨≤⎪⎩+,,即0≤a≤.答案:[0,]14、解:∵f(x)=是R上的单调函数,∴,解得:a≥,故实数a的取值范围为[,+∞),故答案为:[,+∞)15.16、解:不等式2x>m(x2+1),等价为mx2﹣2x+m<0,若m=0,则﹣2x<0,即x>0,不满足条件.若m≠0,要使不等式恒成立,则,即,解得m<﹣1.即p:m<﹣1.———————————————————————4分若∃x0∈R,x+2x﹣m﹣1=0,则△=4+4(m+1)≥0,解得m≥﹣2,即q:m≥﹣2.———————————————————————8分若p∧q为真,则p与q同时为真,则,即﹣2≤m<﹣1————12分17、解:(1)⇔﹣1<x<0或0<x<1,故f(x)的定义域为(﹣1,0)∪(0,1);————————————4分(2)∵,∴f(x)是奇函数;————————————————————————————6分(3)设0<x1<x2<1,则∵0<x1<x2<1,∴x2﹣x1>0,x1x2>0,(1﹣x1)(1+x2)=1﹣x1x2+(x2﹣x1)>1﹣x1x2﹣(x2﹣x1)=(1+x1)(1﹣x2)>0∴,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减——————————————————12分另解:∴当x∈(0,1)时,f′(x)<0故f(x)在(0,1)内是减函数.—————————————————12分18、解:(1)求导函数,可得f′(x)=3x2﹣2ax﹣3,∵f(x)在区间[1,+∞)上是增函数,∴f′(x)≥0在区间[1,+∞)上恒成立∴3x2﹣2ax﹣3≥0在区间[1,+∞)上恒成立∴且f′(1)=﹣2a≥0∴a≤0———4分(2)∵x=﹣是f(x)的极值点,∴∴∴a=4——6分∴f(x)=x3﹣4x2﹣3x,f′(x)=3x2﹣8x﹣3,∴x1=﹣,x2=3令f′(x)>0,1<x<4,可得3<x<4;令f′(x)<0,1<x<4,可得1<x<3;∴x=3时,函数取得最小值﹣18∵f(1)=﹣6,f(4)=﹣12∴f(x)在[1,4]上的最大值为﹣6.————————————————12分19、解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v (x)=ax+b再由已知得,解得故函数v(x)的表达式为.——————4分(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.—————————————————————————10分答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.——————————————————————————12分20.(1)∵f(x)=f′(1)e x-1-f(0)x+x2,∴f′(x)=f′(1)e x-1-f(0)+x,令x=1得:f(0)=1,∴f(x)=f′(1)e x-1-x+x2,∴f(0)=f′(1)e-1=1,∴f′(1)=e得:f(x)=e x-x+x2.—————————4分设g(x)=f′(x)=e x-1+x,g′(x)=e x+1>0,∴y=g(x)在R上单调递增.令f′(x)>0=f′(0),得x>0,令f′(x)<0=f′(0)得x<0,∴f(x)的解析式为f(x)=e x-x+x2且单调递增区间为(0,+∞),单调递减区间为(-∞,0).————————————-4分(2)由f(x)≥x2+ax+b得e x-(a+1)x-b≥0,令h(x)=e x-(a+1)x-b,则h′(x)=e x-(a+1).①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增.x→-∞时,h(x)→-∞与h(x)≥0矛盾.——————————6分②当a+1>0时,由h′(x)>0得x>ln(a+1),由h′(x)<0得x<ln(a+1)=(a+1)-(a+1)ln(a+1)-b≥0.———8分得当x=ln(a+1)时,h(x)min(a+1)b≤(a+1)2-(a+1)2ln(a+1) (a+1>0).令F(x)=x2-x2ln x(x>0),则F′(x)=x(1-2ln x),——————10分由F′(x)>0得0<x<,由F′(x)<0得x>,当x=时,F(x)=,∴当a=-1,b=时,(a+1)b的最大值为.—————————max—————————————13分21、解:(Ⅰ)∵函数,∴(x>0).∵曲线y=f(x)在x=1和x=3处的切线互相平行,∴f'(1)=f'(3),即,解得.————————————4分(Ⅱ)(x>0).①当a≤0时,x>0,ax﹣1<0,在区间(0,2)上,f'(x)>0;在区间(2,+∞)上f'(x)<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).②当时,,在区间(0,2)和上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是(0,2)和,单调递减区间是③当时,,故f(x)的单调递增区间是(0,+∞).④当时,,在区间和(2,+∞)上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.————————————8分(Ⅲ)由已知,在(0,2]上有f(x)max <g(x)max.由已知,g(x)max=0,由(Ⅱ)可知,①当时,f(x)在(0,2]上单调递增,故f(x)max=f(2)=2a﹣2(2a+1)+2ln2=﹣2a﹣2+2ln2,所以,﹣2a﹣2+2ln2<0,解得a>ln2﹣1,故.——————————————————12分②当时,f(x)在上单调递增,在上单调递减,故.由可知,2lna>﹣2,﹣2lna<2,所以,﹣2﹣2lna<0,f(x)max<0,综上所述,a>ln2﹣1.————————————————14分21072 5250 剐31873 7C81 粁31426 7AC2 竂z33043 8113 脓e35722 8B8A 變 39463 9A27 騧K34467 86A3 蚣38124 94EC 铬=40272 9D50 鵐。
高三第二次月考数学试卷(附答案)

高三第二次月考数学试卷(卷面150分,考试时间120分钟)卷Ⅰ一. 选择题:(共12小题,每小题5分共60分,每小题只有一个正确选项)1. 定义{}A B x x A x B -=∈∉且,若{}1,2,3,4,5M =,{}2,3,6N =,则N M -等于 A. M B. N C. {}1,4,5 D.{}62. 非空数集{}1,2,3,4,5S ⊆ ,且S 还满足条件:若,a S ∈则 6a S -∈ ,则符合上述条件的S 集合的个数为A. 4B. 5C. 6D. 73. 设集合{}22,A x x x R =-≤∈,{}2,12B y y x x ==--≤≤, 则()R C A B ⋂等于 A. R B. {}0x x R x ∈≠且 C. {}0 D. ∅4. 已知函数()2f x x bx c =++ 对任意实数x 都有()()1f x f x +=- ,则下面不等式成立的是 A. ()()()202f f f - B. ()()()220f f f - C. ()()()022f f f - D. ()()()202f f f -5. 函数()3,f x x x x R =+∈,当02πθ≤≤时,()()sin 10f m f m θ+-恒成立,则实数m 的取值范围是A. ()0,1B. (),0-∞C. 1,2⎛⎫-∞ ⎪⎝⎭ D. (),1-∞6. 数列{}n a 为等差数列,n S 为其n 前项的和,147a a a ++=21 ,3699a a a ++=,则9S 等于A. 15B. 40C. 45D. 50 7. 在等比数列{}n a 中,7114146,5a a a a ⋅=+=,则2010a a = A.2332或 B. 23 C. 32 D. 131或-2 8. 化简()11111121231234123n N n*+++++∈+++++++++的结果是 A. 1n n + B.21n n + C. 221n n + D. 21nn +9.已知[)1sin cos ,,tan 5αααπα+=∈且0,则的值为A. 43-B. 34-C. 34D. 4310. 函数()()sin 0y x ωω=在区间[]0,1上存在对称轴,则ω的最小值为A.4π B. 2πC. πD. 2π 11. 如果4x π≤ , ,那么函数()2cos sinf x x x =+的最小值是A.12 B. 12- C. 1- D. 12. 函数()f x 在R 上是增函数, ()0,2A ,()4,2B 是其图象上的两个点,则不等式()22f x +的解集是A. ()(),22,-∞-⋃+∞B.()2,2-C. ()(),04,-∞+∞D.()0,4二.填空题:(共4小题,每小题5分,共20分,请将答案直接填在题中的横线上)13.若y = 的定义域为R ,则a 的取值范围 . 14.已知()()l o g 2a fx a x =-在[]0,1上是减函数,则a 的取值范围是 .15. 设数列{}n a 的通项为()27n a n n N *=-∈,则1215a a a +++=16. 在ABC ∆3中,已知sinB=5,5cos 13A =,则cos C = .三.解答题:(共6小题,共70分,解答应写出文字说明,推导过程或演算步骤)17.(本题满分10分)已知向量()()sin ,0,cos ,1a x b x →→==,其中203xπ,求12a →的取值范围。
湖南省长沙市长郡中学2023届高三月考试卷(二)数学试题及答案

长郡中学2023届高三月考试卷(二)数学本试卷共8页。
时量120分钟。
满分150分。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
已知全集U =R ,集合{}2,3,4A =,结合{}02,45B =,,,则图中阴影部分表示的集合为A. {}2,4B. {}0C. {}5D. {}0,52.若1a iz i+=-(i 为虚数单位)是纯虚数,则a =A. -1B. 0C. 1D. 23.已知函数()y f x =的图象在点(3,(3))P f 处的切线方程式27y x =-+,则'(3)(3)f f -=A. -2B. 2C. -3D. 34.命题p :“2,240x ax ax ∃∈+≥R ”为假命题的一个充分不必要条件是A.40a -<≤ B. 40a -≤< C. 30a -≤≤ D. 40a -≤≤5. 当102x ……时,4log x a x <, 则a 的取值范围是A. ⎛ ⎝B. ⎫⎪⎪⎭C. D. 2)6. 已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭在,3ππ⎡⎤⎢⎥⎣⎦上恰有 3 个零点, 则ω的取值范围是A. 81114,4,333⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭ B. 111417,4,333⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ C. 111417,5,333⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭D. 141720,5,333⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭7.南宋数学家杨辉在《详解九章算术法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.现有高阶等差数列,其前7项分别为1,4, 8,14, 23,36,54,则该数列的第19项为(注:222(1)(21)126n n n n ++++=……)A. 1624 B. 1024 C. 1198 D. 15608. 已知函数312(),,.,(,)f x x ax b a b x x m n =++∈∈R 且满足()()12(),()f x f n f x f m ==, 对任意的[,]x m n ∈恒有()()()f m f x f n ……, 则当,a b 取不同的值时A. 12n x +与22m x -均为定值B. 12n x -与22m x +均为定值C. 12n x -与22m x -均为定值D. 12n x +与22m x +均为定值二、选择题: 本题共 4 小题, 每小题 5 分, 共 20 分. 在每小题给出的选项中, 有多项符合题目要求. 全部选对的得 5 分, 部分选对的得 2 分, 有选错的得 0 分.9.已知奇函数())cos()(0,0)f x x x ωϕωϕωϕπ=+-+><<的最小正周期为π,将函数()f x 的图象向右平移6π个单位长度,可的导函数()y g x =的图象,则下列结论正确的是A. 函数()2sin(23g x x π=-B. 函数()g x的图象关于点⎛⎫⎪⎝⎭对称C. 函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增D. 当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()g x10.正四棱锥P ABCD -的所有棱长为2,用垂直于侧棱PC 的平面α截该四棱锥,则A. PC BD⊥B. 四棱锥外接球的表面积为8πC. PA 与底面ABCD 所成的角为60︒D. 当平面α经过侧棱PC 中点时,截面分四棱锥得到的上、下两部分几何体体积之比为3: 111.已知数列{}n a 满足1222,8,1,,n n n n a n a a a T a n +--⎧===⎨⎩为偶数,为奇数为数列{}n a 的前n 项和,则下列说法正确的有A. n 为偶数时, 22(1)n n a -=- B. 229n T n n =-+C. 992049T =- D. n T 的最大值为 2012.设定义在R 上的函数()f x 与()g x 的导函数分别为'()f x 和'()g x ,若(2)(1)2f x g x +--=,''()(1)f x g x =+,且(1)g x +为奇函数,则下列说法中一定正确的是A.(1)0g =B.函数'()g x 的图象关于2x =对称C.20221()0k g k ==∑ D. 20211()()0k f k g k ==∑三、填空题:本题共4小题,每小题5分,共20分.13. 若22log log 6a b +=, 则a b +的最小值为_____.14. 已知边长为 2 的菱形ABCD 中, 点F 为BD 上一动点, 点E 满足22,3BE EC AE BD =⋅=- , 则AF EF ⋅的最小值为_____.15. 已知等差数列{}n a 和正项等比数列{}n b 满足117332,2a b a b a ====,则数列{}2(2)nn a b -的前n 项和为_____.16. 已知函数ln (),()e x x xf xg x x==, 若存在120,x x >∈R , 使得()()120f x g x =<成立,则12x x 的最小值为_____.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三第二次月考数学试卷(理科)一、选择题:(每小题5分,共60分)1. 集合 x │0<│x-1│<4,x ∈N 的真子集的个数为( )A. 32B. 31C. 16D. 152. 复数632)1()31()2(34i i i i -⋅---+-的值为( ) A. –2i B. 0 C. 2i D. -i3. 已知集合A=(x ,y )│x+y=1 ,映射:f ∶A →B ,在f 作用下,点(x ,y )的象为(2x ,2y ),则集合B 为( )A.(x ,y )│x+y=2,x >0,y >0B. (x ,y )│x ·y=1,x >0,y >0C. (x ,y )│x ·y=2,x <0 ,y <0D. (x ,y )│x ·y=2,x >0,y >0 4. 采用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,个体a 前两次未被抽到,第3次被抽到的概率为( ) A.21 B. 31 C. 61 D. 41 5. 已知f (x )=x 2+2x ·f '(1),则f '(0)等于( ) A. 0 B. –4 C. –2 D. 26. 函数f (x ),g (x )在区间[a ,b]上恒有:g (x )>0及f '(x)·g (x )>g (x )·g '(x),则对任意x ∈(a ,b )都有( )A. f (x )·g (x )>f (a )·g (a )B. f (x )·g (x )>f (b )·g (b )C. f (x )·g (a )>f (a )·g (x )D. f (x )·g (b )>f (b )·g (x )7. 数列{a n }是公差不为零的等差数列,并且a 5,a 8,a 13是等比数列{b n }相邻三项,若b 2=5,则b n 等于( )A. 5·135-⎪⎭⎫⎝⎛n B. 3·135-⎪⎭⎫⎝⎛n C. 3·153-⎪⎭⎫⎝⎛n D. 5·153-⎪⎭⎫⎝⎛n8. 已知a >0,a ≠1,函数y=a │x 2-x-2│的图象与函数y=│log a x │的图像的交点个数是( ) A. 1个 B. 2个 C. 3个 D. 4个9. 已知f (x )=log 3x+2,x ∈[1,3],则函数F (x )=[f (x )]2+f (x 2)的最大值为( ) A. 13 B. 16 C. 18 D.43710.数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,……的第1000项的值是( ) A. 42 B. 44 C. 45 D. 51 11. 某商场对顾客实行购物优惠活动,规定一次购物: ①如不超过200元,则不予优惠;②如超过200元,但不超过500元,按9折优惠;③如超过500元,其中500元的按9折给予优惠,超过500元的部分按8折给予优惠, 某人两次去购物,分别付款168元和423元,若他只去一次购买同样价值的商品,则应付款( )A. 472.8B. 510.4C. 522.8D. 560.412. 在任意两个正整数m ,n 间定义某种运算(用○×表示运算符号),当m ,n 都为正偶数或都为正奇数时,m ○×n=m+n ,如4○×6=4+6=10,3○×7=3+7=10,当m ,n 中一个为正奇数,另一个为偶数时,m ○×n=mn ,如3○×4=3⨯4=10,4○×3=4⨯3=12则上述定义下,集合 M=(a ,b )│a ○×b=36,a ,b ∈N* 中元素个数为( ) A. 24 B. 35 C. 41 D. 23 二、填空题:(每小题4分,共16分)13. 函数f (x )=log 31(x 2-5x+6)的单调递增区间为_________________.14. 一个盒子装有8个红球和2个白球,从中每次取出一个球,取后放回,共取两次,若取出红球的次数为ξ,且η=2ξ+1,则E η=_____________D η=_____________. 15. 在数列{a n }中,a n +s n =n (n ≥1),其中s n =a 1+a 2+…a n , 则a n =_________________.n n a ∞→lim =_______________.16. 设数集M= x │m ≤x ≤m+43 ,N==x │n-31≤x ≤n ,且M ,N 都有是集合x │0≤x ≤1 的子集,如果把b-a 叫做集合x │a ≤x ≤b 的“长度”,那么集合M ∩N 的“长度”的最小值是________________. 三、解答题:(共74分)17. (本题12分)一批零件有5个合格品及2个次品,安装机器后,从这批零件中任意取出1个,如果每次取出的次品不再放回去,已知取得合格品之前已取出的次品率为ξ, 求(Ⅰ)ξ的概率分布列; (Ⅱ)E ξ。
18.(本题12分)定义在R 上的单调函数f (x )满足f (3)=log 23,且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ), (1)求证f (x )为奇函数;(2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围。
19. (本题12分)这是一个计算机程序的操作说明: ①初始值x=1,y=1,z=0,n=0; ②n=n+1(将当前n+1的值赋予新的n ) ③x=x+2(将当前x+2的值赋予新的x ) ④y=2y (将当前2y 的值赋予新的y ) ⑤z=z+xy (将当前z+xy 的值赋予新的z )⑥如果z >7000则执行语句⑦,否则回到语句②继续进行:⑦打印n ,z; ⑧程序终止。
由语句⑦打印出的数值为_____________、_______________ 并写出计算过程。
20.(本题12分)已知31≤a ≤1,若函数f (x )=ax 2-2x+1在区间[1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ) (Ⅰ)求g (a )的函数表达式; (Ⅱ)判断函数g (a )在区间[31,1]上的单调性,并求出g (a )的最小值。
21. (本题12分)已知f (x )=2)1(1++ax bx ,(x ≠-a1,a >0),f (1)=log 162,f (-2)=1,(Ⅰ)求f (x )得表达式;(Ⅱ)若数列{x n }满足x n =[1-f (1)]·[1-f (2)]…[1-f (n )],试求x 1,x 2,x 3,x 4的值,并由此猜想出x n 的表达式,并证明你的结论。
22. (本题14分)已知f (x )=x 3+bx 2+cx+d 在(-∞,0)上是增函数,在[0,2]上是减函数,且方程f (x )=0有三个根,它们分别为α,2,β。
(Ⅰ)求c 的值; (Ⅱ)求证f (1)≥2;(Ⅲ)求│α-β│的取值范围。
参考答案:一、选择题:二、填空题:13.(-∞,2)。
14. E η=21/5 ;D η=32/25。
15 a n =1-n 21;.1lim =∞→n n a 16. 1/12。
三、解答题:17. (Ⅰ) (Ⅱ)E ξ=3118. (Ⅰ)令x=y=0,得f (0)=0;令y= -x ,则f (x-x )=f (x )+f (-x )=f (0)=0, 得函数f (x )为奇函数;(Ⅱ)单调函数f (x )满足f (3)=log 23>0 = f (0),函数f (x )为单调递增函数,f (k ·3x )<f (-3x +9x +2),k ·3x <9x -3x +2,k <3x +x 32-1 设u (x )=3x +x32-1≥22-1 得k <22-1 19.设n=Ii 时,x ,y ,z 的值分别为x i ,y i ,z i ,依题意,x 0=1,x n =x n -1+2,所以{x n }是等差数列,且x n =2n+1,Y 0=1,y n =2y n-1,所以{y n }是等比数列,且y n =2n ,z 0=0,z n =z n-1+x n y n , 所以z n =x 1y 1+x 2y 2+…+x n y n =3×2+5×22+7×23+…(2n+1)×2n 用错位相减法求和得:z n =(2n-1)2n+1+2当z n =(2n-1)2n+1+2>7000时,取n=8,此时z=7682。
20. (Ⅰ)f (x )=a (x-a 1)2+1-a 1,由于31≤a ≤1,所以1≤a1≤3,y 小=N (a )=1-a 1,当21≤a ≤1,即1≤a1≤2时,y 大=f (3)=9a-5, 当31≤a ≤21,即2≤a 1≤3时,y 大=f (1)=a-1,g (a )=⎪⎪⎩⎪⎪⎨⎧≤≤+-≤≤+-)121(169)2131(12a a a a a a(Ⅱ)g '(a )=⎪⎪⎩⎪⎪⎨⎧≤〈〉-≤≤〈-)121(019)2131(01122a a a aa ⎥⎦⎤⎢⎣⎡∈21,31时,g (a )为减函数;a ⎥⎦⎤⎢⎣⎡∈1,21时,g (a )为增函数,(也可以利用函数y=x+x 1的图像及性质来判断此函数的单调性)。
当a=21时,g (a )的最小其值为21。
21. (Ⅰ)f (1)=log 162=2)1(141++=a b f (-2)=2)12(12+-+-a b =1,得a=1,b=0, f (x )=2)1(1+x ,(x ≠-1); (Ⅱ)x 1=3/4,x 2=4/6,x 3=5/8,x 4=6/10。
猜想x n =)1(22++n n ,并用数学归纳法证明(略)22. (Ⅰ)f '(x )=3x 2+2bx+c │x=0=c=0;(Ⅱ)f (2)=0,8+4b+d=0,d=-8-4b,f '(x )=3x 2+2bx=x (3x+2b ) 因为f (x )在(-∞,0)上是增函数,在[0,2]上是减函数,所以2≤-32b,b ≤-3, f (1)=1+b-8-4b=-3b-7≥2。
(Ⅲ)f (x )=x 3+bx 2-4b-8=(x-2)[x 2+(b+2)x+4+2b] │α-β│=(),316)23(16)2()24(42222=---≥--=+-+b b b│α-β│的取值范围为[3,+∞)。