2020年新人教版八年级上册第二次月考数学试卷(含答案)

合集下载

八年级(上)第二次月考数学试卷(含答案)

八年级(上)第二次月考数学试卷(含答案)

八年级(上)第二次月考数学试卷(含答案) 一、选择题 1.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )A .12+B .21-C .2D .322.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B .2C .2D .63.下列图案属于轴对称图形的是( )A .B .C .D .4.如图,正方形OACB 的边长是2,反比例函数k y x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4-5.下列四个图标中,是轴对称图形的是( )A .B .C .D .6.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .47.下列四个图案中,不是轴对称图案的是( )A .B .C .D .8.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .129.计算2263y y x x÷的结果是( ) A .3318y xB .2y xC .2xyD .2xy 10.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( ) A .﹣2 B .﹣1 C .0 D .2二、填空题11.如图,在平面直角坐标系中,长方形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 、y 轴的正半轴上:OA =3,OC =4,D 为OC 边的中点,E 是OA 边上的一个动点,当△BDE 的周长最小时,E 点坐标为_____.12.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.13.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.14.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.15.如果点P (m+1,m+3)在y 轴上,则m=_____.16.在311,2π,122-,0,0.454454445…,319中,无理数有______个. 17.计算222m m m+--的结果是___________ 18.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.19.一次函数32y x =-+的图象一定不经过第______象限.20.若函数y=kx +3的图象经过点(3,6),则k=_____.三、解答题21.如图1,在平面直角坐标系xOy 中,点A 的坐标是(0,2),点C 是x 轴上的一个动点.当点C 在x 轴上移动时,始终保持ACP ∆是等腰直角三角形(90ACP ︒∠=,点A 、C 、P 按逆时针方向排列);当点C 移动到点O 时,得到等腰直角三角形AOB (此时点P 与点B 重合).(初步探究)(1)写出点B 的坐标________;(2)点C 在x 轴上移动过程中,作PD x ⊥轴,垂足为点D ,都有AOC CDP ∆∆≌,请在图2中画出当等腰直角AOP ∆的顶点P 在第四象限时的图形,并求证:AOC CDP ∆∆≌.(深入探究)(3)当点C 在x 轴上移动时,点P 也随之运动.探究点P 在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;(4)直接写出2AP 的最小值为________.22.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.(1)求证:ABE C ∠=∠;(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,10AC =,求DC 的长.23.如图,在△ABC 中,AC=BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,当△PCD 的周长最小时,在图中画出点P 的位置,并求点P 的坐标.24.已知 2x k x+=,k 为正实数. (1)当k =3时,求x 224x +的值; (2)当k 10时,求x ﹣2x的值; (3)小安设计一个填空题并给出答案,但被老师打了两个“×”小安没看懂老师为什么指出两个错误?如果你看懂了,请向小安解释一下.25.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x =2﹣23. 四、压轴题26.在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a)、B(b ,0)满足:222110a b a b --++-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-3,m),如图(1)所示.若S ΔABC =16,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图(2)所示,P 为线段AB 上一动点(不与A 、B 重合),连接OP ,PE 平分∠OPB ,交x 轴于点M ,且满足∠BCE=2∠ECD . 求证:∠BCD=3(∠CEP-∠OPE).27.如图1所示,直线:5L y mx m =+与x 轴负半轴,y 轴正半轴分别交于A 、B 两点.(1)当OA OB =时,求点A 坐标及直线L 的解析式.(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM OQ ⊥于M ,BN OQ ⊥于N ,若17AM =,求BN 的长. (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角OBF ∆和等腰直角ABE ∆,连接EF 交y 轴于P 点,如图3.问:当点B 在y 轴正半轴上运动时,试猜想PB 的长是否为定值?若是,请求出其值;若不是,说明理由.28.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).(1)如图1,若点C 与点O 重合,A (-2,2)、B (4,4),求△ABC 的面积;(2)如图2,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,若∠AOG =55°,求∠CEF 的度数;(3)如图3,AC 经过坐标原点O ,点C 在第三象限且点C 在直线DM 与x 轴之间,N 为AC 上一点,AB 分别与x 轴,直线DM 交于点G ,F ,BC 交DM 于点E ,∠NEC+∠CEF =180°,求证∠NEF =2∠AOG .29.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.30.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.【详解】2211+2,∴点A 2.故选C.【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.2.B解析:B【解析】【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC 于点D ,∴∠EAM=∠NAM ,在△AME与△AMN中,===AE ANEAM NAMAM AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE,当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,∵2AB ,∠BAC=45°,此时△ABE为等腰直角三角形,∴2,即BE2,∴BM+MN2.故选:B.【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.3.D解析:D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D有一条对称轴,由此即可得出结论.详解:A、不能找出对称轴,故A不是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、能找出一条对称轴,故D是轴对称图形.故选D.点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.4.C解析:C【解析】【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可.【详解】解:∵正方形OACB 的边长是2,∴点C 的坐标为(2,2)将点C 的坐标代入k y x=中,得 22k = 解得:4k =故选C .【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.5.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A 、不是轴对称图形,不合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不合题意.故选:B .【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7.B解析:B【解析】【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】解:A.此图案是轴对称图形,不符合题意;B.此图案不是轴对称图形,符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是轴对称图形,不符合题意;故选:B.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键. 9.D解析:D【解析】【分析】利用分式的除法法则,将分式的除法转化为乘法再约分即可.【详解】解:原式22362y x xyx y==.故选:D.【点睛】本题主要考查了分式的除法,熟练掌握分式的除法运算是解题的关键.10.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b:当k>0,b>0⇔y=kx+b 的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.二、填空题11.(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B 交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD解析:(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE= D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:342k bb+=⎧⎨=-⎩,解得,22kb=⎧⎨=-⎩,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.12.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.13.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.14.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.15.﹣1.【解析】∵点P (m+1,m+3)在y 轴上,∴m +1=0,∴m=-1.故答案为:-1.解析:﹣1.【解析】∵点P (m+1,m+3)在y 轴上,∴m+1=0,∴m=-1.故答案为:-1.16.3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,,0.454454445…,为无理数,共3个.故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无解析:3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,2π,0.4544544453个. 故答案为:3.【点睛】 本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.17.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母. 18.150【解析】【分析】连接OP ,根据轴对称的性质得到,再利用四边形的内角和是计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点故答案为:1解析:150【解析】【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为:150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.19.三【解析】【分析】根据一次函数的解析式中的k 、b 的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y 轴的正半轴,解析:三【解析】【分析】根据一次函数的解析式中的k 、b 的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y 轴的正半轴,k=-3<0,∴y 随x 的增大而减小,∴函数的图象经过第一、二、四象限,∴不经过第三象限.故答案为:三.【点睛】本题考查了一次函数的性质. 解题时可根据解析式中的k 、b 的值的正负作出草图,从而很容易判断函数经过(或不经过)那一象限.20.1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.解析:1【解析】∵函数y=kx+3的图象经过点(3,6),∴336k +=,解得:k=1.故答案为:1.三、解答题21.(1)()2,0B ;(2)证明见解析;(3)点P 在直线上运动;2y x =-;(4)8.【解析】【分析】(1)根据等腰三角形的性质即可求解;(2)根据题意作图,再根据等腰直角三角形的性质判定AOC CDP ∆∆≌;(3)根据题意去特殊点,再利用待定系数法即可求解;(4)当P在B点时,AP最小,故可求解.【详解】(1)∵点A的坐标是(0,2),△AOB为等腰直角三角形,∴AO=BO∴()2,0B(2)如图,∵ACP∆是等腰直角三角形,且90ACP∠=︒∴AC PC=∵PD BC⊥∴90PDC∠=︒∴90AOC PDC∠=∠=︒,90DPC PCD∠+∠=︒∵90ACP∠=︒∴90ACB PCD∠+∠=︒∴DPC ACB∠=∠在AOC∆和CDP∆中,,,.AOC PDCDPC ACBAC PC∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOC CDP AAS∆∆≌(3)点P在直线上运动;∵两点确定一条直线∴可以取两个特殊点当P在y轴上时,2OP OC OA===,∴()0,2P-当P在x轴上时,2OP OA==,∴()2,0P设所求函数关系式为y kx b=+;将()2,0和()0,2-代入,得20,2.k bb+=⎧⎨=-⎩220bk b=-⎧⎨+=⎩解得1,2.kb=⎧⎨=-⎩21bk=-⎧⎨=⎩所以所求的函数表达式为2y x=-;(4)如图,作AP⊥直线2y x=-,即P与B点重合,∴AP2=22+22=8.【点睛】此题主要考查一次函数的几何综合,解题的关键是熟知一次函数的性质。

八年级(上)第二次月考数学试卷(含答案)

八年级(上)第二次月考数学试卷(含答案)

八年级(上)第二次月考数学试卷(含答案) 一、选择题 1.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴 2.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .5 3.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)4.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<325.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)6.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8 7.点(2,-3)关于原点对称的点的坐标是( ) A .(-2,3) B .(2,3) C .(-3,-2) D .(2,-3)8.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数 9.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( )A .1B .2C .4D .无数 10.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等二、填空题11.17.85精确到十分位是_____.12.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.13.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.14.4的平方根是 .15.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .16.在一次函数(1)5y k x =-+中,y 随x 的增大而增大,则k 的取值范围__________.17.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.18.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.19.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,4、()3,4,若直线y kx =与线段AB 有公共点,则k 的取值范围为__________.20.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.三、解答题21.甲、乙两车同时从A 地出发前往B 地,其中甲车选择有高架的路线,全程共50km ,乙车选择没有高架的路线,全程共44km .甲车行驶的平均速度比乙车行驶的平均速度每小时快20千米,乙车到达B 地花费的时间是甲车的1.2倍.问甲、乙两车行驶的平均速度分别是多少?22.小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()km s 与所用时间()h t 之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____h ,小明在停留之前的速度为____km/h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t =h 时,两人同时到达乙地,求t 为何值时,两人在途中相遇.23.如图,反比例函数k y x=与一次函数y=x+b 的图象,都经过点A (1,2)(1)试确定反比例函数和一次函数的解析式;(2)求一次函数图象与两坐标轴的交点坐标.24.已知一次函数y=kx+b的图象经过点A(—1,—5),且与正比例函数的图象相交于点B(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.25.在平面直角坐标系中,直线l1:y=﹣2x+6与坐标轴交于A,B两点,直线l2:y=kx+2(k>0)与坐标轴交于点C,D,直线l1,l2与相交于点E.(1)当k=2时,求两条直线与x轴围成的△BDE的面积;(2)点P(a,b)在直线l2:y=kx+2(k>0)上,且点P在第二象限.当四边形OBEC的面积为233时.①求k的值;②若m=a+b,求m的取值范围.四、压轴题26.如图,在平面直角坐标系中,一次函数y x的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______.(3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.28.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.30.如图,在平面直角坐标系中,直线AB 经过点A 332)和B 3,0),且与y 轴交于点D ,直线OC 与AB 交于点C ,且点C 3.(1)求直线AB 的解析式;(2)连接OA ,试判断△AOD 的形状;(3)动点P 从点C 出发沿线段CO 以每秒1个单位长度的速度向终点O 运动,运动时间为t秒,同时动点Q 从点O 出发沿y 轴的正半轴以相同的速度运动,当点Q 到达点D 时,P ,Q 同时停止运动.设PQ 与OA 交于点M ,当t 为何值时,△OPM 为等腰三角形?求出所有满足条件的t 值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.故选D. 【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 2.C解析:C【解析】 试题分析:A 31,故错误;B 2<﹣1,故错误;C .﹣12<2,故正确;52,故错误;故选C .【考点】估算无理数的大小.3.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】将Rt ABC∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.4.B解析:B【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.6.B解析:B【解析】【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则2.71.5v svt s=⎧⎨=⎩解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.7.A解析:A【解析】【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,∴点(2,-3)关于原点对称的点的坐标是(-2,3).故选A.【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.8.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A中,例如42=,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.9.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.10.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.二、填空题11.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.13.3-【解析】【分析】作AH⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt△ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC 的长度即为AF 的长度.【详解】解析:3-3【解析】【分析】作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=3,可求出HC 的长度即为AF 的长度.【详解】解:如下图,作AH ⊥BC 于H .则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°, ∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2,∴112AH AB ==, 根据勾股定理2222213BH AB AH -=-=∵BC=3, ∴33AF HC BC BH ==-=-故填:33【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.14.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.15.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 16.【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数中,随的增大而增大,∴,∴;故答案为:.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次解析:1k >【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数(1)5y k x =-+中,y 随x 的增大而增大,k->,∴10k>;∴1k>.故答案为:1【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质进行解题.17.12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件. 18.【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,解析:【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=12.故其周长为12.故答案为:12.【点睛】本题考查了等腰三角形,已知两边长求周长,结合等腰三角形的性质,灵活的进行分类讨论是解题的关键.19.【解析】【分析】由直线与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 解析:443k ≤≤ 【解析】【分析】由直线y kx =与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 的坐标分别为()1,4、()3,4,∴令y=4时, 解得:4x k= , ∵直线y=kx 与线段AB 有公共点,∴1≤4k≤3, 解得:443k ≤≤. 故答案为:443k ≤≤. 【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于k 的一元一次不等式是解题的关键.20.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD 平分∠BAC,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,∴∠BAD=12∠BAC , ∵∠BAC=120°, ∴∠BAD=12×120°=60°, 故答案为:60°.【点睛】 本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质.三、解答题21.甲车行驶的平均速度为75/km h ,乙车行驶的平均速度为55/km h .【解析】【分析】设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20)km/h .根据“乙车到达B 地花费的时间是甲车的1.2倍”列方程求解即可.【详解】设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20)km/h .根据题意,得:50441.220x x⨯=+ 解得:x =55.经检验,x =55是所列方程的解.当x =55时,x +20=75.答:甲车行驶的平均速度为75km/h ,乙车行驶的平均速度为55km/h .【点睛】本题考查了分式方程的应用.找出相等关系是解答本题的关键.22.(1)2,10;(2)s=15t-40(45)t ≤≤;(3)t=3h 或t=6h.【解析】【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;小明2小时内行驶的路程是20 km ,据此可以求出他的速度;(2)由图象可知:B(4,20),C(5,35),设线段BC 的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当02t <≤时, 10t=10(t-1);当24t <<时, 20=10(t-1);当46t ≤≤时, 15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;由图象可知:小明2小时内行驶的路程是20 km ,所以他的速度是20210÷=(km/ h );故答案是:2;10.(2)设线段BC 的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴420535k b k b +=⎧⎨+=⎩, ∴1540k b =⎧⎨=-⎩, ∴线段BC 的函数表达式为s=15t-40(45)t ≤≤;(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50 km ,∴小华的速度=50(61)10÷-=(km/ h ),下面分三种情况讨论两人在途中相遇问题:当02t <≤时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当24t <<时,两人在途中相遇,则20=10(t-1),解得t=3;当46t ≤≤时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h 或t=6h 时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.23.(1)反比例函数的解析式为2yx=,一次函数的解析式为y=x+1.(2)(-1,0)与(1,0).【解析】【分析】(1)将点A(1,2)分别代入kyx=与y=x+b中,运用待定系数法即可确定出反比例解析式和一次函数解析式.(2)对于一次函数解析式,令x=0,求出对应y的值,得到一次函数与y轴交点的纵坐标,确定出一次函数与y轴的交点坐标;令y=0,求出对应x的值,得到一次函数与x轴交点的横坐标,确定出一次函数与x轴的交点坐标.【详解】解:(1)∵反比例函数kyx=与一次函数y=x+b的图象,都经过点A(1,2),∴将x=1,y=2代入反比例解析式得:k=1×2=2,将x=1,y=2代入一次函数解析式得:b=2-1=1,∴反比例函数的解析式为2yx=,一次函数的解析式为y=x+1.(2)对于一次函数y=x+1,令y=0,可得x=-1;令x=0,可得y=1.∴一次函数图象与两坐标轴的交点坐标为(-1,0)与(1,0).24.(1)a=1 (2)y=2x-3 (3)3【解析】【分析】(1)将点(2,a)代入正比例函数解析式求出a的值;(2)将(-1,-5)和(2,1)代入一次函数解析式求出k和b的值,从而得出函数解析式;(3)根据描点法画出函数图象.【详解】解:(1)∵正比例函数y=12x的图象过点(2,a)∴ a=1(2)∵一次函数y=kx+b的图象经过两点(-1,-5)(2,1)∴5 21k bk b-+=-⎧⎨+=⎩解得23 kb=⎧⎨=-⎩∴y=2x-3(3)函数图像如图【点睛】本题考查待定系数法求函数解析式;描点法画函数图象25.(1)△BDE 的面积=8;(2)①k =4;②﹣12<m <2. 【解析】【分析】(1)由直线l 1的解析式可得点A 、点B 的坐标,当k =2时,由直线l 2的解析式可得点C 、点D 坐标,联立直线l 1与直线l 2的解析式可得点E 坐标,根据三角形面积公式求解即可;(2)①连接OE .设E (n ,﹣2n +6),由S 四边形OBEC =S △EOC +S △EOB 可求得n 的值,求出点E 坐标,把点E 代入y =kx +2中求出k 值即可;②由直线y =4x +2的表达式可确定点D 坐标,根据点P (a ,b )在直线y =4x +2上,且点P 在第二象限可得42b a =+及a 的取值范围,由m =a +b 可确定m 的取值范围.【详解】解:(1)∵直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,∴当y =0时,得x =3,当x =0时,y =6;∴A (0,6)B (3,0);当k =2时,直线l 2:y =2x +2(k ≠0),∴C (0,2),D (﹣1,0) 解2622y x y x =-+⎧⎨=+⎩得14x y =⎧⎨=⎩, ∴E (1,4),4BD ∴=,点E 到x 轴的距离为4,∴△BDE 的面积=12×4×4=8. (2)①连接OE .设E (n ,﹣2n +6),∵S 四边形OBEC =S △EOC +S △EOB ,∴12×2×n +12×3×(﹣2n +6)=233, 解得n =23, ∴E (23,143), 把点E 代入y =kx +2中,143=23k +2, 解得k =4.②∵直线y =4x +2交x 轴于D , ∴D (﹣12,0), ∵P (a ,b )在第二象限,即在线段CD 上, ∴﹣12<a <0, ∵点P (a ,b )在直线y =kx +2上 ∴b =4a +2, ∴m =a +b =5a +2,15222a -<+< ∴﹣12<m <2.【点睛】本题考查了一次函数与几何图形的综合,涉及了一次函数与坐标轴的交点、解析式,两条直线的交点及围成的三角形的面积,灵活的将函数图像与解析式相结合是解题的关键.四、压轴题26.(1) (3,-2);(2) (n ,m );(3)图见解析, 点Q 到E 、F 点的距离之和最小值为10【解析】 【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答. 【详解】(1)如图,C '的坐标为(3,-2), 故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为210.【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.27.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q 作QS ⊥PQ ,交PR 于S ,过点S 作SH ⊥x 轴于H , 对于直线y =﹣3x+3,由x =0得y =3 ∴P (0,3), ∴OP =3 由y =0得x =1, ∴Q (1,0),OQ =1, ∵∠QPR =45° ∴∠PSQ =45°=∠QPS ∴PQ =SQ∴由(1)得SH =OQ ,QH =OP∴OH =OQ+QH =OQ+OP =3+1=4,SH =OQ =1 ∴S (4,1),设直线PR 为y =kx+b ,则341b k b =⎧⎨+=⎩ ,解得1k 2b 3⎧=-⎪⎨⎪=⎩∴直线PR 为y =﹣12x+3 由y =0得,x =6 ∴R (6,0). 【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键. 28.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】 【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果; (3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x+解出x 即可. 【详解】解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°, ∵CD ⊥AB , ∴∠BDC=90°, ∵BE 平分∠ABC , ∴∠ABE=∠CBE=34°, ∴∠BPD =90-34=56°; (2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x-)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°,∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x+)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC , 则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x-,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x+,∴902x -+902x --(454x+)=90°, 解得:x=36°; ②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y-,由①得:∠ABC+∠BCD=90°,∴902x -+[902x --(902y-)]=90,又y=454x +,解得:x=1807°; ③若CP=CE ,则∠EPC=∠PEC=y ,∠PCE=180-2y , 由①得:∠ABC+∠BCD=90°,∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合,综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系. 29.(1)①);②B ;(2)3s =;(3)59k ≤≤.【解析】 【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可. 【详解】 解:(1)①∵2a =,∴11b b ==-=',∴坐标为:),故答案为:);②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2, ∵()2,2满足2y =, ∴这个点是B , 故答案为:B ;(2)∵点C 的坐标为(2,2)--, ∴OC 的关系式为:()0y x x =≤, ∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩,∴点P 的限变点Q 的纵坐标满足的关系式为:。

人教版2022-2023学年八年级数学上册第二次月考测试题(附答案)

人教版2022-2023学年八年级数学上册第二次月考测试题(附答案)

2022-2023学年八年级数学上册第二次月考测试题(附答案)一、选择题(共48分)1.下面图形表示绿色食品、节水、节能和低碳四个标志,其中是轴对称图形的是()A.B.C.D.2.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3B.2,2,4C.1,2,4D.3,4,53.下面的计算正确的是()A.a4•a3=a12B.a4÷a3=a C.a4+a3=a7D.(a4)3=a7 4.若分式有意义,则x的取值范围是()A.x≠0B.x≠4C.x≠0且x≠﹣4D.x≠﹣45.“君问归期未有期,巴山夜雨涨秋池.“这里的“巴山”指的就是云雾缭绕、色赤如霞的北碚缙云山,西大附中学子为了强健体魄,计划从学校出发行走30千米的路程,在下午4时到达山顶,实际速度比原计划速度快20%,结果于下午2时到达,求原计划行进的速度.设原计划行进的速度为xkm/h,则可列方程()A.B.C.D.6.已知等腰三角形的两边长分别为7cm和13cm,则它的周长是()A.27cm B.20cm C.33cm D.27cm或33cm 7.已知,则之值为()A.4B.3C.2D.18.已知△ABC,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB,AC 上,且这组对应边所对的顶点重合于点M,点M一定在()A.∠A的平分线上B.AC边的高上C.BC边的垂直平分线上D.AB边的中线上9.如图,在Rt△ABC中,∠BAC=90°,AB=4,D是边BC上的点,连接AD.如果将△ABD沿直线AD翻折后,点B恰好在边AC的中点处,则点D到AC的距离是()A.2B.C.D.310.如图,在Rt△ABC中,∠B=90°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点E,点F,作直线EF交BC于点D,连接AD,若AB=3,BC=5,则△ABD的周长为()A.5B.6C.7D.811.已知等边△ABC中AD⊥BC,AD=12,若点P在线段AD上运动,当AP+BP的值最小时,AP的长为()A.4B.8C.10D.1212.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,与BC相交于点F,BE ⊥AD,交AC延长线于E,且垂足为D,H是AB边的中点,连接CH与AD相交于点G,则下列结论:①AF=BE;②AF=2BD;③AG=BD;④AC+CF=AB;正确的有()A.1个B.2个C.3个D.4个二、填空题(共24分)13.若2a+3b=2,则9a•27b的值为.14.若x2+(m﹣3)x+16是完全平方式,则m=.15.若关于x的方程无解,则k的值为.16.如图,AD是△ABC的中线,CE是△ABC的角平分线.若AB=AC,∠CAD=26°,则∠ACE=.17.如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在P A、PC的中垂线上.若∠ABC=80°,则∠APC的度数为.18.在直角坐标系中,如图有△ABC,现另有一点D满足以A、B、D为顶点的三角形与△ABC全等,则D点坐标为.三、解答题(共78分)19.因式分解:(1)x3﹣6x2y+9xy2;(2)x2﹣y2﹣ax﹣ay.20.先化简,再求值:[(3m+n)(m﹣n)﹣(2m﹣n)2+(m﹣2n)(m+2n)]÷(2n),其中m、n满足m2+n2﹣6m+2n+10=0.21.解方程:(1);(2).22.如图,在平面直角坐标系中,A(1,2)、B(3,1)、C(﹣2,﹣1)(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出A1、B1、C1的坐标;(3)求△A1B1C1的面积.23.如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AGF的度数.24.某商场用22000元购入一批电器,然后以每台2800元的价格销售,很快售完.商场又以48000元的价格再次购入该种型号的电器.数量是第一次购入数量的2倍,售价每台上调了200元,进价每台也上调了200元.(1)商场第一次购入的电器每台进价是多少元?(2)商场既要尽快售完第二次购入的电器,又要使在这两次销售中获得的总利润不低于16800元.打算将第二次购入的部分电器按每台九折出售,最多可将多少台电器打折出售?25.规定:顶角相等且顶角顶点重合的两个等腰三角形互为“兄弟三角形”.(1)如图①,在△ABC与△ADE中,AB=AC,AD=AE,当∠BAC、∠BAD、∠BAE、满足条件时,△ABC与△ADE互为“兄弟三角形”;(2)如图②,在△ABC与△ADE互为“兄弟三角形”,AB=AC,AD=AE,BE、CD相交于点M,连AM,求证:MA平分∠BMD;(3)如图③,在四边形ABCD中,AD=AB,∠BAD+∠BCD=180°,AC=BC+DC,求∠BAD的度数.26.如图,在平面直角坐标系内,有一个等腰Rt△ABC,∠ABC=90°,AB=BC.(1)如图1,点A(﹣4,0),点B(0,﹣1),点C的坐标为.(2)如图2,点A(﹣4,0),点B在y轴负半轴上,点C在第一象限,过点C作CH 垂直于x轴于点H,则CH+OB的值为.(3)如图3,点B与原点重合,点A在x轴负半轴上,点C在y轴正半轴上,点D为x 轴正半轴上一点,点M为线段AD中点,在y轴正半轴上取点E,使OE=OD,过点D 作FD⊥CD,交EM的延长线于点F,请补全图形,判断CD与DF的数量关系,并证明你的结论.参考答案一、选择题(共48分)1.解:B、C、D中的图案不是轴对称图形,A中的图案是轴对称图形,故选:A.2.解:A、1+2=3,不能组成三角形,故A选项错误;B、2+2=4,不能组成三角形,故B选项错误;C、1+2<4,不能组成三角形,故C选项错误;D、3+4>5,能组成三角形,故D选项正确;故选:D.3.解:A.a4•a3=a7,故本选项不合题意;B.a4÷a3=a,故本选项符合题意;C.a4与a3不是同类项,所以不能合并,故本选项不合题意;D.(a4)3=a12,故本选项不合题意;故选:B.4.解:∵分式有意义,∴x+4≠0,解得x≠﹣4.故选:D.5.解:设原计划行进的速度为xkm/h,则实际行进的速度为(1+20%)xkm/h,依题意,得:=+2.故选:C.6.解:分两种情况讨论;当三边是13,13,7时,符合三角形的三边关系,此时周长是33cm;当三边是13,7,7时,符合三角形的三边关系,此时周长是27cm.故选:D.7.解:由得,=,即(a+b)2=6ab,也就是a2+b2=4ab,所以+===4,故选:A.8.解:作射线AM,由题意得,MG=MH,MG⊥AB,MH⊥AC,∴AM平分∠BAC,故选:A.9.解:如图,过点D作DE⊥AC于E,DF⊥AB于F,在Rt△ABC中,∠BAC=90°,∠DAB=∠DAE=45°,∴DE=DF,由题意AB=AB′=CB′=4,∴S△ABC=AB•AC=•(AB+AC)•DE,∴DE=,∴点D到AC的距离是.故选:C.10.解:根据作图过程可知:EF是AC的垂直平分线,∴CD=AD,∴△ABD的周长为:AD+BD+AB=CD+BD+AB=BC+AB=5+3=8.故选:D.11.解:如图,作BE⊥AC于点E,交AD于点P,∵△ABC是等边三角形,AD⊥BC,∴∠DAC=30°∴PE=AP当BP⊥AC时,AP+BP=PE+BP=BE,值最小,∵BE=AD=12,此时,AP=AD=8.故选:B.12.解:∵AD⊥BE,∴∠FDB=∠FCA=90°,∵∠BFD=∠AFC,∴∠DBF=∠F AC,∵∠BCE=∠ACF=90°,BC=AC,∴△BCE≌△ACF(SAS),∴EC=CF,AF=BE,故①正确,∵∠DAB=∠DAE,AD=AD,∠ADB=∠ADE=90°,∴△ADB≌△ADE(SAS),∴BD=DE,AB=AE,∴AF=2BD,故②正确,连接BG,∵CB=CA,BH=AH,∴CH⊥AB,∴GA=GB,∵BG>BD,∴AG≠BD,故③错误,∵BC+CF=AC+EC=AE=AB,故④正确,故选:C.二、填空题(共24分)13.解:∵2a+3b=2,∴9a•27b=32a•33b=32a+3b=32=9.故答案为:9.14.解:∵x2+(m﹣3)x+16是完全平方式,∴m﹣3=±8,解得:m=11或m=﹣5,故答案为:11或﹣515.解:去分母得:kx﹣1=﹣2x﹣3,当k=﹣2时,方程化简得:﹣1=﹣3,无解,符合题意;由分式方程无解,得到x2﹣1=0,即x=1或x=﹣1,把x=1代入整式方程得:k﹣1=﹣5,即k=﹣4;把x=﹣1代入整式方程得:﹣k﹣1=﹣1,即k=0,故答案为:﹣4或﹣2或0.16.解:∵AD是△ABC的中线,AB=AC,∠CAD=26°,∴∠CAB=2∠CAD=52°,∠B=∠ACB=(180°﹣∠CAB)÷2=64°.∵CE是△ABC的角平分线,∴∠ACE=32°.故答案为:32°.17.解:∵∠ABC=80°,∴∠BMN+∠BNM=100°,∵M、N分别在P A、PC的中垂线上,∴MA=MP,NP=NC,∴∠MP A=∠MAP=∠BMN,∠NPC=∠NCP=∠BNM,∴∠MP A+∠NPC=×100°=50°,∴∠APC=180°﹣50°=130°,故答案为:130°.18.解:点D的可能位置如下图所示:,则可得点D的坐标为:(﹣2,﹣3)、(4,3)、(4,﹣3).故答案为:(﹣2,﹣3)、(4,3)、(4,﹣3).三、解答题(共78分)19.解:(1)原式=x(x2﹣6xy+9y2)=x(x﹣3y)2;(2)原式=(x+y)(x﹣y)﹣a(x+y)=(x+y)(x﹣y﹣a).20.解:∵m、n满足m2+n2﹣6m+2n+10=0,∴(m2﹣6m+9)+(n2+2n+1)=0,∴(m﹣3)2+(n+1)2=0,∴m﹣3=0,n+1=0,∴m=3,n=﹣1,[(3m+n)(m﹣n)﹣(2m﹣n)2+(m﹣2n)(m+2n)]÷(2n)=(3m2﹣3mn+mn﹣n2﹣4m2+4mn﹣n2+m2﹣4n2)÷2n=(﹣6n2+2mn)÷2n=﹣3n+m,当m=3,n=﹣1时,原式=3+3=6.21.解:(1)去分母得:x2=4(x﹣1)+x(x﹣1),整理得:x2=4x﹣4+x2﹣x,解得:x=,经检验x=是分式方程的解;(2)去分母得:x(x+2)﹣8=x2﹣4,整理得:x2+2x﹣8=x2﹣4,解得:x=2,经检验x=2是增根,分式方程无解.22.解:(1)△A1B1C1如图所示;(2)A1(﹣1,2)B1(﹣3,1)C1(2,﹣1);(3)△A1B1C1的面积=5×3﹣×1×2﹣×2×5﹣×3×3,=15﹣1﹣5﹣4.5,=15﹣10.5,=4.5.23.证明:(1)∵CE∥AB,∴∠B=∠DCE,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)∠AGF=∠B+∠D=72°.24.解:(1)设商场第一次购入的电器每台进价是x元,则第二次购入的电器每台进价是(x+200)元,依题意,得:=2×,解得:x=2200,经检验,x=2200是原方程的解,且符合题意.答:商场第一次购入的电器每台进价是2200元.(2)第一次购进的电器数量为22000÷2200=10(台),第二次购进的电器数量为48000÷(2200+200)=20(台).设可以将y台电器打折出售,依题意,得:2800×10﹣22000+[(2800+200)×0.9y+(2800+200)×(20﹣y)﹣48000]≥16800,解得:y≤4.答:最多可将4台电器打折出售.25.解:(1)∵在△ABC与△ADE中,AB=AC,AD=AE,∴当∠BAC=∠DAE时,△ABC与△ADE互为“兄弟三角形”,∵∠BAE=∠DAE+∠BAD,∴∠BAE=∠BAC+∠BAD,故当∠BAE=∠BAC+∠BAD时,△ABC与△ADE互为“兄弟三角形”,故答案为∠BAE=∠BAC+∠BAD;(2)∵在△ABC与△ADE互为“兄弟三角形”,AB=AC,AD=AE,∴∠BAC=∠DAE,∴∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴AB=AC,∠ABE=∠ACD.过点A作AH⊥BE于点H,作AN⊥CD于点N,如图②,∴∠AHB=∠ANC=90°,∴△ABH≌△ACN(AAS),∴AH=AN(全等三角形的对应高相等),∴HA平分∠BMD;(3)延长CD至E,使得DE=BC,连接AE,如图③,∵∠BAD+∠BCD=180°,∴∠ABC+∠ADC=360°﹣180°=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,∵AB=AD,∴△ABC≌△ADE(SAS),∴AC=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∵AC=BC+DC=DE+DC=CE,∴AC=CE=AE,∴∠CAE=60°,∴∠BAD=60°.26.解:(1)如图1中,过点C作CR⊥y轴于R.∵点A(﹣4,0),点B(0,﹣1),∴OA=4,OB=1,∵∠AOB=∠ABC=∠CHB=90°,∴∠ABO+∠CBR=90°,∠CBR+∠BCR=90°,∴∠ABO=∠BCR,∵AB=BC,∴△AOB≌△BRC(AAS),∴BR=AO=4,CR=OB=1,∴OR=BR﹣OB=3,∴C(1,3).故答案为:(1,3).(2)如图2中,过点C作CH⊥x轴于H,过点B作BT⊥CH交CH的延长线于T,设AH交BC于点J.∵∠ABJ=∠CHJ=90°,∠AJB=∠CJH,∴∠BAO=∠BCT,∵∠AOB=∠T=90°,AB=BC,∴△AOB≌△CTB(AAS),∴AO=CT,∵∠BOH=∠OHT=∠T=90°,∴四边形OHTB是矩形,∴OB=HT,∴CH+OB=CH+HT=CT=4.故答案为:4.(3)结论:CD=DF.理由:连接AE,延长AE交CD于J.∵OA=OC,∠AOE=∠COD=90°,OE=OD,∴△AOE≌△COD(SAS),∴∠OAE=∠OCD,AE=CD,∵∠CEJ=∠AEO,∴∠CJE=∠AOE=90°,∴AJ⊥CD,∵DF⊥CD,∴AJ∥DF,∴∠AEM=∠DFM,∵∠AME=∠DMF,AM=MD,∴△AME≌△DMF(AAS),∴AE=DF,∴CD=DF.。

人教版八年级上册数学月考考试卷【含答案】

人教版八年级上册数学月考考试卷【含答案】

人教版八年级上册数学月考考试卷【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .107.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。

人教版八年级上册数学《第二次月考》试卷【含答案】

人教版八年级上册数学《第二次月考》试卷【含答案】

人教版八年级上册数学《第二次月考》试卷【含答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.已知三角形的三边长分别为2,a -1,4,则化简|a -3|+|a -7|的结果为( )A .2a -10B .10-2aC .4D .-44.若关于x 的不等式3x-2m ≥0的负整数解为-1,-2,则m 的取值范围是( )A .96m 2-≤<-B .96m 2-<≤-C .9m 32-≤<-D .9m 32-<≤- 5.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,56.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .9.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若不等式组130x a bx ->⎧⎨+≥⎩的解集是﹣1<x ≤1,则a =_____,b =_____. 3.分解因式6xy 2-9x 2y -y 3 = _____________.4.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE+PF =________.5.如图,∠1+∠2+∠3+∠4=______度.6.如图,AC 平分DCB ∠,CB CD =,DA 的延长线交BC 于点E ,若49EAC ∠=,则BAE ∠的度数为__________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x y x y +=⎧⎨-=⎩ (2)143()2()4x y x y x y ⎧-=-⎪⎨⎪+--=⎩2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.已知a 、b 、c 满足2225(32)0a b c ---= (1)求a 、b 、c 的值.(2)试问:以a 、b 、c 为三边长能否构成三角形,如果能,请求出这个三角形的周长,如不能构成三角形,请说明理由.4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C在原点下方,已知AB=13.(1)求点B的坐标;l的解析式.(2)若△ABC的面积为4,求25.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、D5、C6、A7、A8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、-2 -33、-y(3x -y)24、45、2806、82.︒三、解答题(本大题共6小题,共72分)1、(1)31x y =⎧⎨=-⎩;(2)4989x y ⎧=-⎪⎪⎨⎪=⎪⎩.2、20xy-32,-40.3、(1)a=b=5,c=2)能;4、(1)(0,3);(2)112y x=-.5、略6、(1)该快递公司投递总件数的月平均增长率为10%;(2)该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.。

人教版八年级上册数学第二次月考试卷【含答案】

人教版八年级上册数学第二次月考试卷【含答案】

人教版八年级上册数学第二次月考试卷【含答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.已知a 为实数,则代数式227122a a -+的最小值为( )A .0B .3C .33D .95.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .187.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=10,则S 2的值为( )A .113B .103C .3D .838.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.216.3.33x x -=-,则x 的取值范围是________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在平面直角坐标系中,在x 轴、y 轴的正半轴上分别截取OA 、OB ,使OA=OB ;再分别以点A 、B 为圆心,以大于12AB 长为半径作弧,两弧交于点P .若点C 的坐标为(,23a a -),则a 的值为________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知:关于x 的一元二次方程221(1)204x m x m +++-=.(1)若此方程有两个实数根,求m 的最小整数值;(2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m的值.4.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、B5、B6、C7、B8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、82、43、3x≤4、425、46、3三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、11a-,1.3、(1)-4;(2)m=34、略(2)∠EBC=25°5、(1)略;(2)MB=MC.理由略;(3)MB=MC还成立,略.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

八年级(上)第二次月考数学试卷(带答案)

八年级(上)第二次月考数学试卷(带答案)

八年级(上)第二次月考数学试卷一、选择题1.(3分)的平方根是()A.9B.±9C.3D.±32.(3分)以下列各组数据中是勾股数的是()A.1,1,B.12,16,20C.1,D.1,2,3.(3分)下列各式中,正确的是()A.=±4B.±=4C.=﹣3D.=﹣4 4.(3分)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.5.(3分)点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0C.y1<y2D.y1=y26.(3分)下列说法中:(1)无理数就是开方开不尽的数;(2)无理数是无限小数;(3)无理数包括正无理数、零、负无理数;(4)无理数可以用数轴上的点来表示.共有()个是正确的.A.1B.2C.3D.47.(3分)无论m为何实数,直线y=x+2m与y=﹣x+4的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)直角三角形的一条直角边是另一条直角边的,斜边长为10,则它的面积为()A.10B.15C.20D.309.(3分)方程组的解互为相反数,则a的值是()A.6B.7C.8D.910.(3分)在平面直角坐标系中,点P(n,1﹣n)一定不在第()象限.A.一B.二C.三D.四二、填空题11.(3分)若x=()3,则=.12.(3分)已知y﹣2与x成正比例,当x=3时,y=1,则y与x的函数表达式是.13.(3分)函数y=2x向右平移2个单位,得到的表达式为.14.(3分)如图,AB⊥BC,且AB=,BC=2,CD=5,AD=4,则∠ACD=度,图形ABCD的面积为.三、解答题15.(1)用代入法求解(2)用加减消元法求解(3).16.如图,在平面直角坐标系中,已知A(﹣1,5),B(﹣1,0),C(﹣4,3).①在图中作出△ABC关于y轴的对称图形△A1B1C1;②写出点A1和C1的坐标.17.如图:有一个圆柱,底面圆的直径AB=,高BC=12cm,P为BC的中点,求蚂蚁从A点爬到P点的最短距离.18.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)1535售价(元/件)2045若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?19.已知函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数的图象平行直线y=3x﹣3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.20.已知一次函数y=﹣2x+4(1)画出函数的图象.(2)求图象与x轴、y轴的交点A、B的坐标.(3)求A、B两点间的距离.(4)利用图象写出当x为何值时,y≥0.21.一位农民带上若干千克自产的土豆进城出售.为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)求出降价前每千克的土豆价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?22.有甲、乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的201倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1188,求甲、乙这两个数.23.如图,l A,l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)走了一段路后,自行车因故障,进行修理,所用的时间是小时.(2)B出发后小时与A相遇(3)修理后的自行车速度是多少?A步行速度是多少?(4)若B的自行车不发生故障,保持出发时的速度前进,几小时与A相遇?相遇点离B的出发点几千米?(5)求出A行走的路程S与时间t的函数关系式.24.如图,直线y=2x+b经过点A(1,0),与y轴交于点B,直线y=ax+经过点C(4,0),且与直线AB交于点D.(1)求B、D两点的坐标;(2)求△ADC 的面积;(3)在直线BD 上是否存在一点P ,使S △ACP =2S △ACD ?若存在,请求出符合条件的点P 坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:∵=9,∴的平方根是±3,故选:D.2.【解答】解:A、∵不是正整数,∴此选项不符合题意;B、∵122+162=202,∴此选项符合题意;C、∵不是正整数,∴此选项不符合题意;D、∵不是正整数,∴此选项不符合题意.故选:B.3.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.4.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.5.【解答】解:根据题意,k=﹣4<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选:A.6.【解答】解:(1)无理数就是开方开不尽的数,故(1)错误;(2)无理数是无限不循环小数,故(2)错误;(3)无理数包括正无理数、负无理数,故(3)错误;(4)无理数可以用数轴上的点来表示,故(4)正确;7.【解答】解:由于直线y=﹣x+4的图象不经过第三象限.因此无论m取何值,直线y=x+2m与y=﹣x+4的交点不可能在第三象限.故选:C.8.【解答】解:直角三角形的一条直角边是另一条直角边的,设一边是a,另一直角边是3a,根据勾股定理得到方程a2+(3a)2=100,解得:a=,则另一直角边是3,则面积是:××3=15.故选:B.9.【解答】解:由方程组的解互为相反数,得到x+y=0,即y=﹣x,代入方程组得:,把①代入②得:4x﹣18=﹣5x,解得:x=2,把x=2代入①得:a=8,故选:C.10.【解答】解:n>0时,1﹣n可以是负数也可以是正数,∴点P可以在第一象限也可以在第四象限,n<0时,1﹣n>0,∴点P在第二象限,不在第三象限.故选:C.二、填空题11.【解答】解:x=()3=﹣5,则==2.故答案是2.12.【解答】解:∵y﹣2与x成正比例,∴设y﹣2=kx,∵当x=3时,y=1,∴k=﹣∴y ﹣2=﹣x ,∴y 与x 的函数关系式是:y=﹣x +2.故答案为y=﹣x +2.13.【解答】解:由“左加右减”的原则可知:直线y=2x 向右平移2个单位, 得到直线的解析式为:y=2(x ﹣2),即y=2x ﹣4.故答案为:y=2x ﹣4.14.【解答】解:在RT △ABC 中,∵AB=,BC=2,∴AC==.又∵CD=5,AD=4, ∴在△ACD 中,AC 2+CD 2=AD 2,即∠ACD=90°.∴S 四边形ABCD =S △ABC +S △ACD ==+.三、解答题15.【解答】解:(1), 由②得x=3﹣4y ③,将③代入①得2(13﹣4y )+3y=16,解得:y=2,将y=2代入②得:x=5, ∴原方程的解为;(2)用加减消元法求解:,①×2得:10x ﹣12y=﹣6 ③②×3得:21x ﹣12y=27④④﹣③得:21x ﹣12y ﹣10x +12y=33,解得:x=3,将x=3代入①得:y=3,∴原方程组的解为;(3),②﹣①得:x﹣2y=﹣1 ④①×3得,3x+3y+3z=12 ⑤⑤+③得6x+y=7 ⑥⑥×2,得:12x+2y=14 ⑦⑦+④得13x=13,解得:x=1,将x=1代入④得y=1,将x=1、y=1代入①得z=2,∴原方程组的解为.16.【解答】解:(1)所作图形如图所示:;(2)点A1的坐标为(1,5),点C1的坐标为(4,3).17.【解答】解:已知如图:∵圆柱底面直径AB=cm、母线BC=12cm,P为BC的中点,∴圆柱底面圆的半径是cm,BP=6cm,∴AB=×2×=8cm,在Rt△ABP中,AP==10cm,∴蚂蚁从A点爬到P点的最短距离为10cm.18.【解答】解:设甲种商品应购进x件,乙种商品应购进y件,依题意得:,解得:,答:甲种商品应购进100件,乙种商品应购进60件.19.【解答】解:(1)∵函数y=(2m+1)x+m﹣3的图象经过原点,∴当x=0时y=0,即m﹣3=0,解得m=3;(2)∵函数y=(2m+1)x+m﹣3的图象与直线y=3x﹣3平行,∴2m+1=3,解得m=1;(3)∵这个函数是一次函数,且y随着x的增大而减小,∴2m+1<0,解得m<﹣.20.【解答】解:(1)列表如下:x…01…y…42…描点、连线画出函数图象,如图所示.(2)当x=0时,y=﹣2x+4=4,∴点B的坐标为(0,4);当y=﹣2x+4=0时,x=2,∴点A的坐标为(2,0).(3)∵A(2,0),B(0,4),∴OA=2,OB=4.在Rt△AOB中,∠AOB=90°,OA=2,OB=4,∴AB==2.∴A、B两点间的距离为2.(4)观察函数图象可知:当x<2时,一次函数y=﹣2x+4的图象在x轴上方;当x=2时,y=﹣2x+4=0.∴当x≤2时,y≥0.21.【解答】解:(1)由图象可知,当x=0时,y=5.答:农民自带的零钱是5元.(2)设降价前每千克土豆价格为k元,则农民手中钱y与所售土豆千克数x之间的函数关系式为:y=kx+5,∵当x=30时,y=20,∴20=30k+5,解得k=0.5.答:降价前每千克土豆价格为0.5元.(3)设降价后农民手中钱y与所售土豆千克数x之间的函数关系式为y=0.4x+b.∵当x=30时,y=20,∴b=8,当x=a时,y=26,即0.4a+8=26,解得:a=45.答:农民一共带了45千克土豆.22.【解答】解:设甲数为x,乙数为y,根据题意得:,解得:.答:甲是24,乙是12.23.【解答】解:(1)由图象可得,走了一段路后,自行车因故障,进行修理,所用的时间是:1.5﹣0.5=1(小时),故答案为:1;(2)由图象可得,B出发3小时与A相遇,故答案为:3;(3)由图象可得,修理后的自相车的速度为:(22.5﹣7.5)÷(3﹣1.5)=10千米/时,A步行的速度为:(22.5﹣10)÷3=千米/时;(4)由图象可得,B出发时的速度为:7.5÷0.5=15千米/时,设若B的自行车不发生故障,保持出发时的速度前进,x小时与A相遇,15x=10+,解得,x=,∴15x=15×,即若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米;(5)设A行走的路程S与时间t的函数关系式为:S=kt+b,,得,即A行走的路程S与时间t的函数关系式是S=.24.【解答】解:(1)将点A(1,0)代入y=2x+b中得b=﹣2,即为y=2x﹣2,∵DB相交于y轴,∴令x=0,∴y=﹣2,∴B(0,﹣2),将C(4,0)代入y=ax+中得:a=﹣,即为y=,∵D相交于两线之间∴,∴x=,将x=代入y=2x﹣2中得:y=1,∴D(1.5,1),(2),(3)假设存在P,则S△ACP =2S△ACD=3,∴,∴y P=2将y P=2代入y=2x﹣2中∴x=2,∴P(2,2),∴,∴,将y=﹣2代入y=2x﹣2中得x=0,∴P2(0,﹣2)即D的坐标轴为(2,2)和(0,﹣2).。

人教版2022-2023学年八年级数学上册第二次月考测试题(附答案)

人教版2022-2023学年八年级数学上册第二次月考测试题(附答案)

2022-2023学年八年级数学上册第二次月考测试题(附答案)一、选择题(共30分)1.计算下列四个式子,其运算结果最小的是()A.(﹣)2B.(﹣3)2C.﹣32D.(﹣3)02.在等腰△ABC中,∠A=50°,则∠B的度数不可能是()A.50°B.60°C.65°D.80°3.小王想做一个三角形的框架,他有两根长度分别为7cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分为两截的木条是()A.7cm的木条B.8cm的木条C.两根都可以D.两根都不行4.如图,△ABC是等边三角形,CB=CD,∠ABD=12°,则∠BAD的度数为()A.10°B.15°C.18°D.20°5.如图,已知∠O,点P为其内一定点,分别在∠O的两边上找点A、B,使△P AB周长最小的是()A.B.C.D.6.已知a=355,b=444,c=533,则下列关系中正确的是()A.b>c>a B.a>c>b C.b>a>c D.a<b<c7.若x2﹣kx+49是完全平方式,则k的值是()A.±9B.+14C.±14D.﹣148.如图为三条两两相交的公路,某石化公司拟建立一个加油站,计划使得该加油站到三条公路的距离相等,则加油站的可选位置有()A.1个B.2个C.3个D.4个9.如图,在△ABC中,∠B=∠C,E、D、F分别是AB、BC、AC上的点,且BE=CD,BD=CF,若∠A=104°,则∠EDF的度数为()A.24°B.32°C.38°D.52°10.如图,锐角三角形ABC中,O为三条边的垂直平分线的交点,I为三个角的平分线的交点,若∠BOC的度为x,∠BIC的度数为y,则x、y之间的数量关系是()A.x+y=90°B.x﹣2y=90°C.x+180°=2y D.4y﹣x=360°二、填空题(共15分)11.若a﹣b=5,则a2﹣b2﹣10b的值是.12.若(a﹣2)0=1,则a需要满足的条件是.13.若(mx2﹣3x)(x2﹣x﹣1)的乘积中不含x3项,则m的值是.14.如图,在Rt△ABC中,∠A=90°,∠ACB=30°,BD平分∠ABC,交AC于点D,CD=4,则点D到BC的距离是.15.如图,△ABC和△ABE关于直线AB对称,△ABC和△ADC关于直线AC对称,CD与AE交于点F,若∠ABC=30°,∠ACB=15°,则∠CFE的度数为.三、解答题(满分75分)16.(1)计算:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷3a2b;(2)运用平方差公式解方程:(x+3)2﹣(x﹣3)2=36.17.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如(如图),在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数.(1)根据上面的规律,写出(a+b)4的展开式;(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.18.甲、乙两人共同计算一道整式乘法题:(3x+a)(4x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为12x2﹣5x﹣2;乙由于漏抄了第二个多项式中x的系数,得到的结果为3x2+5x+2.(1)求正确的a、b的值;(2)计算这道乘法题的正确结果.19.如图1、图2和图3,A、B两点在直线l同侧,且点A、B所在直线与l不平行,在直线l上画出符合要求的点P(不写作法与理由,保留作图痕迹).(1)P A﹣PB为最大值,在图1中的直线l上画出点P1的位置;(2)P A=PB,在图2中的直线l上画出点P2的位置;(3)P A+PB为最小值,在图3中的直线l上画出点P3的位置.20.如图,AD,BC相交于点E,AD=BC,∠A=∠B=90°.(1)求证:△ACD≌△BDC;(2)若∠BCD=22°,求∠BDE的度数.21.求证:有两条边和其中一边上的中线对应相等的两个三角形全等.22.如图,在平面直角坐标系中,A(2,﹣1),B(4,2),C(1,4).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)直接写出△ABC的面积为;(3)请仅用无刻度的直尺画出∠ABC的平分线BD,保留作图痕迹.23.如图,小明将一张长方形的纸片沿着对角线AC对折,点B与点E为对应点,EC交AD 于点F.(1)图中共有对全等三角形;(2)若∠EAF为34°,求∠ACB的度数;(3)若长方形纸片的周长为18cm,猜想△DCF的周长,并证明你的结论.参考答案一、选择题(共30分)1.解:(﹣)2=,(﹣3)2=9,﹣32=﹣9,(﹣3)0=1,∵﹣9<<1<9,∴运算结果最小的是﹣32.故选:C.2.解:当∠A为顶角时,则∠B==65°;当∠B为顶角时,则∠B=180°﹣2∠A=80°;当∠A、∠B为底角时,则∠B=∠A=50°;∴∠B的度数不可能为60°,故选:B.3.解:利用三角形的三边关系可得应把8cm的木条截成两段,如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于7,所以,可以,而7cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.故选:B.4.解:∵△ABC是等边三角形,∠ABC=60°,而∠ABD=12°,∴∠DBC=60°+12°=72°.∵CB=CD,∴∠BCD=180°﹣72°﹣72°=36°,∴∠DCA=60°﹣36°=24°,∵CD=CB=CA,∴∠DAC=×(180°﹣24°)=78°,∴∠BAD=78°﹣60°=18°.故选:C.5.解:分别作点P关于∠O的两边的对称点P1,P2,连接P1P2交∠O的两边于A,B,连接P A,PB,此时△P AB的周长最小.故选:D.6.解:∵a=355=(35)11,b=444=(44)11,c=533=(53)11,35=243,44=256,53=125,∴b>a>c,故选:C.7.解:∵x2﹣kx+49=x2﹣kx+72,x2﹣kx+49是完全平方式,∴﹣kx=±2•x•7,解得k=±14.故选:C.8.解:在三角形内部三条角平分线相交于同一点,三外角平分线有三交点,除去深水湖泊那里的交点,共有三个,故选:C.9.解:∵AB=AC,∠A=104°,∴∠B=∠C=38°,在△BDE和△CFD中,,∴△BDE≌△CFD(SAS),∴∠BED=∠CDF,∠BDE=∠CFD,∴∠BED+∠BDE=∠CDF+∠CFD,∵∠BED+∠B=∠CDE=∠EDF+∠CDF,∴∠B=∠EDF=38°,故选:C.10.解:∵O为三条边的垂直平分线的交点,∴点O为△ABC的外心,∴x=2∠A,∵I为三个角的平分线的交点,∴点I是△ABC的内心,∴y=90°+A,∴y=90°+x,∴4y﹣x=360°,故选:D.二、填空题(共15分)11.解:∵a﹣b=5,即a=b+5,∴a2﹣b2﹣10b+1=(b+5)2﹣(b+5)2+25=25.故答案为:25.12.解:若(a﹣2)0=1,则a需要满足的条件是:a≠2.故答案为:a≠2.13.解:原式=mx4﹣(m+3)x3+(3﹣m)x2+3x由题意可知:m+3=0,∴m=﹣3,故答案为:﹣3.14.解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2,故答案为:2.15.解:∵△ABC和△ABE关于直线AB对称,△ABC和△ADC关于直线AC对称,∴∠DCA=∠ACB=15°,∠BAC=∠BAE,∵∠ABC=30°,∴∠BAC=180°﹣15°﹣30°=135°,∴∠EAC=360°﹣135°﹣135°=90°,∴∠CFE=∠ACD+∠EAC=90°+15°=105°,故答案为:105°.三、解答题(满分75分)16.解:(1)原式=[a3b2﹣a2b﹣a2b+a3b2]÷3a2b=(2a3b2﹣2a2b)÷3a2b=ab﹣;(2)(x+3)2﹣(x﹣3)2=36.(x+3+x﹣3)(x+3﹣x+3)=36,∴12x=36,解得x=3.17.解:(1)根据上面的规律可知:(a+b)4=a4+4a3b+6a2b+4ab2+b4;(2)结合(1)可知:(a+b)n的展开式共有(n+1)项,系数和为2n.∵(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5,∴25﹣5×24+10×23﹣10×22+5×2﹣1=(2﹣1)5=15=1.18.解:(1)∵(3x﹣a)•(4x+b)=12x2+3bx﹣4ax﹣ab=12x2+(3b﹣4a)x﹣ab,∴3b﹣4a=﹣5①,∵(3x+a)•(x+b)=3x2+3bx+ax+ab,∴3b+a=5②,由①和②组成方程组:,解得:;(2)(3x+2)•(4x+1)=12x2+11x+2.19.解:(1)如图1中,点P1即为所求作.(2)如图2中,点P2即为所求作.(3)如图3中,点P3即为所求作.20.证明:(1)∵∠A=∠B=90°,在Rt△ACD与Rt△BDC中,,∴Rt△ACD≌Rt△BDC(HL),(2)∵Rt△ACD≌Rt△BDC,∴∠ADC=∠BCD=22°,∴∠BDC=90°﹣∠BCD=90°﹣22°=68°,∴∠BDE=∠BDC﹣∠ADC=68°﹣22°=46°.21.已知:如图在△ABC和△DEF中,AB=DE,BC=EF,AN是BC上的中线,DM是EF 上的中线,且AN=DM,求证:△ABC≌△DEF.证明:∵BC=EF,AN是BC上的中线,DM是EF上的中线,∴BN=EM,在△ABN和△DEM中,,∴△ABN≌△DEM(SSS),∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).22.解:(1)如图所示,△A1B1C1即为所求;(2)由题可得,AB=BC==,∠ABC=90°,∴△ABC的面积为AB×BC=×()2=;故答案为:;(3)如图所示,BD即为所求.23.解:(1)∵四边形ABCD是矩形,∴AD∥BC,△ABC≌△CDA,∴∠DAC=∠ACB,∵△AEC是由△ABC沿着AC折叠得到的,∴△ABC≌△AEC,∠ECA=∠BCA,AE=AB,∴∠F AC=∠ACF,∴AF=CF,又∵AB=CD,∴AE=CD,∴Rt△AEF≌Rt△CDF(HL),∵△ABC≌△CDA,△ABC≌△AEC,∴△CDA≌△AEC,∴图中有4对全等三角形:△ABC≌△CDA,△ABC≌△AEC,△CDA≌△AEC,△AEF ≌△CDF.故答案为:4;(2)∵长方形的纸片沿着对角线AC对折,∴∠ACB=∠ACE,∠B=∠AEF=90°,∵∠EAF=34°,∴∠AFE=90°﹣∠EAF=56°,∵∠F AC=∠FCA,∴∠ACF=∠AFE=28°,∴∠ACB=28°;(3)△DCF的周长为9cm.证明:∵长方形纸片的周长为18cm,∴AD+DC=18=9(cm),∵AF=CF,∴△DCF的周长=DF+CF+DC=AF+DF+DC=AD+DC=9(cm).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(上)第二次月考数学试卷一、选择题(3&#215;10=30分)1.在式子中,分式的个数是()A.2 B.3 C.4 D.52.下列各式一定是二次根式的是()A.B.C.D.3.若2<a<3,则等于()A.5﹣2a B.1﹣2a C.2a﹣1 D.2a﹣54.若二次根式有意义,则x的取值范围为()A.x≥2 B.x≠2 C.x>2 D.x=25.下列二次根式中属于最简二次根式的是()A. B. C.D.6.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥27.正方形的面积是4,则它的对角线长是()A.2 B.C. D.48.若分式无意义,则X的值是()A.0 B.1 C.﹣1 D.±19.把分式中的x,y都扩大2倍,则分式的值()A.不变 B.扩大2倍 C.扩大4倍 D.缩小2倍10.已知直角三角形的两边长分别是5和12,则第三边为()A.13 B.C.13或D.不能确定二、填空题(3&#215;10=30分)11.分式,,的最简公分母为.12.用科学记数法表示﹣0.0000064=.13.约分:=.14.计算:(a﹣1b2)3=.15.在Rt△ABC中,∠C=90°,若a:b=3:4,c=10,则S△ABC=.16.计算:=.17.若=2﹣x,则x的取值范围是.18.若|a﹣b+1|与互为相反数,则(a﹣b)2005=.19.当x时,是二次根式.20.要从电杆离地面5m处向地面拉一条长为13m的电缆,则地面电缆固定点与电线杆底部的距离应为.三、解答题(满分24分)21.(1)(2)(3)(4)5+﹣7(5)+6a﹣3a2(6)+=3.四、解答题(共3小题,满分18分)26.若关于x的方程=3+有增根,则m的值为多少?27.已知x=+3,y=﹣3,求下列各式的值:(1)x2﹣2xy+y2(2)x2﹣y2.28.如图,铁路上A,B两点相距23km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=8km.现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E 站应建在离A站多少km处?五、解答题(共2小题,满分18分)29.甲和乙共同完成某项任务,乙先独做2天,再由两人合做10天完成任务.已知乙单独完成该任务所需天数,是甲单独完成该任务所需天数的,求甲、乙两人单独完成各需要几天.30.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.八年级(上)第二次月考数学试卷参考答案与试题解析一、选择题(3&#215;10=30分)1.在式子中,分式的个数是()A.2 B.3 C.4 D.5【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,+的分母中均不含有字母,因此它们是整式,而不是分式.,,9x+分母中含有字母,因此是分式.故选:B.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.下列各式一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【分析】根据二次根式的概念和性质,逐一判断.【解答】解:A、二次根式无意义,故A错误;B、是三次根式,故B错误;C、被开方数是正数,故C正确;D、当b=0或a、b异号时,根式无意义,故D错误.故选:C.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.3.若2<a<3,则等于()A.5﹣2a B.1﹣2a C.2a﹣1 D.2a﹣5【考点】二次根式的性质与化简.【专题】计算题.【分析】先根据2<a<3给二次根式开方,得到a﹣2﹣(3﹣a),再计算结果就容易了.【解答】解:∵2<a<3,∴=a﹣2﹣(3﹣a)=a﹣2﹣3+a=2a﹣5.故选D.【点评】本题考查了化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.4.若二次根式有意义,则x的取值范围为()A.x≥2 B.x≠2 C.x>2 D.x=2【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得x﹣2≥0,再解不等式可得答案.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故选:A.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.5.下列二次根式中属于最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.6.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥2【考点】二次根式的乘除法;二次根式有意义的条件.【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故本题选C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.7.正方形的面积是4,则它的对角线长是()A.2 B.C. D.4【考点】勾股定理.【专题】计算题.【分析】设正方形的对角线为x,然后根据勾股定理列式计算即可得解.【解答】解:设正方形的对角线为x,∵正方形的面积是4,∴边长的平方为4,∴由勾股定理得,x==2.故选C.【点评】本题考查了勾股定理,正方形的性质,熟记定理和性质是解题的关键.8.若分式无意义,则X的值是()A.0 B.1 C.﹣1 D.±1【考点】分式有意义的条件;绝对值.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:当分母|x|﹣1=0,即x=±1时,分式无意义.故选D.【点评】考查了分式有意义的条件和绝对值.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.9.把分式中的x,y都扩大2倍,则分式的值()A.不变 B.扩大2倍 C.扩大4倍 D.缩小2倍【考点】分式的基本性质.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解;把分式中的x,y都扩大2倍,则分式的值缩小2倍,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘或除以同一个不为零的整式,分式的值不变.10.已知直角三角形的两边长分别是5和12,则第三边为()A.13 B.C.13或D.不能确定【考点】勾股定理.【专题】分类讨论.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:当12是斜边时,第三边长==;当12是直角边时,第三边长==13;故第三边的长为:或13.故选C.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意分类讨论.二、填空题(3&#215;10=30分)11.分式,,的最简公分母为(a+b)(a﹣b).【考点】最简公分母.【专题】计算题.【分析】根据最简公分母的定义求解.【解答】解:分式,,的最简公分母为(a+b)(a﹣b).故答案为(a+b)(a﹣b).【点评】本题考查了最简公分母:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.12.用科学记数法表示﹣0.0000064=﹣6.4×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:﹣0.000 006 4=﹣6.4×10﹣6.故答案是:﹣6.4×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.约分:=﹣.【考点】约分.【专题】计算题.【分析】先把分母因式分解,然后分子分母约去公因式(x﹣3)即可.【解答】解:原式==﹣.故答案为﹣.【点评】本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.14.计算:(a﹣1b2)3=a﹣3b6.【考点】负整数指数幂.【分析】分别根据乘方,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=a﹣3b6=.【点评】本题主要考查了乘方,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.15.在Rt△ABC中,∠C=90°,若a:b=3:4,c=10,则S△ABC=24.【考点】勾股定理.【分析】设a=3x,则b=4x.由勾股定理和已知条件得出c=5x=10,得出x=2,求出a、b,由三角形的面积公式即可得出结果.【解答】解:设a=3x,则b=4x,∵∠C=90°,∴c==5x=10,∴x=2,∴a=6,b=8,∴S△ABC=ab=×6×8=24;故答案为:24.【点评】本题考查了勾股定理、三角形面积的计算方法;熟练掌握勾股定理,由勾股定理求出a和b 是解决问题的关键.16.计算:=.【考点】二次根式的加减法.【专题】计算题.【分析】先化简=2,再合并同类二次根式即可.【解答】解:=2﹣=.故答案为:.【点评】本题主要考查了二次根式的加减,属于基础题型.17.若=2﹣x,则x的取值范围是x≤2.【考点】二次根式的性质与化简.【分析】根据已知得出x﹣2≤0,求出不等式的解集即可.【解答】解:∵=2﹣x,∴x﹣2≤0,x≤2则x的取值范围是x≤2故答案为:x≤2.【点评】本题考查了二次根式的性质的应用,注意:当a≤0时,=﹣a.18.若|a﹣b+1|与互为相反数,则(a﹣b)2005=﹣1.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:算术平方根.【专题】计算题.【分析】根据互为相反数两数之和为0列出等式,利用非负数的性质求出a与b的值,即可确定出所求式子的值.【解答】解:根据题意得:|a﹣b+1|+=0,∴,解得:,则(a﹣b)2005=(﹣1)2005=﹣1.故答案为:﹣1【点评】此题考查了解二元一次方程组,以及非负数的性质,熟练掌握非负数的性质是解本题的关键.19.当x是任意实数时,是二次根式.【考点】二次根式的定义.【分析】根据二次根式的定义列出不等式求解即可.【解答】解:根据题意,(1﹣x)2≥0,解得x是任意实数.故答案为:是任意实数.【点评】本题考查了二次根式的定义,利用被开方数是非负数列式求解即可,比较简单.20.要从电杆离地面5m处向地面拉一条长为13m的电缆,则地面电缆固定点与电线杆底部的距离应为12m.【考点】勾股定理的应用.【分析】直接根据勾股定理进行解答即可.【解答】解:∵电线杆、地面及缆绳正好构成直角三角形,AC=5m,BC=13m,∴AB===12(m).故答案为:12m.【点评】本题考查的是勾股定理的应用,有利于培养学生理论联系实际的能力.三、解答题(满分24分)21.(1)(2)(3)(4)5+﹣7(5)+6a﹣3a2(6)+=3.【考点】分式的混合运算;二次根式的混合运算;解分式方程.【专题】计算题;分式.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式化简后,合并同类二次根式即可得到结果;(5)原式化简后,合并同类二次根式即可得到结果;(6)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣=;(2)原式=1﹣•=1﹣==﹣;(3)原式=﹣•=﹣;(4)原式=5+2﹣21=﹣14;(5)原式=+a﹣3a=(1﹣2a);(6)去分母得:3﹣2=6x﹣6,移项合并得:6x=7,解得:x=,经检验x=是分式方程的解.【点评】此题考查了分式的混合运算,二次根式的混合运算,以及解分式方程,熟练掌握运算法则是解本题的关键.四、解答题(共3小题,满分18分)26.若关于x的方程=3+有增根,则m的值为多少?【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣5=0,得到x=4,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘(x﹣4),得2=3(x﹣4)﹣m∵原方程有增根,∴最简公分母(x﹣4)=0,解得x=4,当x=4时,m=﹣2.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.27.已知x=+3,y=﹣3,求下列各式的值:(1)x2﹣2xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【专题】计算题.【分析】(1)先计算出x﹣y=6,再利用完全平方公式得到x2﹣2xy+y2=(x﹣y)2,然后利用整体代入的方法计算;(2)先计算出x+y=2,x﹣y=6,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.【解答】解:(1)∵x=+3,y=﹣3,∴x﹣y=6,∴x2﹣2xy+y2=(x﹣y)2=62=36;(2)∵x=+3,y=﹣3,∴x+y=2,x﹣y=6,∴x2﹣y2=(x+y)(x﹣y)=2×6=12.【点评】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.28.如图,铁路上A,B两点相距23km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=8km.现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E 站应建在离A站多少km处?【考点】勾股定理的应用.【分析】根据使得C,D两村到E站的距离相等,则DE=CE,再利用勾股定理得出AE的长.【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(23﹣x),∵DA=15km,CB=8km,∴x2+152=(23﹣x)2+82,解得:x=8,∴AE=8km.答:E站应建在离A站8km处.【点评】此题主要考查了勾股定理的应用,利用AE2+AD2=DE2,BE2+BC2=EC2得出是解决问题的关键.五、解答题(共2小题,满分18分)29.甲和乙共同完成某项任务,乙先独做2天,再由两人合做10天完成任务.已知乙单独完成该任务所需天数,是甲单独完成该任务所需天数的,求甲、乙两人单独完成各需要几天.【考点】分式方程的应用.【分析】设甲单独完成需要5x天,乙单独完成需要4x天,根据题意可得,这项任务甲做10天,乙做12天可共同完成,据此列方程求解.【解答】解:设甲单独完成需要5x天,乙单独完成需要4x天,由题意得,+=1,解得:x=5,经检验,x=5是原分式方程的解,且符合题意,则5x=25,4x=20.答:甲单独完成需要25天,乙单独完成需要20天.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.30.阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.【考点】分母有理化.【专题】阅读型.【分析】(1)(2)仿照题目所给的分母有理化的方法进行计算;(3)将每一个二次根式分母有理化,再寻找抵消规律.【解答】解:(1)===﹣;(2)===﹣;(3)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=10﹣1=9.【点评】主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.。

相关文档
最新文档