光纤种类及特点
光纤的简单分类

光缆的基本结构一般是由缆芯、加强钢丝、填充物和护套等几部分组成,另外根据需要还有防水层、缓冲层、绝缘金属导线等构件。
光纤的种类:(1)按工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85pm、1.3pm、1.55pm)(2)折射率分布:阶跃(SI)型、近阶跃型、渐变(GI)型渐变折射率光纤又称自聚焦光纤,光纤折射率中心最高,沿径向递减,光束在光纤中传播,可以自动聚焦而不发生色散。
渐变折射率光纤适用于多模通信的传输,从而减少讯号的模式色散。
其他(三角型、W型、凹陷型)。
(3)传输模式:单模光纤(工作波长内,只能传输一个传播模式的光纤芯径一般为9或10μm,谱宽要窄,稳定性要好,可容许单模光束传输,可减除频宽及振模色散(Modal dispersion)的限制,但由于单模光纤芯径太小,较难控制光束传输,故需要极为昂贵的激光作为光源体)(含偏振保持光纤、非偏振保持光纤)、多模光纤(由于多模光纤中传输的模式多达数百个,各个模式的传播常数和群速率不同,使光纤的带宽窄,色散大,损耗也大,只适于中短距离和小容量的光纤通信系统,按工作波长以及其传播可能的模式分为多个模式的光纤50um)。
原材料:石英玻璃、多成分玻璃、塑料、复合材料(塑料包层、液体纤芯)、红外材料(2)光纤通信优点:传输频带极宽、通信容量极大;光纤衰减小,无中继设备,传输距离远;串扰小,信号传输质量高;光纤尺寸小,重量轻,便于传输和铺设;抗电磁干扰,保密性好;耐化学腐蚀;原料来源丰富,节约有色金属。
光纤通信缺点:光纤弯曲半径不宜过小;光纤的切断和连接操作技术复杂;分录、耦合麻烦。
光纤传感:以光为媒介,感知和传输外界信号的新型传感技术。
(1)按探测范围:单点传感、准分布传感、分布式传感。
(2)按调制方式:非本征型(非功能性):用光纤传输光信号(只传不感)。
本征型(功能性):感知外界信号,携带外界信号除传递光学信息外,还具有某些特殊的功能;光强;相位;偏振(磁光效应);波长(光纤光栅);频率(多普勒法)。
常用光纤的种类及规格

常用光纤的种类及规格单模光纤(Single Mode Fiber,SMF)是一种具有较小模场直径(约为9 µm),并且只能传输单个光波模式的光纤。
它适用于长距离传输和高速通信领域。
常用的单模光纤有G.652、G.653、G.654、G.655和G.656等规格。
G.652光纤是目前应用最广泛的单模光纤,它适用于大多数不同用途的应用场景。
它有两个亚类别,分别是G.652A和G.652B。
G.652A适用于地面通信,而G.652B适用于至少20公里长度的高速纤芯网络。
G.653光纤是一种用于波分多路复用系统(WDM)光纤通信的特殊单模光纤。
它能够传输波长选择性较高的信号,并具有较低的色散。
G.654光纤是一种非零色散位移光纤(NZDSF),它是一种适用于长距离传输的单模光纤。
G.654光纤可以有效减小光脉冲的色散,延长光信号的传输距离。
G.655光纤是一种零色散位移光纤(NZDSF),它特别适用于波分多路复用系统。
它可以最大限度地降低色散对信号的影响,提高传输效果。
G.656光纤是一种零色散位移光纤(NZDSF),它适用于高密度波分多路复用系统。
它具有更低的色散和更高的非线性阈值,可以提供更高质量的信号传输。
多模光纤(Multi-Mode Fiber,MMF)是一种具有较大模场直径(通常为50 µm或62.5 µm)的光纤,可以同时传输多个光模式。
多模光纤适用于短距离传输和低速通信领域。
常用的多模光纤有OM1、OM2、OM3和OM4等规格。
OM1光纤是一种常见的多模光纤,它适用于传输速率较低的应用,如百兆以太网。
它的传输距离一般在2公里左右。
OM2光纤是一种较高性能的多模光纤,适用于传输速率更高的应用,如千兆以太网。
它的传输距离一般在550米。
OM3光纤是一种用于高速局域网(LAN)和短距离数据中心互连的多模光纤。
它支持10G以太网的传输,传输距离一般在300米。
OM4光纤是一种用于高密度数据中心和数据中心互连的多模光纤。
第四章-光纤简介

子午光线的传播
子午面:通过光纤中心 轴的任何平面。 子午线:位于子午面内 的光线。
n0
n2 n1
子午光线的入射光线、反射光线和分界面的法线三者均在子午面内。 要使光能完全限制在光纤内传输,则应使光线在纤芯-包层分界面上的 入射角 大于或等于临界角 0,即 n sin 0 = 2 , ≥ 0 = arcsin [n2/n1] n
四 光纤器件
光纤耦合器
当两光纤纤芯相互充分靠近时,通过包层中消逝场的互相 渗透而产生光纤间能量的耦合,其中一部分变为传输模, 这就使得功率可以互易地从一根光纤转换到另一根光纤中 去,功率转移比由纤芯距离和相互作用长度决定。
制作光纤耦合器的方法:熔拉法和磨抛法
磨抛型单模光纤定向耦合器
光纤与光源的耦合
Mach-Zehnder 光纤滤波器
PZT 1 L + L 3
2
3dB耦合器
2、波导色散:由于某一传播模的群速度对于光的频率(或波长)不是常数, 同时光源的谱线又有一定的宽度,因而产生波导色散。
3、材料色散:由于光纤材料的折射率随入射光频率变化而产生的色散。
4、偏振模色散:一般的单模光纤中都同时存在两个正交模式。若光纤的结 构为完全的轴对称,则这两个正交偏振模在光纤中的传播 速度相同,即有相同的群延迟,故无色散。实际的光纤必 然会有一些轴的不对称,因而两正交模有不同的群延迟, 这种现象称之为偏振模色散。
a--纤芯半径,=1~ 10时,趋近阶跃型 r a 当» 当=1时,三角型(色散位移) r a 当=2时,平方律分布
相对折射率差
2 n12 n2 n1 n2 2 2n1 n1
在石英光纤中 n1 1.5
0.01
少模光纤与多模光纤

少模光纤与多模光纤光纤作为现代通信领域中不可或缺的基础设施,其应用范围和种类也越来越多样化。
其中,少模光纤和多模光纤是两种常见的光纤类型。
本文将对这两种光纤的特点、应用和优缺点进行介绍。
一、少模光纤少模光纤(Single-mode Fiber,SMF)是一种具有较小芯径的光纤,其芯径通常在8-10μm之间。
由于其芯径较小,使光线沿着纤芯路径传输时只存在一条光路,因此称为单模光纤。
单模光纤在光纤通信中应用广泛,尤其在长距离高速传输中更为普遍。
单模光纤的特点在于其传输的光信号只有一个模式,因此信号传输速度快、距离远、信噪比高、衰减小。
单模光纤的传输距离可达到数十公里甚至上百公里,同时其信号传输速度也可达到数十Gbps。
这些特点使得单模光纤广泛应用于长距离光纤通信、数据中心和网络骨干等领域。
尽管单模光纤具有许多优点,但其也存在一些缺点。
首先,单模光纤的制作和接口技术相对复杂,成本较高。
其次,由于其芯径较小,其传输光线对光纤弯曲的容忍度较低,因此在安装和维护过程中需要更加小心谨慎。
二、多模光纤多模光纤(Multi-mode Fiber,MMF)是一种芯径较大的光纤,其芯径通常在50-100μm之间,光线在传输过程中会经过多个模式。
多模光纤广泛应用于短距离的数据传输中,如办公室局域网、数据中心等。
多模光纤的特点在于其芯径较大,能够容纳多条光路,因此其信号传输距离较短,同时其信号传输速度也较慢。
多模光纤的传输距离通常不超过2公里,其信号传输速度一般在Gbps级别。
多模光纤的制作和接口技术相对简单,成本较低,因此在短距离数据传输领域中应用广泛。
但是,由于其信号传输距离较短,因此在长距离数据传输中使用多模光纤需要进行光衰减补偿,同时其信号传输速度也无法满足高速数据传输的需求。
三、少模光纤和多模光纤的比较1.传输距离:单模光纤的传输距离远,多模光纤的传输距离短。
2.信号传输速度:单模光纤的信号传输速度快,多模光纤的信号传输速度慢。
光纤材料种类

光纤材料种类光纤作为现代通信领域的重要组成部分,其材料也有多种选择。
本文将介绍几种常见的光纤材料种类。
1. 硅氧化物光纤硅氧化物光纤是最常见的光纤类型。
它由高纯度二氧化硅(SiO2)制成。
硅氧化物光纤可以分为单模光纤和多模光纤两种类型。
单模光纤主要用于长距离通信,多模光纤则用于短距离通信和光纤传感。
2. 光子晶体光纤光子晶体光纤是一种新型的光纤材料。
它利用光子晶体的特性,将有序的微小结构集成在光纤中。
这种结构可以控制光的传输和波长选择性。
光子晶体光纤具有低损耗、高品质因子和高带宽等优点,因此在高速通信和传感领域具有广泛应用前景。
3. 氟化物光纤氟化物光纤主要由氟化硼(BF3)和氟化铝(AlF3)等化合物制成。
它具有较高的折射率和较低的色散,因此可以实现高速、高带宽的光通信。
另外,氟化物光纤还被用于激光器、光学传感器和高温环境下的光学测量等领域。
4. 金属光纤金属光纤是一种用金属材料代替二氧化硅制成的光纤。
它可以传输可见光和红外光,具有较高的耐腐蚀性和高温性能。
金属光纤被广泛用于激光器、光学传感器和医疗设备等领域。
5. 光纤光栅光纤光栅是一种特殊的光纤材料,它是通过在光纤中形成周期性的折射率变化结构制成的。
光纤光栅可以实现光的反射、耦合和滤波等功能,因此被广泛应用于光纤通信、光学传感器和光谱分析等领域。
总结本文介绍了常见的几种光纤材料种类,包括硅氧化物光纤、光子晶体光纤、氟化物光纤、金属光纤和光纤光栅。
这些光纤材料各具特点,在不同的应用领域有着重要的作用。
光纤技术的不断发展和创新,将推动通信和传感领域的快速发展。
光缆的种类及型号

光缆的种类及型号光缆是传输光信号的一种重要的通信线缆,用于将光信号从一个地方传输到另一个地方。
根据不同的应用需求和技术要求,光缆有多种不同的种类及型号。
以下是常见的光缆种类及型号的介绍。
1. 单模光缆(Single Mode Fiber,SMF):单模光缆采用的是一种直径较小的光纤,具有较低的传输损耗和较大的带宽。
它适用于长距离传输和高速传输,如电信、有线电视、数据中心等领域。
常见的单模光缆有G.652D、G.655和G.657- G.652D:G.652D是最常见的单模光缆,适用于大多数的光纤通信应用。
它的波长传输窗口范围为1310nm到1550nm,具有较低的传输损耗。
- G.655:G.655是一种非零色散单模光缆,适用于长距离传输和高速传输。
它的波长传输窗口范围为1525nm到1565nm,具有较大的带宽。
- G.657:G.657是一种用于弯曲应用的折射率变化型单模光缆,适用于需要弯曲或折弯的场景,如Fiber To The Home(FTTH)等。
2. 多模光缆(Multi Mode Fiber,MMF):多模光缆采用的是直径较大的光纤,允许多个光模式同时传输。
它适用于较短距离传输和较低的传输速率,如局域网、多媒体传输等领域。
常见的多模光缆有OM1、OM2、OM3和OM4-OM1:OM1是最早的多模光缆,适用于传输距离不长且速率较低的应用。
它的最大传输距离约为550米(1000BASE-SX)。
-OM2:OM2是一种较新的多模光缆,适用于传输距离适中和速率适中的应用。
它的最大传输距离约为550米(1000BASE-SX)。
-OM3:OM3是一种高带宽多模光缆,适用于较长距离传输和较高速率的应用。
它的最大传输距离约为300米(10GBASE-SR)。
-OM4:OM4是一种超高带宽多模光缆,适用于更长距离传输和更高速率的应用。
它的最大传输距离约为400米(10GBASE-SR)。
3.特殊光缆:除了常见的单模光缆和多模光缆,还有一些特殊用途的光缆,用于特定的应用场景。
光纤种类

光纤的种类很多,分类方法也是各种各样的。
从材料角度分按照制造光纤所用的材料分类,有石英系光纤、多组分玻璃光纤、塑料包层石英芯光纤、全塑料光纤和氟化物光纤等。
塑料光纤是用高度透明的聚苯乙烯或聚甲基丙烯酸甲酯(有机玻璃)制成的。
它的特点是制造成本低廉,相对来说芯径较大,与光源的耦合效率高,耦合进光纤的光功率大,使用方便。
但由于损耗较大,带宽较小,这种光纤只适用于短距离低速率通信,如短距离计算机网链路、船舶内通信等。
目前通信中普遍使用的是石英系光纤。
按传输模式分按光在光纤中的传输模式可分为:单模光纤和多模光纤。
多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。
光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。
光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。
由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。
80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。
多模光纤多模光纤(Multi Mode Fiber):中心玻璃芯较粗(50或62.5μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
例如:600MB/KM 的光纤在2KM时则只有300MB的带宽了。
因此,多模光纤传输的距离就比较近,一般只有几公里。
单模光纤单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。
因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。
光纤材料是什么

光纤材料是什么
光纤材料,顾名思义,是用于制造光纤的材料。
光纤是一种能够传输光信号的
细长柔软的材料,通常由玻璃或塑料制成。
光纤材料的选择对光纤的性能和应用起着至关重要的作用。
下面我们将对光纤材料的种类、特性和应用进行详细介绍。
首先,光纤材料主要分为玻璃光纤和塑料光纤两大类。
玻璃光纤由高纯度的二
氧化硅和掺杂物组成,具有优异的光学性能和机械性能,适用于长距离、高速传输。
而塑料光纤则由聚合物材料制成,具有较低的折射率和较大的损耗,适用于短距离、低速传输。
两种光纤材料各有优势,可以根据具体的应用需求进行选择。
其次,光纤材料的特性对光纤的性能有着直接影响。
玻璃光纤具有优异的耐高温、耐腐蚀和抗拉伸性能,适用于各种恶劣环境下的应用。
而塑料光纤则具有较好的柔韧性和易加工性,适用于一些特殊形状和场合的应用。
此外,光纤材料的折射率、损耗、色散等光学特性也是影响光纤性能的重要因素。
最后,光纤材料在通信、传感、医疗、工业等领域有着广泛的应用。
在通信领域,光纤材料的优异性能保证了信息的高速传输和远距离传输。
在传感领域,光纤传感技术利用光纤材料的特性,实现了对温度、压力、应变等物理量的高精度测量。
在医疗领域,光纤激光技术已经成为了一种常见的治疗手段。
在工业领域,光纤传感和光纤通信技术的应用也越来越广泛。
综上所述,光纤材料是制造光纤的关键材料,其种类、特性和应用对光纤的性
能和功能起着至关重要的作用。
随着科技的不断发展,相信光纤材料将会有更广阔的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤类型及特点G652光纤纤芯图片
G657光纤纤芯图片
多模光纤纤芯图片
我们常用的光纤有G652B(蓝、橙、绿、棕、灰、白、红、黑)和G657A(蓝、橙、绿、棕、灰、黄、红、紫),两种光纤主要特性的区别是光纤的弯曲半径,G652B 是R30(光纤弯曲半径不可以小于30mm),G657A是R10(光纤弯曲半径不可以小于10mm)
G652光纤的排列顺序
G657光纤的排列顺序
光纤类型知识:
ITU—T建议规范分类:G.651、G.652、G.653、G.654、G.655、G.656、G.657
MMF(Multi Mode Fiber多模光纤)
- OM1光纤(62.5⁄125um)
- OM2⁄OM3光纤(G.651光纤)其中:OM2—50⁄125um;OM3—新一代多模光纤。
SMF(Single Mode Fiber单模光纤)
- G.652(色散非位移单模光纤)
- G.653(色散位移光纤)
- G.654(截止波长位移光纤)
- G.655(非零色散位移光纤)
- G.656(低斜率非零色散位移光纤)
- G.657(耐弯光纤)
◆G.651:长波长多模光纤(ITU-T G.651)50/125μm梯度多模光纤工业标准。
70年代末到80年代初建立。
ITU-T G.651即OM2⁄OM3光纤或多模光纤(50⁄125)。
ITU-T推荐光纤中并没有OM1光纤或多模光(62.5⁄125),但它们在美国的使用仍非常普遍。
主要应用于局域网,不适用于长距离传输,但在300至500米的范围内,G.651是成本较低的多模传输光纤。
◆G.652:常规单模光纤(色散非位移单模光纤),截止波长最短,既可用于1550NM,又可用于1310NM。
其特点在设计和制造时的波长在1310nm附近时的色散为零,1550nm波长时损耗最小,但色散最大。
(1310nm窗口的衰减在0.3~0.4dB/km,色散系数在0~3.5ps/nm.km。
1550nm窗口的衰减在0.19~
0.25dB/km,色散系数在15~18ps/nm.km。
)主要缺点是在1550波段色散系数较大,不适于2.5Gb/s以上的长距离应用。
G.652A⁄B是基本的单模光纤,G.652C⁄D是低水峰单模光纤。
◆G.653:色散位移单模光纤。
在1550nm波长左右的色散降至最低,从而使光损失降至最低。
◆G..654:截止波长位移光纤。
1550nm下衰耗系数最低(比G.652,G.653,G.655光纤约低15%),因此称为低衰耗光纤, 色散系数与G.652相同, 实际使用最少的一种光纤。
主要应用于海底或地面长距离传输,比如400千米无转发器的线路。
◆G.655:非零色散位移光纤(NZ-DSF: Non zero-Dispersion-Shifted Fiber)。
G.653光纤在1550nm波长时色散为零,而G.655光纤则具有集中的或正或负的色散,这样就减少了DWDM系统中与相邻波长相互干扰的非线性现象的不良影响。
第一代非零色散位移光纤,如PureMetro 光纤具有每千米色散等于或低于5ps⁄nm 的优点,从而使色散补偿更为简便。
第二代非零色散位移光纤,如PureGuide 色散达到每千米10ps⁄nm左右,使DWDM系统的容量提高了一倍。
◆G.656:低斜率非零色散位移光纤。
非零色散位移光纤的一种,对于色散的速度有严格的要求,确保了DWDM系统中更大波长范围内的传输性能。
◆G.657:耐弯光纤,也叫弯曲不敏感单模光纤,弯曲半径最小可达5~10mm。
ITU-T光纤系列中的最新成员。
根据FTTx技术的需求及组装应用而生的新产品,2006年出台,主导厂商为德拉克通信科技。
G.657A光纤与G.652光纤兼容,G.657B光纤无需与传统单模光纤在连接上兼容。
◆超贝光纤――10G以太网多模光纤。
.657光纤将成为FTTx建设的主流(转自线缆信息网)
发表于:2009-7-15 10:20:03 作者:sxh
目前国内普遍应用的G.652标准光纤的弯曲半径为25mm,受弯曲半径的限制,光纤不能随意地进行小角度拐弯安装,因此,FTTx的施工比较困难,需要专业技术人员才能够进行。
因此,业内急需一种弯曲半径更小的光纤。
G.657降低FTTx维护成本
2006年12月,ITU-T第十五工作组通过了一个新的光纤标准,即G.657,称为“用于接入网的低弯曲损耗敏感单模光纤和光缆特性”。
根据G.657标准,光纤的弯曲半径可达5~10mm,因此符合G.657标准的光纤可以像铜缆一样,沿着建筑物内很小的拐角安装,非专业的技术人员也可以掌握施工的方法,降低了FTTx网络布线的成本。
除此以外,实际施工中光纤的弯曲半径一般会小于该类光纤的最小弯曲半径,当光纤发生一定程度的老化时,信号仍然可以正常传送。
因此,G.657标准有助于提高光纤的抗老化能力,降低FTTx的维护成本。
对于G.657光纤的应用前景,近日Ovum-RHK发布的研究报告显示,2008年铺设的光纤33%用于FTTx,中国自2009年起将引领世界敷设FTTx光纤。
2008年开始,国内就已经有部分运营商对G.657进行了铺设,在北京、上海、广州、武汉及其他FTTH试点城市,楼宇内综合布线都采用G.657.A或者G.657.B光纤。
G.657将完全替代G.652用于FTTx的光纤要能降低用户的平均成本,并满足各种接入网用光缆的设计要求,如微缆、气吹缆和室内/室外两用缆及多种引入方式,还要能满足抗弯曲,在密集布线、小弯曲半径下低的弯曲附加损耗和高的机械可靠性,同时便于施工,易于接续或连接。
FTTx基础设施通常分为室内和室外,与G.652D光纤完全兼容的G.657光纤将有助于简化系统设计和降低安装维护成本。
在抗弯曲光纤设计和应用方面,
需要避免一些误区,G.657光纤不仅关注弯曲附加损耗,而且还需要对机械性能给予足够的关注。
G.657B小MFD光纤也是一个误区,即使采用全玻璃结构的光纤,采用下陷包层设计,同样能够获得与G.652相匹配的MFD直径。
对于FTTx 光纤要求,需要低成本和良好的适应性,满足各种接入网用光缆的设计要求,室内室外、气吹缆、微缆和多种接入方式,抗弯曲,支持密集布线、小弯曲半径下低弯曲附加损耗和高机械可靠性,便于施工和光缆的分配,易于接续或连接。
这些都要求光纤具有低宏弯和微弯损耗,满足G.657B对弯曲的要求。
光纤有高抗疲劳参数,与G.652D兼容,并且具有全玻璃包层结构,另外要求有先进的制造工艺。
考虑光纤抗弯曲性能时,必须考虑两点,一是低弯曲附加损耗,无论光学性能还是机械性能,都要能够抗弯曲。
G.657A光纤设计相对简单一些,因为和G.652D完全兼容,弯曲性能要求也相对低一些,在常规G.652光纤设计上通过适当减小光纤弯曲,增加波长,就能够和G.652D完全兼容。
对于弯曲性能要求更高的G.657B光纤,有不同的解决方案。
从光纤材料看,目前主要有两种,一种是全玻璃光纤结构,又有两类,在光纤光学外层增加一个下陷包层,增加对光的限制,但这种光纤不能够与G.652D兼容,在应用上会带来一些连接上的问题。
另外一类就是空气包层光纤,又分为多孔包层光纤或微孔结构光纤和随机分布微孔包层光纤,它对光的限制作用更强,所以很容易实现很高的抗弯曲性能,但是这些光纤在与G.652D兼容性上有一些问题。
二是很小弯曲半径下的机械可靠性。
光纤在弯曲时,光纤外侧必然受到张应力的作用,弯曲半径越小受到的张应力越大,设计光纤时必须考虑张应力作用对光纤寿命的影响。
通过改善光纤疲劳参数ND值,改善光纤的机械可靠性。
对一段光纤进行弯曲,光纤动态疲劳参数越大,光纤弯曲半径就越小。
同时满足G.657A、G.657B的光纤才是真正满足FTTx光纤要求的光纤。
未来几年,G.657光纤将替代G.652光纤,以协助运营商建设更好的FTTx光纤网络。
这给中国的光纤企业特别是直接生产G.657标准光纤的企业带来了巨大的机遇。
G.652.A、G.652.B、G.652.C和G.652.D光纤光缆的特性。