光纤参数

合集下载

12芯光纤参数

12芯光纤参数

12芯光纤参数12芯光纤是一种用于传输高速数据的通信线缆,它由12根纤维芯线组成,每根芯线都能独立传输数据。

光纤通信是一种基于光信号传输的通信技术,使用光纤作为传输介质,将信息转化为光信号进行传输。

光纤通信具有传输速度快、传输距离远、抗干扰能力强等优点,因此被广泛应用于各个领域。

12芯光纤的参数决定了它的传输性能。

首先,我们来看一下12芯光纤的核心直径。

核心直径是指光纤中光信号传输的核心部分的直径,直径越小,传输速度越快。

一般情况下,12芯光纤的核心直径为50微米。

此外,光纤的包层直径也是决定传输性能的重要参数,一般为125微米。

除了核心直径和包层直径,12芯光纤的损耗也是一个关键参数。

光纤传输过程中会存在一定的损耗,主要包括传输损耗和连接损耗。

传输损耗是指光信号在传输过程中因为各种原因导致信号衰减的现象,而连接损耗则是指光纤连接器在连接过程中引起的信号损耗。

一般情况下,12芯光纤的传输损耗在每公里0.2dB以下,连接损耗在0.3dB以下。

除了上述参数外,12芯光纤的带宽也是一个重要参数。

带宽是指光纤能够传输的信号频率范围,一般用兆赫兹(MHz)来表示。

12芯光纤的带宽一般为2000兆赫兹。

带宽越大,表示光纤能够传输更高频率的信号,传输速度也就越快。

12芯光纤还有很多其他的参数,如折射率、色散、环境适应能力等。

这些参数都对光纤的传输性能有影响,不同的应用场景需要不同参数的光纤来满足需求。

总的来说,12芯光纤是一种高性能的通信线缆,它的参数决定了它的传输性能。

在实际应用中,我们需要根据具体需求选择合适的光纤参数,以便实现高速、稳定的数据传输。

随着通信技术的不断发展,相信12芯光纤的性能还会不断提升,为人们的生活和工作带来更多便利。

光纤的特性参数

光纤的特性参数

发生联系。而光脉冲的根均方脉宽不仅能确切地描述光脉冲的特性,
[url=/]魔兽 sf[/url]而且还与光纤通信系统的中继距离密切相 关,在光纤通信的理论中经常用到它。
在时域范围内,光纤的冲击响应 h(t)是一个高斯波形,如图 1.2.12 所示。
冲击响应 h(t)
L 为光纤长度 (km)。 色散系数越小越好。光纤的色散系数越小,[url=/]魔兽 私服[/url]就意味着它对光脉冲的展宽越小即光纤的传输容量越大。
(3).模场直径 d 模场直径表征单模光纤集中光能量的程度。 单模光纤的纤芯直径为 5~9 μm,它与光工作波长 1.3~1.8 μm 处于同一个数量级; 但由于光的衍射效应而无法测量出纤芯直径的精确值。此外,由于单模光纤只传输一种 模式即基模 LP01 模,但 LP01 模的场强分布并不局限在纤芯之中,会有一少部分在包层 中传输,所以单模光纤纤芯直径的概念在物理上已没有什么意义,故引入新的特性参数 模场直径 d。 可以极其粗略地认为,模场直径 d 和单模光纤的纤芯直径相近。 如 G.652 光纤的模场直径 d 为 5 ~ 9 μm,这说明在传输过程中有百分之九十五 以上的光能量,集中在直径为 5~9 μm 的光纤内部的圆柱体内传送。
式中: L 为光纤长度(km);
Pi 为输入光功率值(W); P0 为输出光功率值(W)。 如某光纤的衰耗系数为 α f = 0.3dB/km,光纤长度 L = 10km,则:
P
i
= 100.3 = 2
P
0
这就意味着,经过 10km 的光纤传输之后,其光功率信号减少了一半。
长度为 L 公里的光纤的衰耗值为:A =α f ּL 。 也就是说,光纤的衰耗与光纤的长度成正比关系。
(MHz)

光纤相关参数

光纤相关参数

光纤相关参数
光纤是一种传输光信号的高性能电子元件,被广泛应用于通信、医疗、工业、军事等领域。

下面是一些光纤相关的参数:
1. 光纤的折射率:折射率是指光线在介质中传播时的速度与真
空中传播时速度的比值。

光纤的折射率一般在 1.44-1.48 之间。

2. 光纤的直径:光纤的直径一般在 100-200 微米之间,数值越小,带宽越大。

3. 光纤的长度:一般情况下,光纤的长度可以达到数公里,甚
至更长。

4. 光纤的带宽:带宽是指光纤传输数据的能力,一般以 Mbps 或Gbps 表示。

光纤的带宽取决于其直径和折射率等参数,一般可以达
到几百 Gbps 甚至更高。

5. 光纤的损耗:光纤在传输信号的过程中会有一定的信号损耗,主要由材料和制造工艺等因素决定。

一般情况下,光纤的损耗在每公里几分之一至几分之几 dB 之间。

6. 光纤的色散:色散是指不同波长的光在光纤中传播时速度不
同而引起的信号失真。

光纤的色散主要由材料和制造工艺等因素决定,一般可以通过设计优化来降低。

以上是一些光纤相关的参数,它们直接影响着光纤的传输性能和应用范围。

- 1 -。

光纤的三个参数

光纤的三个参数

光纤的三个参数
光纤是一种通过光信号传输数据的技术,它被广泛用于高速网络、通
信和数据中心等领域。

在光纤应用中,有三个重要的参数需要被关注。

第一个参数是光纤的衰减。

衰减是指在传输光信号时,信号强度随着
传播距离的增加而降低的现象。

光信号传输距离长短、信号强度和质
量对衰减都有很大影响。

通常情况下,光纤的衰减要小于0.5 dB/km,这样才能保证高质量的光信号传输。

第二个参数是光纤的带宽。

带宽是指光纤传输信号能力的极限。

带宽
越高,数据传输能力越强。

光纤的带宽通常由两个参数来表示,即单
模光纤(Single-Mode Fiber,SMF)和多模光纤(Multi-Mode Fiber,MMF)。

单模光纤的带宽高,可以传输更多的数据,而多模
光纤带宽低,只能传输较少的数据。

在实际应用中,需要根据需求选
择不同类型的光纤。

第三个参数是光纤的损耗预算。

光纤的损耗预算是指在光纤传输过程中,允许的最大信号衰减量。

损耗预算越小,说明在光纤传输时信号
衰减越小,光纤传输的质量越高。

光纤的损耗预算需要考虑光源和接
收器的特性、光纤的长度以及光纤制造的质量等因素。

总之,光纤的衰减、带宽和损耗预算是光纤应用中需要关注的三个重要参数。

对于不同应用场景,需要根据需求选择不同类型的光纤,以保证高质量、高可靠性的光信号传输。

光纤参数的测试方法

光纤参数的测试方法

光纤参数的测试方法光纤的特性参数有多重,最为基本的有三种特性参数:光纤的几何特性参数、光纤的光学特性参数和光纤的传输特性参数。

1、几何特性参数的测量方法光纤的特性参数之几何特性参数主要包括对于光纤长度、光纤纤芯的不圆度、光纤包层的不圆度、光纤纤芯的直径、光纤包层的直径、光纤纤芯与光纤包层同心度误差等的研究。

通过折射近场法来直接测量在光纤横截面上产生的折射曲线的分布来对几何尺寸参数进行确定。

对于对光纤包层的确定并不难,难就难在对于纤芯的确定。

例如对于渐变型光纤的确定,因为光纤包层与光纤纤芯之间的过渡是具有连续性的,所以在光纤包层和光纤纤芯之间不存在明显的界限,所以如何去确定光纤纤芯和光纤包层之间的界限就存在着难点。

而针对这一难点,可以通过对于折射率分布情况的研究来确定。

在折射率分布曲线上确定给定值,通过给定值来界定光纤纤芯的边界,而折射率分布曲线上的给定值需要通过对光纤整个截断面的扫描来获取。

我们知道,受地球引力影响,光纤在生产过程中的整个横截断面并不能形成理想的圆对称,所以在扫描时应该根据不同情况进行区域分化扫描。

光纤包层的折射率是均匀的,所以在扫描光纤包层时幅度可以大一些。

而光纤纤芯的折射率存在很大的变化,所以对于光纤纤芯的扫描的幅度应该小一些。

折射近场法是测试光纤几何参数尺寸的基本测试方法。

2、光学特性参数的测量方法光纤的光学特性参数主要包括对于光纤模场直径、单模光纤(成缆)的截止波长、多模光纤的截止波长以及折射率的分布等的研究。

(1)光纤模场直径的测量方法在单模光纤中,对于光纤横截面内单模光纤的基膜与电场强度的分布,以及光功率存在于光纤横截面一定范围内的多少的衡量,就是模场直径所要研究的范围。

对于单模光纤的研究,不仅受到模场直径的定义影响,也受到模场直径的测量方法影响。

所以在测量单模光纤的模场直径时,根据不同测量方法的优缺点去选择合适的测量方法显得尤为重要。

主要的测量方法有横向偏移法和传输场法。

光纤的参数指标

光纤的参数指标

光纤的参数指标
光纤的参数指标通常包括以下几个方面:
1. 光纤芯的直径:光纤芯的直径决定了能传输的光信号的模式数量,一般分为单模光纤和多模光纤两种,单模光纤芯直径较小,能够传输更多的光信号模式。

2. 光纤的损耗:光纤传输中,光信号会受到一定的损耗,主要包括吸收损耗、散射损耗和弯曲损耗等。

光纤损耗越小,表示光信号传输的效率越高。

3. 光纤的带宽:光纤的带宽表示光信号传输的频率范围,一般以兆赫兹(MHz)或吉赫兹(GHz)为单位。

带宽越大,表示光纤能够传输更高频率的光信号。

4. 光纤的色散:光纤传输中,不同波长的光信号会以不同的速度传播,导致信号的时域扩展,这种现象称为光纤的色散。

色散可以分为色散模式和色散系数两种,常见的有色散模式有色散波长、色散时间和色散距离等。

5. 光纤的折射率:光纤的折射率决定了光信号在光纤中的传播速度,一般来说,光纤芯的折射率大于包层的折射率,以确保光信号能够在光纤中总反射。

6. 光纤的温度和压力特性:光纤在不同温度和压力下的性能稳定性
也是一个重要的参数指标,一般来说,光纤应具有较好的温度和压力适应性。

这些参数指标会根据光纤的应用领域和设计要求有所不同,不同的光纤产品可能会有不同的参数要求。

单模和多模光纤 国际标准

单模和多模光纤 国际标准

单模和多模光纤国际标准
在国际电联(ITU)和其他国际标准化组织中,对于单模光纤和多模光纤的定义和规格都有明确的标准。

这些标准是为了确保不同厂商和不同地区的光纤产品具有互通性,从而方便了光通信网络的建设和维护。

一、单模光纤(Single-Mode Fiber, SMF)
单模光纤是只允许一个模式(即光的传播路径)在光纤中传播的光纤。

由于其传播路径单一,所以信号畸变和噪声较小,传输距离较远。

在国际标准中,单模光纤的主要参数包括:
1. 波长:单模光纤主要在1310纳米(近距离)和1550纳米(长距离)的波长上工作。

2. 纤芯直径:一般为8-10微米。

3. 包层直径:一般为125微米。

4. 数值孔径(NA):表示光纤接收光的能力,通常在0.8-0.9之间。

二、多模光纤(Multi-Mode Fiber, MMF)
多模光纤是允许多个模式在光纤中传播的光纤,通常用于短距离通信,例如建筑物内或校园内的网络连接。

由于其传播路径较多,所以信号畸变和噪声较大,传输距离较短。

在国际标准中,多模光纤的主要参数包括:
1. 波长:多模光纤主要在850纳米和1300纳米的波长上工作。

2. 纤芯直径:一般为50微米或62.5微米。

3. 包层直径:与单模光纤相同,一般为125微米。

4. 数值孔径(NA):通常在0.2-0.3之间,表示光纤接收光的能力较小。

除了以上主要参数,还有一些其他的规格参数,如拉丝长度、衰减系数等,也在国际标准中有明确的规定。

这些标准确保了不同厂商和不同地区的多模光纤和单模光纤具有互通性,从而方便了光通信网络的建设和维护。

七芯光纤参数

七芯光纤参数

七芯光纤参数
七芯光纤是一种多模光纤,其核心包含七个光传输通道。

以下是七芯光纤的一些参数:
1. 传输带宽:七芯光纤的传输带宽通常为200 Gbps。

2. 传输距离:七芯光纤的传输距离取决于多个因素,例如传输速率、光纤质量和衰减等。

在标准单模光纤的条件下,七芯光纤的传输距离可以达到550米。

3. 插入损耗:七芯光纤的插入损耗通常在0.2~0.3 dB之间。

4. 衰减:七芯光纤的衰减通常在0.2~0.3 dB/公里之间。

5. 光纤连接器:七芯光纤通常使用LC或SC连接器进行连接。

6. 应用领域:七芯光纤广泛应用于数据中心、电信、广播、视频传输和传感器网络等领域。

总之,七芯光纤是一种高速、高带宽、低损耗的光纤,具有广泛的应用前景。

在实际应用中,需要根据具体的需求选择合适的七芯光纤类
型和规格,以满足不同的传输要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用光纤附件总结了一下光网络的常见附件及基础知识,跟大家共享一下,希望能对大家工作带来帮助一、光纤跳线及接口类型1.FC-FC:常用于法兰箱对接,跟ST类似,但要注意区别,FC是螺丝口的2.ST-ST:常用于尾纤或与光纤盒对接,跟FC类似,但ST是挂口的3.ST-ST单模跳线:单、多模的主要外观区别就是颜色不同,多模为橙色,单模为黄色4.SC-SC:常用于设备对接,GBIC模块用这种跳线5.LC-LC:常用于设备对接,SFP模块用这种跳线6.MTRJ-MTRJ:常用于设备对接,现在基本上已经不用了二、常见适配器(法兰)1.ST适配器2.FC适配器3.SC适配器三、光纤盒放置熔接好的尾线四、光纤收发器用于“光――电”互联二、光纤分类(一)按照制造光纤所用的材料分:石英系光纤、多组分玻璃光纤、塑料包层石英芯光纤、全塑料光纤和氟化物光纤。

塑料光纤是用高度透明的聚苯乙烯或聚甲基丙烯酸甲酯(有机玻璃)制成的。

它的特点是制造成本低廉,相对来说芯径较大,与光源的耦合效率高,耦合进光纤的光功率大,使用方便。

但由于损耗较大,带宽较小,这种光纤只适用于短距离低速率通信,如短距离计算机网链路、船舶内通信等。

目前通信中普遍使用的是石英系光纤。

(二)按光在光纤中的传输模式分:单模光纤和多模光纤。

多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。

光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。

光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。

由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。

80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。

多模光纤多模光纤(Multi Mode Fiber):中心玻璃芯较粗(50或62.5μm),可传多种模式的光。

但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。

例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。

因此,多模光纤传输的距离就比较近,一般只有几公里。

单模光纤单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。

因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。

这就是说在1.31μm波长处,单模光纤的总色散为零。

从光纤的损耗特性来看,1.31μm处正好是光纤的一个低损耗窗口。

这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。

1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。

(三)按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。

常规型:光纤生产长家将光纤传输频率最佳化在单一波长的光上,如1300μm。

色散位移型:光纤生产厂家将光纤传输频率最佳化在两个波长的光上,如:1300μm和1550μm。

我们知道单模光纤没有模式色散所以具有很高的带宽,那么如果让单模光纤工作在1.55μm波长区,不就可以实现高带宽、低损耗传输了吗?但是实际上并不是这么简单。

常规单模光纤在1.31μm处的色散比在1.55μm处色散小得多。

这种光纤如工作在1.55μm波长区,虽然损耗较低,但由于色散较大,仍会给高速光通信系统造成严重影响。

因此,这种光纤仍然不是理想的传输媒介。

为了使光纤较好地工作在1.55μm处,人们设计出一种新的光纤,叫做色散位移光纤(DSF)。

这种光纤可以对色散进行补偿,使光纤的零色散点从1.31μm处移到1.55μm附近。

这种光纤又称为1.55μm零色散单模光纤,代号为G653。

G653光纤是单信道、超高速传输的极好的传输媒介。

现在这种光纤已用于通信干线网,特别是用于海缆通信类的超高速率、长中继距离的光纤通信系统中。

色散位移光纤虽然用于单信道、超高速传输是很理想的传输媒介,但当它用于波分复用多信道传输时,又会由于光纤的非线性效应而对传输的信号产生干扰。

特别是在色散为零的波长附近,干扰尤为严重。

为此,人们又研制了一种非零色散位移光纤即G655光纤,将光纤的零色散点移到1.55μm 工作区以外的1.60μm以后或在1.53μm以前,但在1.55μm 波长区内仍保持很低的色散。

这种非零色散位移光纤不仅可用于现在的单信道、超高速传输,而且还可适应于将来用波分复用来扩容,是一种既满足当前需要,又兼顾将来发展的理想传输媒介。

还有一种单模光纤是色散平坦型单模光纤。

这种光纤在1.31μm到1.55μm整个波段上的色散都很平坦,接近于零。

但是这种光纤的损耗难以降低,体现不出色散降低带来的优点,所以目前尚未进入实用化阶段。

(四)按折射率分布情况分:阶跃型和渐变型光纤。

阶跃型:光纤的纤芯折射率高于包层折射率,使得输入的光能在纤芯一包层交界面上不断产生全反射而前进。

这种光纤纤芯的折射率是均匀的,包层的折射率稍低一些。

光纤中心芯到玻璃包层的折射率是突变的,只有一个台阶,所以称为阶跃型折射率多模光纤,简称阶跃光纤,也称突变光纤。

这种光纤的传输模式很多,各种模式的传输路径不一样,经传输后到达终点的时间也不相同,因而产生时延差,使光脉冲受到展宽。

所以这种光纤的模间色散高,传输频带不宽,传输速率不能太高,用于通信不够理想,只适用于短途低速通讯,比如:工控。

但单模光纤由于模间色散很小,所以单模光纤都采用突变型。

这是研究开发较早的一种光纤,现在已逐渐被淘汰了。

渐变型光纤:为了解决阶跃光纤存在的弊端,人们又研制、开发了渐变折射率多模光纤,简称渐变光纤。

光纤中心芯到玻璃包层的折射率是逐渐变小,可使高次模的光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。

渐变光纤的包层折射率分布与阶跃光纤一样,为均匀的。

渐变光纤的纤芯折射率中心最大,沿纤芯半径方向逐渐减小。

由于高次模和低次模的光线分别在不同的折射率层界面上按折射定律产生折射,进入低折射率层中去,因此,光的行进方向与光纤轴方向所形成的角度将逐渐变小。

同样的过程不断发生,直至光在某一折射率层产生全反射,使光改变方向,朝中心较高的折射率层行进。

这时,光的行进方向与光纤轴方向所构成的角度,在各折射率层中每折射一次,其值就增大一次,最后达到中心折射率最大的地方。

在这以后。

和上述完全相同的过程不断重复进行,由此实现了光波的传输。

可以看出,光在渐变光纤中会自觉地进行调整,从而最终到达目的地,这叫做自聚焦。

(五)按光纤的工作波长分:短波长光纤、长波长光纤和超长波长光纤。

短波长光纤是指0.8~0.9μm的光纤;长波长光纤是指1.0~1.7μm的光纤;而超长波长光纤则是指2μm以上的光纤。

三、类型和等级最新发展的行业标准现在把局域网使用的多模光纤分为类型和等级。

类型和等级是两个不同的概念。

我们将先考察光纤类型:OM1、OM2 和OM3。

OM1——这是规范长期以来规定的光纤,这些年来,我们一直使用这类光纤。

OM1 光纤可以是62.5 微米或50 微米光纤。

其典型的装满发射带宽(LED)如附表所示。

它主要用于支持传统应用和短距离千兆位网络。

OM2——这是62.5 微米或50 微米光纤,其支持的装满发射带宽均为500 MHz/Km。

其应用包括支持传统应用及最远500 米的千兆位网络。

OM3——从本质上看,这是新型的激光优化的光纤,其折射系数廓线是为850nm 波长时的激光插入而优化的。

它可以用来支持传统网络,但其面向10G Base-SR/SW。

上面的简介和下表是标准中规定的多模光纤类型概况。

各光纤制造商面向市场,推出了各种增强功能的光纤,其性能满足、并超过了这些指标和特点。

单模光纤也获得了一个新的名字- 0S1。

在传统的多模光纤一直占统治地位的局域网中,单模光纤可能会开始发挥更大的作用。

光纤等级光纤等级与某条光纤通道在最大距离上支持特定应用的能力有关。

从这个层次上定义的光纤等级有助于为支持的应用和要求的距离指定正确的光纤类型。

. OF-300 级。

光纤通道通过某类光纤、在至少300 米距离内支持特定应用。

. OF-500 级。

光纤通道通过某类光纤、在至少500 米距离内支持特定应用。

. OF-2000 级。

光纤通道通过某类光纤、在至少2000 米距离内支持特定应用。

例如,在考虑安装或指定哪种光纤类型时,您必需考察预计支持的应用和要求的距离。

安装的OM1 光纤可以视为OF-2000 级通道,将使用1300 LED 光源在2000 米距离上支持FDDI 和100BaseFX 等应用。

但是,在要求使用VCSEL 850nm 激光器支持1000BaseSX 时,这类光纤的性能仅相当于OF-300 级光纤。

四、附表表一:各种光纤进行万兆传输时的带宽和最大距离:表二:各种光纤的带宽和衰减。

相关文档
最新文档