场效应管的选型及应用概览

合集下载

mosfet管的选型

mosfet管的选型

mosfet管的选型MOSFET管的选型MOSFET(金属氧化物半导体场效应晶体管)是一种常用的电子元件,广泛应用于各种电路中。

在选择MOSFET管时,我们需要考虑多个因素,以确保电路的性能和稳定性。

本文将介绍一些关键的选型要点和常见的MOSFET参数,帮助读者更好地进行选型决策。

我们需要了解MOSFET的基本工作原理和结构。

MOSFET由源极(S)、漏极(D)和栅极(G)组成。

通过在栅极施加电压,可以控制漏极和源极之间的电流。

MOSFET有两种类型:N沟道MOSFET(N-MOSFET)和P沟道MOSFET(P-MOSFET),其区别在于电荷载流子类型的不同。

在选型过程中,第一个要考虑的因素是MOSFET的工作电压(Vds)。

这是指MOSFET能够承受的最大漏极-源极电压。

选择合适的工作电压范围是至关重要的,以确保MOSFET在实际应用中不会受到过电压的损坏。

第二个要考虑的因素是MOSFET的最大漏极电流(Id)。

这是指MOSFET能够承受的最大漏极电流。

根据实际应用需求,我们需要选择合适的最大漏极电流,以确保MOSFET能够正常工作,并不会因为过大的电流而发生故障。

除了工作电压和最大漏极电流,还有一些其他重要的参数需要考虑。

其中之一是阈值电压(Vth),它是指在栅极和源极之间的电压,MOSFET开始导通的最低电压。

阈值电压的选择将直接影响MOSFET 的导通特性和工作状态。

我们还需要考虑MOSFET的导通电阻(Rds(on))。

导通电阻是指当MOSFET导通时,漏极和源极之间的电压降。

较低的导通电阻将导致更高的效率和更小的功耗,因此在一些高性能应用中,选择具有较低导通电阻的MOSFET是非常重要的。

除了这些参数,还有一些其他因素也需要考虑,例如开关速度、温度特性、封装类型和价格等。

这些因素根据实际应用需求和预算来决定。

为了确保选型的准确性,我们可以参考厂商提供的数据手册和应用指南。

这些资料通常包含详细的参数表、性能曲线和应用电路,可以帮助我们更好地了解和评估不同型号的MOSFET。

六种场效应管

六种场效应管

六种场效应管场效应管(Field-Effect Transistor,简称FET)是一种非常重要的电子器件,它能够通过控制输入电场来调节输出电流。

场效应管分为MOSFET(金属氧化物半导体场效应管)和JFET(结型场效应管)两大类,每类中又分为增强型和耗尽型。

第一种场效应管是N沟道增强型MOSFET(N-Channel Enhanced MOSFET)。

N沟道增强型MOSFET是一种双极性器件,其栅极和漏极之间的电场控制输出电流。

当栅极电压为正值时,它吸引正极性的载流子,导致漏极电流增加。

N沟道增强型MOSFET通常用于低功率应用,如放大器和开关电路。

第二种场效应管是N沟道耗尽型MOSFET(N-Channel Depletion MOSFET)。

N沟道耗尽型MOSFET的工作原理与N沟道增强型MOSFET类似,但是它的栅极电压为0伏时有输出漏极电流,因此被称为耗尽型。

N沟道耗尽型MOSFET通常用于特定应用,如电压参考电路和电流源。

第三种场效应管是P沟道增强型MOSFET(P-Channel Enhanced MOSFET)。

P沟道增强型MOSFET与N沟道增强型MOSFET原理相同,但是它使用了P型半导体材料。

当栅极电压为负值时,它吸引负极性的载流子,导致漏极电流增加。

P沟道增强型MOSFET通常用于低功率应用和负电压电路。

第四种场效应管是P沟道耗尽型MOSFET(P-Channel Depletion MOSFET)。

P沟道耗尽型MOSFET与P沟道增强型MOSFET原理相同,只是栅极电压为0伏时有输出漏极电流。

P沟道耗尽型MOSFET通常用于特定应用,如负电压参考电路和负电流源。

第五种场效应管是结型场效应管(Junction Field-Effect Transistor,简称JFET)。

JFET是一种单极性器件,通过控制栅源电压来调节输出电流。

JFET分为N沟道和P沟道两种类型,其工作原理均基于P-N结的特性。

场效应管参数用途大全

场效应管参数用途大全

场效应管参数用途大全场效应管(Field-Effect Transistor,简称FET)是一种主要用于放大、开关和调节信号的电子器件。

它是一种三端器件,由源极(Source)、栅极(Gate)和漏极(Drain)组成。

场效应管具有很多参数,下面将详细介绍这些参数的用途。

1.漏极电流(ID):漏极电流是指通过场效应管的漏极-源极电路的电流。

它可以用来测量和控制场效应管的放大增益和工作状态。

2.栅-源电压(VGS):栅电压与源电压之间的差值,用于控制场效应管的导通与截止状态。

当VGS小于场效应管的阈值电压时,管子截止;当VGS大于阈值电压时,管子导通。

3.漏-源电压(VDS):漏电压与源电压之间的差值,用于测量场效应管的电压增益和功耗。

它还用于确定场效应管的工作状态,如饱和区、线性区和截止区。

4. 率定电压(VGS-off):当栅电压小于阈值电压时,场效应管处于关断状态。

率定电压是指栅电压,使得场效应管完全截止,漏极电流为零。

5.漏极电阻(RD):漏极电阻是指场效应管的漏极电压和漏极电流之间的比率。

它用于测量和控制场效应管的输出阻抗和信号衰减。

6.栅-漏电流(IGS):栅-漏电流是指栅极和源极之间的电流。

它表示在截止区域时,栅极上的电流,即零漏极电压条件下的漏极电流。

7.漏极电容(CDS):漏极电容是指场效应管的漏极电压和变化的漏极电流之间的比率。

它与场效应管的频率响应和带宽有关。

8.栅电流(IG):栅电流是指通过场效应管的栅极-源极电路的电流。

栅电流用于测量和控制场效应管的输入阻抗和信号增益。

9.输入电容(CGS):输入电容是指场效应管的栅极电压和变化的栅极电流之间的比率。

它与场效应管的频率响应和带宽有关。

10.输出电容(CDS):输出电容是指场效应管的漏极电压和变化的漏极电流之间的比率。

它与场效应管的频率响应和带宽有关。

11. 开关速度(Switching Speed):开关速度是指场效应管在从截止状态到导通状态或从导通状态到截止状态的转换时间。

场效应管型号

场效应管型号

场效应管型号引言场效应管是一种重要的电子元器件,主要用于放大和开关电流信号。

不同的场效应管型号具有不同的特性和应用场景。

本文将介绍几种常见的场效应管型号,并对其特性和应用进行分析。

1. 型号 A特性•原理类型:N沟道型/ P沟道型•导通电阻:低•开关速度:高•最大耐压:10V•动态电阻:低应用•低频放大器•信号开关•DC-DC 变换器2. 型号 B特性•原理类型:P沟道型•导通电阻:高•开关速度:低•最大耐压:30V•动态电阻:高应用•电源开关•交流光源调光•系统保护3. 型号 C特性•原理类型:N沟道型•导通电阻:中等•开关速度:中等•最大耐压:20V•动态电阻:中等应用•音频放大器•数据选择器•高频振荡器4. 型号 D特性•原理类型:N沟道型•导通电阻:高•开关速度:低•最大耐压:60V•动态电阻:高应用•高压电源控制•电机驱动•逆变器5. 型号 E特性•原理类型:P沟道型•导通电阻:低•开关速度:高•最大耐压:40V•动态电阻:低应用•光电传感器•音频功放•高速数据采集结论本文介绍了几种常见的场效应管型号,并对其特性和应用进行了总结。

选择合适的场效应管型号对于电路设计和应用至关重要,需要根据实际需求来进行选择。

每种型号的场效应管都有其特定的优势和应用领域,因此在选择场效应管型号时,需要综合考虑电路的要求和性能指标。

通过深入了解场效应管型号的特性和应用,可以更好地应用它们在不同的电子领域中。

参考文献:•Smith, John.。

场效应管及其应用【精选】

场效应管及其应用【精选】

g+ ugs -
id
d

uds
- s
g+ ugs -
id
d

gmugs
uds
- s s
图3.12场效应管微变等效电路
(1) 电压放大倍数:
'
A u i R R g u R g
( o d
//
d
) L
m gs
L
'
R u
mL
u u u i
gs
gs
(2) 输入电阻:
r R R R ( // )
g s
g s
衬底引线
(a)
(b)
(c)
图 3.5增强型MOS
(a) N沟道结构图; (b) N沟道符号; (c) P沟道符号
UDD
d
s
UGG
g
iD
N+
N+
P型 硅 衬 底
图 3.6 N沟道增强型MOS管工作原理
3)
(1) N沟道增强型绝缘栅场效应管的转移特性曲线 如图3.7(a)所示。 在uGS≥UGS(th)时, iD与uGS的关系可用 下式表示:
恒流区(放大区)
uDS= 0 V
4可 变 电
3阻 区
2
-1 V

穿
-2 V

-3 V
1
-4 V
0
2 4 6 8 10 12 14 16 18
uDS / V
夹断区
图 3.4 N沟道结型场效应管输出特性曲线
3.1.2 1. 增强型绝缘栅场效应管的结构及工作原理
1)
2)
s
g
d
SiO2
N+

六种场效应管

六种场效应管

六种场效应管一、结型场效应管结型场效应管是一种单极场效应管,其工作原理是基于栅极电压改变二氧化硅(SiO2)层中电荷分布来实现对漏极电流的控制。

它的工作特点是在工作过程中不需要很大的功耗,并且具有良好的噪声特性。

在电子设备中,结型场效应管通常用于放大、振荡、开关等电路中。

二、绝缘栅型场效应管绝缘栅型场效应管是一种单极场效应管,其工作原理是通过在二氧化硅(SiO2)绝缘层上覆盖金属薄膜来实现对源极和漏极之间的控制。

由于没有栅极氧化层与半导体之间的电容,因此其输入电阻非常高,并且具有低噪声特性。

在电子设备中,绝缘栅型场效应管通常用于放大、振荡、开关等电路中。

三、MOS型场效应管MOS型场效应管是一种单极场效应管,其工作原理是通过在金属-氧化物-半导体(MOS)结构上施加电压来改变电荷分布实现对漏极电流的控制。

它的优点是输入电阻高、驱动电流小、功耗低、易于集成等。

在电子设备中,MOS型场效应管通常用于放大、振荡、开关等电路中。

四、高电子饱和迁移率型场效应管高电子饱和迁移率型场效应管是一种具有高电子饱和迁移率的单极场效应管。

它的工作原理是通过改变栅极电压来改变半导体内部的电子饱和迁移率实现对漏极电流的控制。

它的优点是具有高速响应和低功耗特性,适用于高速数字电路和模拟电路中。

五、高电子饱和迁移率型场效应管高电子饱和迁移率型场效应管是一种具有高电子饱和迁移率的双极场效应管。

它的工作原理是通过改变栅极电压来改变半导体内部的电子饱和迁移率实现对漏极电流的控制。

它的优点是具有高速响应和低功耗特性,适用于高速数字电路和模拟电路中。

六、结型双极型场效应管结型双极型场效应管是一种双极场效应管,其工作原理是基于栅极电压改变半导体内部的电子和空穴浓度实现对漏极电流的控制。

它的优点是具有高速响应和低功耗特性,适用于高速数字电路和模拟电路中。

同时,它还具有较好的噪声特性和稳定性,适用于各种复杂的电子设备中。

小参数常用MOS管选型

小参数常用MOS管选型

小参数常用MOS管选型1.N沟道MOS管选型:N沟道MOS管在电子设备中广泛应用。

常见的N沟道MOS管有IRF1010、IRF520、IRF540等,其工作电压范围一般在20V至100V之间,适用于低功率电子设备。

2.P沟道MOS管选型:P沟道MOS管通常应用于负载开关和功率放大器等电路中。

常见的P沟道MOS管有IRLR3103、IRLR7843等,其工作电压范围一般在20V至100V之间,适用于低功耗设备。

3.逻辑开关MOS管选型:逻辑开关MOS管通常应用于数字逻辑电路中,用于开关控制。

常见的逻辑开关MOS管有IRLZ44N、IRF630等,其工作电压范围一般在50V至100V之间,适用于低功耗数字电路。

4.功率MOS管选型:功率MOS管通常应用于功率放大器和开关电路中,需要承受较大的电流和功率。

常见的功率MOS管有IRF3205、IRF2807等,其工作电压范围一般在100V至250V之间,适用于高功率设备。

5.MOS场效应管选型:除了常见的N沟道和P沟道MOS管外,还有一种特殊的MOS场效应管,如深亚微米CMOS器件。

这些器件具有更低的功耗、更快的开关速度和更高的集成度,适用于高性能和低功耗应用。

选择合适的MOS管型号还需要考虑其他因素,如漏极电流、导通电阻、击穿电压和导通损耗等。

在实际选型过程中,可以通过参考厂家提供的数据手册和相关应用笔记,进行详细的参数对比和分析。

总之,小参数常用MOS管的选型需要综合考虑工作电压、电流和功耗等参数,同时还要考虑具体的电路设计需求。

对于不同类型的电子设备和电路,选择合适的MOS管型号可以提高工作效率和性能。

场效应管的作用、规格及分类

场效应管的作用、规格及分类

场效应管的作用、规格及分类1.什么叫场效应管?FET是Field-Effect-Transistor的缩写,即为场效应晶体管。

一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。

FET应用范围很广,但不能说现在普及的双极型晶体管都可以用FET替代。

然而,由于FET的特性与双极型晶体管的特性完全不同,能构成技术性能非常好的电路。

2. 场效应管的工作原理:(a) JFET的概念图(b) JFET的符号图1(b)门极的箭头指向为p指向 n方向,分别表示内向为n沟道JFET,外向为p沟道JFET。

图1(a)表示n沟道JFET的特性例。

以此图为基础看看JFET的电气特性的特点。

首先,门极-源极间电压以0V时考虑(VGS =0)。

在此状态下漏极-源极间电压VDS 从0V增加,漏电流ID几乎与VDS 成比例增加,将此区域称为非饱和区。

VDS 达到某值以上漏电流ID 的变化变小,几乎达到一定值。

此时的ID 称为饱和漏电流(有时也称漏电流用IDSS 表示。

与此IDSS 对应的VDS 称为夹断电压VP ,此区域称为饱和区。

其次在漏极-源极间加一定的电压VDS (例如0.8V),VGS 值从0开始向负方向增加,ID 的值从IDSS 开始慢慢地减少,对某VGS 值ID =0。

将此时的VGS 称为门极-源极间遮断电压或者截止电压,用VGS (off)示。

n沟道JFET的情况则VGS (off) 值带有负的符号,测量实际的JFET对应ID =0的VGS 因为很困难,在放大器使用的小信号JFET时,将达到ID=0.1-10μA 的VGS 定义为VGS (off) 的情况多些。

关于JFET为什么表示这样的特性,用图作以下简单的说明。

场效应管工作原理用一句话说,就是"漏极-源极间流经沟道的I,用以门D"。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

场效应管的选型及应用概览
场效应管广泛使用在模拟电路与数字电路中,和我们的生活密不可分。

场效应管的优势在于:首先驱动电路比较简单。

场效应管需要的驱动电流比BJT则小得多,而且通常可以直接由CMOS或者集电极开路TTL驱动电路驱动;其次场效应管的开关速度比较迅速,能够以较高的速度工作,因为没有电荷存储效应;另外场效应管没有二次击穿失效机理,它在温度越高时往往耐力越强,而且发生热击穿的可能性越低,还可以在较宽的温度范围内提供较好的性能。

场效应管已经得到了大量应用,在消费电子、工业产品、机电设备、智能手机以及其他便携式数码电子产品中随处可见。

近年来,随着汽车、通信、能源、消费、绿色工业等大量应用场效应管产品的行业在近几年来得到了快速的发展,功率场效应管更是备受关注。

据预测,2010-2015年中国功率MOSFET市场的总体复合年度增长率将达到13.7%。

虽然市场研究公司 iSuppli 表示由于宏观的投资和经济政策和日本地震带来的晶圆与原材料供应问题,今年的功率场效应管市场会放缓,但消费电子和数据处理的需求依然旺盛,因此长期来看,功率场效应管的增长还是会持续一段相当长的时间。

技术一直在进步,功率场效应管市场逐渐受到了新技术的挑战。

例如,业内有不少公司已经开始研发GaN功率器件,并且断言硅功率场效应管的性能可提升的空间已经非常有限。

不过,GaN 对功率场效应管市场的挑战还处于非常初期的阶段,场效应管在技术成熟度、供应量等方面仍然占据明显的优势,经过三十多年的发展,场效应管市场也不会轻易被新技术迅速替代。

五年甚至更长的时间内,场效应管仍会占据主导的位置。

场效应管也仍将是众多刚入行的工程师都会接触到的器件,本期内容将会从基础开始,探讨场效应管的一些基础知识,包括选型、关键参数的介绍、系统和散热的考虑等为大家做一些介绍。

一.场效应管的基础选型
场效应管有两大类型:N沟道和P沟道。

在功率系统中,场效应管可被看成电气开关。

当在N沟道场效应管的栅极和源极间加上正电压时,其开关导通。

导通时,电流可经开关从漏极流向源极。

漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。

必须清楚场效应管的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。

如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。

当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。

虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。

作为电气系统中的基本部件,工程师如何根据参数做出正确选择呢?本文将讨论如何通过四步来选择正确的场效应管。

1)沟道的选择。

为设计选择正确器件的第一步是决定采用N沟道还是P沟道场效应管。

在典型的功率应用中,当一个场效应管接地,而负载连接到干线电压上时,该场效应管就构成了低压侧开关。

在低压侧开关中,应采用N沟道场效应管,这是出于对关闭或导通器件所需电压的考虑。

当场效应管连接到总线及负载接地时,就要用高压侧开关。

通常会在这个拓扑中采用P沟道场效应管,这也是出于对电压驱动的考虑。

2)电压和电流的选择。

额定电压越大,器件的成本就越高。

根据实践经验,额定电压应当大于干线电压或总线电压。

这样才能提供足够的保护,使场效应管不会失效。

就选择场效应管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。

设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。

不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220V AC应用为450~600V。

在连续导通模式下,场效应管处于稳态,此时电流连续通过器件。

脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。

一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。

3)计算导通损耗。

场效应管器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。

对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。

注意RDS(ON)电阻会随着电流轻微上升。

关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。

需要提醒设计人员,一般来说MOS管规格书标注的Id电流是MOS管芯片的最大常态电流,实际使用时的最大常态电流还要受封装的最大电流限制。

因此客户设计产品时的最大使用电流设定要考虑封装的最大电流限制。

建议客户设计产品时的最大使用电流设定更重要的是要考虑MOS管的内阻参数。

4)计算系统的散热要求。

设计人员必须考虑两种不同的情况,即最坏情况和真实情况。

建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。

在场效应管的资料表上还有一些需要注意的测量数据;比如封装器件的半导体结与环境之间的热阻,以及最大的结温。

开关损耗其实也是一个很重要的指标。

从下图可以看到,导通瞬间的电压电流乘积相当大。

一定程度上决定了器件的开关性能。

不过,如果系统对开关性能要求比较高,可以选择栅极电荷QG比较小的功率MOSFET。

相关文档
最新文档