低噪声放大器指标
低噪声放大器的指标分析

低噪声放大器的指标分析重要指标分析①增益带宽积:运放开环增益/频率图中,指定频率处,开环增益与该指定频率的乘积。
理解:如果运放开环增益始终满足-20dB/10倍频,也就是频率提高10倍,开环增益变为0.1倍,那么它们的乘积将是一个常数,也就等于前述的“单位增益带宽”,或者“1Hz处的增益”。
在一个相对较窄的频率区域内,增益带宽积可以保持不变,基本满足-20dB/10 倍频的关系,我们暂称这个区域为增益线性变化区。
要想获得高增益就必须得牺牲带宽,因为增益带宽积是一个常数。
②压摆率定义:闭环放大器输出电压变化的最快速率。
用V/μs 表示。
优劣范围:从2mV/μs 到9000V/μs 不等。
理解:此值显示运放正常工作时,输出端所能提供的最大变化速率,当输出信号欲实现比这个速率还快的变化时,运放就不能提供了,导致输出波形变形――原本是正弦波就变成了三角波。
③相位裕度定义:在运放开环增益和开环相移图中,当运放的开环增益下降到1时,开环相移值减去-180°得到的数值。
相位裕度和增益裕度越大,说明放大器越容易稳定。
失真与噪声响应④建立时间定义:运放接成指定增益,从输入阶跃信号开始,到输出完全进入指定误差范围所需要的时间。
所谓的指定误差范围,一般有1%,0.1%几种。
优劣范围:几个ns 到几个ms。
理解:建立时间由三部分组成,第一是运放的延迟,第二是压摆率带来的爬坡时间,第三是稳定时间。
很显然,这个指标与SR 密切相关,一般来说,SR 越大的,建立时间更小。
⑤V os定义:在运放开环使用时,加载在两个输入端之间的直流电压使得放大器直流输出电压为0。
也可定义为当运放接成跟随器且正输入端接地时,输出存在的非0 电压。
优劣范围:1?V 以下,�儆诩�优秀的。
100?V 以下的属于较好的。
最大的有几十mV。
理解:任何一个放大器,无论开环连接或者反馈连接,当两个输入端都接地时,理论上输出应该为0,但运放内部两输入支路无法做到完全平衡,导致输出永远不会是0。
低噪声放大器指标概要

1.2 1.4 21dB
低噪放(LNA)指标分析
(1)低功耗——移动通信的必然要求
低电源电压
小的静态电流——跨导 g m 小
gm
rbe
rbb'
(1)
VT ICQ
(2)工作频率——取决于晶体管的特征频率 f T
fT
gm
gm
2(c c) 2C
与工作点有关
取决于半导体工艺
(3)噪声系数
线性网络:
F1(Vn InRS)2 4kTBSR
双极晶体管:共射
F 1 r b b ' 1 g m R S 1 r b b '1
R s 2 g m R S 2
R s 2 g m R S
共源MOS管
F 1 1 1
RS gm
分析:
①放大器的噪声与工作点有关—— g m
多级线性网络级联的噪声系数
多级线性网络级联总噪声系数
结论:
FF1F G 2P 11G F P31G P 12
Te Te1G TeP21GP T1eG 3P2
1. 系统前级、特别是第一级的噪声系数对系统影响最大
2. 增大第一级的增益可以减少后级对系统噪声系数的影响
描述晶体管的两种模型 1. 物理模型——等效电路模型 特点:模型中的每个参数均对应一定的物理意义
(1)线性范围和器件有关 (2)线性范围和电路有关 (3)输入端的阻抗匹配也会影响放大器的线性范围
(8)隔离度和稳定性
增大LNA的反向隔离可以减少本振信 号从混频器向天线的泄漏程度。
正向传输——压控电流源 g m v b e
输入
反向传输——极间电容 C (C bc )
低噪声放大器

低噪声放大器(Low Noise Amplifier,LNA)广泛应用于射电天文、卫星接收、雷达通信等收信机灵敏度要求较高的领域,主要作用是放大所接收的微弱信号、降低噪声、使系统解调出所需的信息数据。
而噪声系数(Noise Figure,NF)作为其一项重要的技术指标直接反映整个系统的灵敏度,所以LNA设计对整个系统的性能至关重要。
1 GPS接收机低噪声放大器的设计设计的LNA主要指标为:工作频率为1 520~1 600 MHz;噪声系数NF<O.50 dB;增益G>16.0 dB;输入驻波比<2;输出驻波比<1.5。
1.1 器件选择选择合适的器件,考虑到噪声系数较低、增益较高,所以选择PHEMT GaAsFET低噪声晶体管。
在设计低噪声放大器前,首先要建立晶体管的小信号模型,一般公司都会提供具有现成模型的放大器件。
这里选择Agilent公司的生产的ATF-54143。
1.52~1.60 GHz频带内,设计反τ型匹配网络,该匹配网络由集总元件电感、电容构成。
选择电感时,要选择高Q电感。
为了在模拟仿真中能够与实际情况相符合,选用Murata公司的电感和电容模型。
这里选用贴片电感型号为LQWl8,贴片电容型号为GRMl8,电感LQWl8在1.6 GHz典型Q值为80。
1.2 直流偏置在设计低噪声放大器中,设计直流偏置的目标是选择合适的静态工作点,静态点的好坏直接影响电路的噪声、增益和线性度。
由电阻组成的简单偏置网络可以为ATF-54143提供合适的静态工作点,但温度性较差。
可用有源偏置网络弥补温度性差的缺点,但有源偏置网络会使电路尺寸增加,加大了电路板排版的难度以及增加了功率消耗。
在设计实际电路中,要根据具体情况选择有源偏置网络,或是电阻偏置网络。
就文中的LNA而言,考虑到结构和成本,这里选择电阻无源偏置网络。
采用Agilenl的ATF54143,根据该公司给出的datasheet 指标,设计Vds=3.8 V、Ids=ll mA偏置工作点。
低噪声放大器稳定系数k的计算

低噪声放大器稳定系数k的计算在放大器设计和应用中,稳定系数k是一个非常重要的参数。
它代表了放大器的稳定性和抗干扰能力,是评价放大器性能的重要指标之一。
在低噪声放大器设计中,稳定系数k的计算尤为关键,因为放大器的噪声性能对系统整体的性能有着重要的影响。
在本文中,我们将详细介绍低噪声放大器稳定系数k的计算方法及其相关知识。
1. 低噪声放大器的定义低噪声放大器是一种具有低噪声系数的放大器,其主要特点是在放大信号的同时尽量减小输入信号中的噪声,从而提高输出信号的信噪比。
低噪声放大器广泛应用于无线通信系统、卫星通信系统、雷达系统等对信号传输质量要求较高的场合。
2. 低噪声放大器的稳定系数k稳定系数k是衡量放大器稳定性的重要参数,它的定义是放大器开环传输函数的幅度变化与相位变化之比。
稳定系数k越大,表示放大器的稳定性越好,对外部干扰的抵抗能力越强。
3. 稳定系数k的计算方法稳定系数k的计算方法有多种,其中比较常用的是极点分布法和Nyquist稳定判据法。
下面分别介绍这两种方法的计算步骤。
3.1 极点分布法极点分布法是一种简单直观的计算方法,其步骤如下:(1)根据放大器的开环传输函数,求出其极点的位置;(2)根据极点的位置,计算出稳定系数k的值。
3.2 Nyquist稳定判据法Nyquist稳定判据法是一种基于Nyquist图的计算方法,其步骤如下:(1)根据放大器的开环传输函数,绘制出Nyquist图;(2)根据Nyquist图上的相位裕度和增益裕度,计算出稳定系数k的值。
4. 稳定系数k的意义稳定系数k的大小直接影响着放大器在实际应用中的稳定性和性能。
当稳定系数k足够大时,表示放大器对外部干扰的抗干扰能力较强,有利于提高整个系统的抗干扰性能;反之,如果稳定系数k较小,放大器容易受到外部干扰的影响,从而影响系统的正常工作。
5. 结论稳定系数k是评价放大器稳定性和抗干扰能力的重要参数,其计算方法主要有极点分布法和Nyquist稳定判据法。
低噪声放大器..

5) C
C 0 VBC 1 0
n
反偏集电结电容
6) 7)
Ccs 集电结与衬底间的势垒电容
rbb ' 、ree 、 rcc 为各极的体电阻
大倍数下降为 1 时的频率
8) 特征频率 fT 定义为共射输出短路电流放
gm gm fT 2 (C C ) 2 C
3) 有源偏置电路
有源偏置电路具有相 当出色的温度稳定性,但 同时也带来了元件数目增 多,电路结构复杂等缺点。 在放大器的温度稳定性要 求比较高的时候,可以考 虑采用这种偏置电路。
有源偏置电路
3)传输线偏置电路
传输线偏置电路
传输线偏置法可以抑制偶次谐波,并且还可以 改善放大器的稳定性。
固定基流偏置电路
IIP3
Input VSWR
-11.1dBm
1.5
-3dBm
1.2
Output VSWR
隔 离
3.1
21dB
1.4
21dB
从表中可以看出,低噪声放大器的主要指标为: 噪声系数 增益 线性范围
输入输出阻抗的匹配
功耗
输入输出的隔离
以上各项指标并不独立,是相互关联的,在 设计中如何折中,兼须各项在指标,是设计的 重点也是难点。
C gd ---漏极与源极电容
rG 、 rS 、 rD 分别为各极的欧姆电阻,rds 是漏源电
阻, R 是串联栅极电阻 i
对于GaAs FET ,这些参数的典型值为
Ri 7
C gs 0.3 pF
rds 400 Cds 0.12 pF
gm 40mS
C gd 0.01 pF
基极分压射极偏置电路
低噪声放大器 核心参数

低噪声放大器核心参数低噪声放大器(Low Noise Amplifier,LNA)是一种用于增加信号幅度而又尽量减小噪声的放大器。
在无线通信、雷达、卫星通信和其他接收系统中,低噪声放大器起到了至关重要的作用。
为了设计出性能优越的低噪声放大器,需要对其核心参数有深入的了解。
在本文中,我们将详细介绍低噪声放大器的核心参数,并对其进行分析和讨论。
1. 噪声指标低噪声放大器最为重要的参数之一就是噪声指标。
噪声指标通常用于描述放大器在增益条件下的噪声性能。
常见的噪声指标包括噪声系数(Noise Figure,NF)、噪声温度(Noise Temperature,Tn)、噪声系数与增益的乘积(Gain Bandwidth Product,GBP)等。
噪声系数是描述放大器引入信号噪声的指标,一般以分贝(dB)为单位,数值越小代表噪声性能越好。
而噪声温度描述了放大器引入的噪声相当于理想传输线路引入的噪声温度,单位为开尔文(K)。
噪声系数与增益的乘积则是评价放大器噪声性能的综合指标。
2. 增益增益是低噪声放大器的另一个核心参数。
增益表示放大器输出信号与输入信号的幅度比值,通常用分贝(dB)表示。
增益越大意味着放大器输出信号的幅度增加的越多,但也需要注意,在增益增大的同时可能会伴随着噪声的增加。
低噪声放大器需要在保证足够增益的前提下尽量减小噪声。
3. 带宽低噪声放大器的带宽也是一个重要参数。
带宽指的是在放大器工作范围内的频率范围,通常用赫兹(Hz)表示。
低噪声放大器需要具有足够的带宽,以确保对输入信号的覆盖范围足够广,同时也需要避免出现频率失真等问题。
4. 饱和输入功率饱和输入功率也是低噪声放大器的重要参数之一。
饱和输入功率指的是在放大器输出的信号出现压制之前,输入信号的功率大小。
通常用分贝毫瓦(dBm)来表示。
饱和输入功率越大,意味着放大器能够承受更大的输入信号功率而不至于出现失真等问题。
5. 稳定性低噪声放大器的稳定性也是一个重要的核心参数。
低噪声放大器 核心参数

低噪声放大器核心参数低噪声放大器是一种重要的电子元件,被广泛应用于通信系统、射频接收机和传感器等领域。
它具有降低电路中噪声的特点,能够有效地提高信号的清晰度和稳定性。
在设计和制作低噪声放大器时,需要考虑一系列核心参数,这些参数直接影响着放大器的性能和应用。
低噪声放大器的噪声系数是一个至关重要的参数。
噪声系数是衡量放大器对输入信号引入的热噪声的程度,通常用分贝(dB)表示。
对于低噪声放大器来说,其噪声系数应尽可能小,一般要求在1dB以下。
通过优化放大器的结构和选用低噪声的材料,可以有效地降低噪声系数,提高信噪比,从而提高放大器的性能。
增益是另一个重要的核心参数。
增益是指放大器输出信号与输入信号之间的比值,通常使用分贝(dB)来表示。
对于低噪声放大器来说,需要在保持低噪声的前提下实现较大的增益,以确保对输入信号进行有效放大。
在设计中需要注意在不增加噪声的情况下实现有限的增益,从而平衡增益和噪声的关系。
带宽也是低噪声放大器的重要参数之一。
带宽是指放大器能够有效放大信号的频率范围,通常用赫兹(Hz)表示。
对于低噪声放大器来说,需要保证其带宽足够宽,能够有效放大整个信号的频率范围,同时也要避免在带宽范围外引入过多的噪声。
输入/输出阻抗也需要作为核心参数考虑。
输入阻抗是指放大器对输入信号的电阻,而输出阻抗是指放大器对输出信号的电阻。
对于低噪声放大器来说,需要保证输入/输出阻抗匹配,以确保信号能够有效地传输和放大。
对于不同的应用场景,还需要考虑输入/输出阻抗的变化范围和稳定性。
在选择材料和元件时,噪声指标、稳定性、温度特性也是非常重要的核心参数。
这些参数会影响低噪声放大器的工作稳定性、使用寿命和适用环境范围等方面。
低噪声放大器的核心参数包括噪声系数、增益、带宽、输入/输出阻抗、材料特性等。
通过对这些参数的综合考虑和优化设计,可以制作出性能优良的低噪声放大器,满足不同领域的需求。
微波低噪声放大器的主要技术指标、作用及方案设计

微波低噪声放大器的主要技术指标、作用及方案设计随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高。
功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,而这也同时对系统的接收灵敏度提出了更高的要求。
1微波低噪声放大器的作用一般情况下,一个接收系统的接收灵敏度可由以下计算公式来表示:由上式可见,在各种特定(带宽BW、解调S/N已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机噪声系数的关键部件则是处于接收机 前端的低噪声放大器。
图1所示是接收机射频前端的原理框图。
由图1可见,低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以,低噪声放大器的设计对整个接收机来说是至关重要的。
2微波低噪声放大器的主要技术指标2.1噪声系数噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即:对单级放大器而言,其噪声系数的计算为:其中Fmin为晶体管 噪声系数,是由放大器的管子本身决定的,Γopt、Rn和Γs分别为获得Fmin时的 源反射系数、晶体管等效噪声电阻以及晶体管输入端的源反射系数。
对多级放大器。
其噪声系数的计算应为:其中NFn为第n级放大器的噪声系数,Gn为第n级放大器的增益。
对噪声系数要求较高的系统,由于噪声系数很小,用噪声系数表示很不方便,故常用噪声温度来表示,噪声温度与噪声系数的换算关系为:其中Te为放大器的噪声温度,T0=2900K,NF为放大器的噪声系数。
2.2放大器增益放大器的增益定义为放大器输出功率与输入功率之比:G=Pout/Pin(7)通常提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪声放大器的增益过高会影响整个接收机的动态范围。
所以,一般来说,低噪声放大器的增益确定应与系统的整机噪声系数、接收机动态范围等结合起来考虑。
2.3反射系数由式(3)可知,当Γs=Γopt时,放大器的噪声系数 ,NF=NFmin,但此时从功率传输的角度来看,输入端会失配,所以,放大器的功率增益会降低,但有些时候,为了获得 噪声,适当的牺牲一些增益也是低噪声放大器设计中经常采用的一种办法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增益取决于
信号强,增益小,以防 后级非线性失真
射频通信电路
(6)输入阻抗匹配 最大功率传输——共轭匹配 放大器与输入源的匹配 噪声系数最小——噪声匹配 宽带放大、消耗功率、
纯电阻网络 ——
匹配网络
增加噪声
电抗网络 —— 不增加噪声、窄带放大
射频通信电路
(6)输入阻抗匹配 匹配方式
a. 共源组态
1 c.电阻负 输入阻抗很大 输入阻抗 g m 反馈改变 并联电阻等于 改变 g m 达 输入阻抗
射频通信电路
描述晶体管的两种模型 1. 物理模型——等效电路模型 特点:模型中的每个参数均对应一定的物理意义 适用的频率范围较宽
举例:混合
2. 网络模型
型模型
特点:把晶体管视为一个双端口黑盒子,分析其端口参数 适用于特定频率、线性参数 举例:S参数 注意:应用不同的模型,分析设计低噪放的方法不同
射频通信电路
多级线性网络级联的噪声系数
多级线性网络级联总噪声系数
F2 1 F3 1 F F1 GP1 GP1GP 2
Te 2 Te3 Te Te1 GP1 GP1GP 2
结论:
1. 系统前级、特别是第一级的噪声系数对系统影响最大 2. 增大第一级的增益可以减少后级对系统噪声系数的影响
噪声系数NF 增益Gain IIP3 Input VSWR Output VSWR 隔 离
射频通信电路
低噪放(LNA)指标分析
(1)低功耗——移动通信的必然要求
rbe
低电源电压
小的静态电流——跨导
gm
rbb ' (1 ) VT I CQ
gm 小
(2)工作频率——取决于晶体管的特征频率 fT
射频通信电路
第五章
低噪声放大器
射频通信电路
特点:
噪声越小越好
1.位于接收机的最前端
要求有适当的稳定的增益 小信号线性放大器 线性动态范围大 增益自动控制 功率最大 传输 噪声系 数最小
2.接收的信号很微弱且变化
3.通过传输线直接和天线或天线滤波器相连 —匹配 4.应具有选频功能,抑制带外和镜象频率干扰 本章内容(1). 低噪声放大器的性能指标 (2). 低噪声放大器的设计 (3).复习晶体管的电路模型
Cbe
输出点+
正向传输——压控电流源
gmvbe
输入
反向传输——极间电容 C (Cbc ) 引起不稳定的原因
CN
输出点 -
射频通信电路
改进措施
① 中和法——用中和电容抵消
由 C (Cbc ) 引起的反向传输 ② 失配法——采用共射共基(共源共栅)组 合连接
本章重点——用晶体管的混合 型模型分析、设计低噪放; 用S参数分析、设计低噪放。
射频路
5.1 低噪声放大器指标
低噪放(LNA)——高频、小信号、线性、选频放大器
指标 电源电压 电源电流 频 率 0.5μm GaAs FET 3.0V 4.0mA 1.9GHZ 2.8dB 18.1dB -11.1dBm 1.5 3.1 21dB 0.8μm Si Bipolar 1.9V 2.0mA 1.9GHZ 2.8dB 9.5dB -3dBm 1.2 1.4 21dB
信号源内阻
匹配 宽带放大、 增加噪声、
b. 共栅组态
d. 源级电感 负反馈改变 输入阻抗 窄带放大、噪 声性能较好
增加噪声
功耗较大
射频通信电路
(7)线性范围 衡量指标:三阶互调截点IIP3、增益1dB压缩点 注意: (1)线性范围和器件有关 (2)线性范围和电路有关 (3)输入端的阻抗匹配也会影响放大器的线性范围 (8)隔离度和稳定性 增大LNA的反向隔离可以减少本振信 号从混频器向天线的泄漏程度。
gm gm fT 2 (c c ) 2C
与工作点有关
取决于半导体工艺
射频通信电路
(3)噪声系数
线性网络:
(Vn I n RS ) 2 F 1 4kTBR S
双极晶体管:共射
F 1 rbb ' g R r 1 1 m S 1 bb ' Rs 2 g m RS 2 Rs 2 g m RS
1 1 F 1 RS g m
共源MOS管
分析: ①放大器的噪声与工作点有关—— g m ②双极晶体管放大器的噪声 与基区体电阻
rbb 有关
③放大器噪声系数与信号源内阻有关
射频通信电路
(4)增益
增益要适中 增益大——可降低后级对系统噪声系数的影响 增益大——后级易产生非线性失真 跨导 g m ——由工作点决定 负载 LC谐振回路—— Q值、谐振阻抗 LNA的负载形式 集中参数选频滤波器——注意阻抗匹配 (5)自动增益控制 信号弱,增益大 根据接收信号的强弱自动控制增益