1梅涅劳斯定理及应用

合集下载

一道初三课外练习的证明——梅涅劳斯定理和塞瓦定理的应用

一道初三课外练习的证明——梅涅劳斯定理和塞瓦定理的应用

一道初三课外练习的证明——梅涅劳斯定理和塞瓦定
理的应用
梅涅劳斯定理:梅涅劳斯定理是一个关于圆的定理,它告诉我们,如果一个圆的外接的正多边形的各个角度都是相等的,那么,这个正多边形的每条边都是等边的。

塞瓦定理:塞瓦定理是一个关于圆的定理,它告诉我们,如果一个圆的内接正多边形的每条边都是等边的,那么,这个正多边形的每个角度也是相等的。

证明:为了证明梅涅劳斯定理和塞瓦定理之间的关系,我们使用反证法。

假设正多边形的每个角度都是相等的,而它的每条边不是等边的。

根据梅涅劳斯定理,我们知道这个正多边形的每条边都是等边的,而这与我们的假设矛盾,因此该假设是错误的。

反之,假设正多边形的每条边都是等边的,而它的每个角度不是相等的。

根据塞瓦定理,我们知道这个正多边形的每个角度都是相等的,而这与我们的假设矛盾,因此该假设也是错误的。

由此可见,梅涅劳斯定理和塞瓦定理之间有着密切的联系。

即正多边形的每个角度都是相等的,那么它的每条边也都是等边的;反之,正多边形的每条边都是等边的,那么它的每个角度也都是相等的。

综上所述,梅涅劳斯定理和塞瓦定理之间是成立的。

梅涅劳斯定理的证明及运用

梅涅劳斯定理的证明及运用

梅涅劳斯定理(入门篇)雷雨田(广西师范大学附属外国语学校高50班 541004)梅涅劳斯定理证明2:面积法AF/FB = △ADF/△BDF ①BD/DC = △BDF/△CDF ②CE/EA = △CDF/△ADF ③式① * ② * ③可得:(AF/FB)*(BD/DC)*(CE/EA)= 1 得证。

证明3:相似法证明4:这个定理怎么记最好呢?个人感觉“顶到分、分到顶、顶到分、分到顶、顶到分、分到顶”这样记忆来得非常容易不过找了很多资料,感觉仅仅是把这个定理(或者后面附一个逆定理)陈述然后证明完了之后,就直接给例题(或者直接讲赛瓦定理),看上去不怎么舒服,所以我把其他的一些东西附在这里,以供参考。

第一角元形式的梅涅劳斯定理(就是把线段比改为正弦值比)其表达式为:1=∠∠•∠∠•∠∠BA'B sin 'CBB sin CB 'C sin 'ACC sin AC 'A sin 'BAA sin 证明如下:如图所示,由三角形面积公式(正弦定理)可得: AC 'A sin AC 'BAA sin AB AC 'A sin AC 'AA 'BAA sin 'AA AB S S C 'A 'BA C 'AA 'ABA ∠⋅∠⋅=∠⋅⋅∠⋅⋅==∆∆2121同理可得CB'C sin BC 'ACC sin AC B 'C 'AC ,BA 'B sin AB 'CBB sin BC A 'B 'CB ∠⋅∠⋅=∠⋅∠⋅= 把这三个式子相乘,运用梅氏定理,就可得到这个式子怎么记最好呢?个人感觉根据梅涅劳斯定理中线段所对应的角来记忆最好。

第二角元形式的梅涅劳斯定理设O 是不在三角形ABC 三边所在直线上的任意一点,其他条件不变,则表达式为:1=∠∠•∠∠•∠∠OA'B sin 'COB sin OB 'C sin 'AOC sin OC 'A sin 'BOA sin AB C A’ B’C’现证明如下: 如图,由C 'A 'BA S S OC 'A 'BOA =∆∆ 可得A'B 'BA OB OC OC 'A sin 'OA B sin ⋅=∠∠同理得到另外两个对称式,相乘,运用梅氏定理即得证这个式子就这样记吧:先记住原来的梅涅劳斯定理形式,然后在每条线段表达式中间插一个O ,然后再在前面加上∠sin (比如BA'就变成'B OA sin ∠)梅氏定理的用处这个定理是平面几何的一个重要定理(好像所有竞赛书都把他与赛瓦定理放在第一节,不知是惯性还是怎么地),它大概有如下用处:可以用来证明三点共线;可以用来导出线段比例式;可以用来寻求一条线段是另一条线段的几分之几或几倍(即线段倍分);怎么用梅氏定理知道了这个定理,还要会用才行。

梅涅劳斯定理及其应用

梅涅劳斯定理及其应用

梅涅劳斯定理及其应用
梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。

如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。

或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。

证明定理
过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , CE/EA=DC/AG。

三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1。

定义理论:
使用梅涅劳斯定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来解决三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用。

梅涅劳斯定理的对偶定理是塞瓦定理。

它的逆定理也成立:若有三点F、D、E分别在三角形的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E 三点共线。

利用这个逆定理,可以判断三点共线。

梅涅劳斯定理和塞瓦定理

梅涅劳斯定理和塞瓦定理

第十讲:梅涅劳斯定理和塞瓦定理一、梅涅劳斯定理定理1若直线l不经过的顶点,并且与的三边或它们的延长线分别交于,则证明:设分别是A、B、C到直线l的垂线的长度,则:。

注:此定理常运用求证三角形相似的过程中的线段成比例的条件。

例1若直角中,CK是斜边上的高,CE是的平分线,E点在AK上,D是AC的中点,F是DE与CK的交点,证明:。

【解析】因为在中,作的平分线BH,则:,,即,所以为等腰三角形,作BC上的高EP,则:,对于和三点D、E、F根据梅涅劳斯定理有:,于是,即,根据分比定理有:,所以,所以。

例2从点K引四条直线,另两条直线分别交直线与A、B、C、D和,试证:。

【解析】若,结论显然成立;若AD与相交于点L,则把梅涅劳斯定理分别用于和可得:,,,,将上面四个式子相乘,可得:,即:定理2设P、Q、R分别是的三边BC、CA、AB上或它们延长线上的三点,并且P、Q、R 三点中,位于边上的点的个数为0或2,这时若,求证P、Q、R三点共线。

证明:设直线PQ与直线AB交于,于是由定理1得:,又因为,则,由于在同一直线上P、Q、R三点中,位于边上的点的个数也为0或2,因此R与或者同在AB线段上,或者同在AB的延长线上;若R 与同在AB线段上,则R 与必定重合,不然的话,设,这时,即,于是可得,这与矛盾,类似地可证得当R 与同在AB的延长线上时,R 与也重合,综上可得:P、Q、R三点共线。

注:此定理常用于证明三点共线的问题,且常需要多次使用再相乘;例3点P 位于的外接圆上;是从点P向BC、CA、AB 引的垂线的垂足,证明点共线。

【解析】易得:,,,将上面三个式子相乘,且因为,,,可得,根据梅涅劳斯定理可知三点共线。

例4设不等腰的内切圆在三边BC、CA、AB上的切点分别为D、E、F,则EF与BC,FD 与CA,DE与AB的交点X、Y、Z在同一条直线上。

【解析】被直线XFE所截,由定理1可得:,又因为,代入上式可得,同理可得,,将上面的式子相乘可得:,又因为X、Y、Z丢不在的边上,由定理2可得X、Y、Z三点共线。

《梅涅劳斯定理》课件

《梅涅劳斯定理》课件
方法选择
根据定理的特点,选择合适的证 明方法,如代数推导、几何证明 或构造反例等。
证明的步骤和过程
步骤详细
按照逻辑顺序,详细列出每一步的证 明过程,确保每一步都有明确的解释 和推导。
过程完整
确保证明过程完整,没有遗漏任何关 键的推导或结论,保证定理的正确性 和严密性。
证明的难点和关键点
难点解析
指出证明中的难点,并解释难点产生的原因和解决方法。
求解几何最值问题
利用梅涅劳斯定理,可以求解几何中 最值问题,例如求三角形中的最大或 最小值等。
在日常生活中的应用
建筑设计
建筑设计中经常需要使用几何学 知识,梅涅劳斯定理可以帮助设 计师更好地理解建筑物的结构, 从而设计出更加稳定和美观的建
筑。
机械制造
在机械制造中,零件的尺寸和形 状需要精确控制,梅涅劳斯定理 可以帮助工程师更好地理解零件 的几何关系,从而制造出更加精
梅涅劳斯定理在几何学中有着广泛的应用,它可以帮助我 们解决一些与三角形相关的问题,例如求三角形的边长、 角度等。
定理的意义不仅在于其应用价值,更在于它对于三角形性 质和规律的深入揭示。通过研究梅涅劳斯定理,我们可以 更深入地理解三角形的本质和特性。
02
梅涅劳斯定理的证明
证明的思路和方法
思路清晰
首先明确梅涅劳斯定理的内容和 意义,然后根据定理的表述,确 定证明的总体方向和策略。
关键点把握
明确指出证明中的关键点,并解释这些关键点在证明中的重要性和作用。
03
梅涅劳斯定理的应用
在几何学中的应用
证明三角形相似
梅涅劳斯定理可以用于证明两个 三角形相似,通过比较三角形的 边长和角度,可以推导出它们相
似的结论。

平面几何五大定理及其证明

平面几何五大定理及其证明

平面几何定理及其证明一、梅涅劳斯定理1.梅涅劳斯定理及其证明G定理:一条直线与ABC的三边AB、BC、CA所在直线分别交于点D、E、F,且D、E、F均不是ABC的顶点,则有.证明:如图,过点C作AB的平行线,交EF于点G.因为CG // AB,所以————(1)因为CG // AB,所以————(2)由(1)÷(2)可得,即得.2.梅涅劳斯定理的逆定理及其证明定理:在ABC的边AB、BC上各有一点D、E,在边AC的延长线上有一点F,若,那么,D、E、F三点共线.证明:设直线EF交AB于点D/,则据梅涅劳斯定理有.因为,所以有.由于点D、D/都在线段AB上,所以点D与D/重合.即得D、E、F三点共线.二、塞瓦定理3.塞瓦定理及其证明定理:在ABC内一点P,该点与ABC的三个顶点相连所在的三条直线分别交ABC三边AB、BC、CA于点D、E、F,且D、E、F三点均不是ABC的顶点,则有.证明:运用面积比可得.根据等比定理有,所以.同理可得,.三式相乘得.4.塞瓦定理的逆定理及其证明定理:在ABC三边AB、BC、CA上各有一点D、E、F,且D、E、F均不是ABC的顶点,若,那么直线CD、AE、BF三线共点.证明:设直线AE与直线BF交于点P,直线CP交AB于点D/,则据塞瓦定理有.因为,所以有.由于点D、D/都在线段AB上,所以点D与D/重合.即得D、E、F三点共线.三、西姆松定理5.西姆松定理及其证明定理:从ABC外接圆上任意一点P向BC、CA、AB或其延长线引垂线,垂足分别为D、E、F,则D、E、F三点共线.证明:如图示,连接PC,连接 EF 交BC于点D/,连接PD/.因为PE AE,PF AF,所以A、F、P、E四点共圆,可得FAE =FEP.因为A、B、P、C四点共圆,所以BAC =BCP,即FAE =BCP.所以,FEP =BCP,即D/EP =D/CP,可得C、D/、P、E四点共圆.所以,CD/P +CEP = 1800。

梅涅劳斯定理在空间的推广及应用

梅涅劳斯定理在空间的推广及应用

梅涅劳斯定理在空间的推广及应用梅涅劳斯定理是一个表明圆弧是平行、线段是放大而长度保持不变的定理,它最早由古希腊几何学家梅涅劳斯提出。

它在空间几何学中有着重要的研究价值。

一、梅涅劳斯定理的推广
梅涅劳斯定理在古希腊几何学中最初是在二维几何中被提出的,它的定义是:任意给定的一条弧,它的延长线与球面上的对称中心之间的距离及其长度仍为相同。

现在,性质相同的定理也可以推广到三维几何中去:每一条射线,它的末梢和平面上对称中心之间的距离及其长度仍为相同。

二、梅涅劳斯定理的应用
1、梅涅劳斯定理可以用来研究球面的一阶微分几何,从而推导出著名的测地罗经线定理。

2、可以用梅涅劳斯定理来解决范德蒙投影问题。

3、梅涅劳斯定理也可以用来构造流形的不变的形状衡量参数,例如幂律分类参数。

总之,梅涅劳斯定理广泛地应用于数学几何学等多个领域中,尤其在计算几何中具有重要意义。

梅涅劳斯定理及其应用

梅涅劳斯定理及其应用

B′在 A D 的延长线上 ,则 ( 3 ) 式为 sin (β+γ+α) .
例 3 如图 5 , ⊙O1 与 ⊙O2
和 △AB C 的三边所在的 3 条直线
都相切 , E 、F、G、H 为切点 , 直线
EG 与 FH 交于点 P. 求证 : PA ⊥
B C. (1996 年全国高中联赛题)
证明 :过 A 作 A D ⊥B C , 垂足
点 P 重合 ,从而 PA ⊥B C.
例 4 如图 6 , 以 △A B C 的底
边 BC 为直径作半圆, 分别与边
A B 、A C 交于点 D 和 E , 分别过点
D 、E 作 B C 的 垂 线 , 垂 足 依 次 为
F、G ,线段 D G 和 EF 交于点 M .
求证 : A M ⊥B C. ( IMO37 中 国 国
又 EF ⊥OQ ,则 EL 平分 ∠A L D. 设 EF 分别交 A D 、B C 于 M 、N . 于是
DM MA
=
DL AL
=
DQ AQ
.
同理
,
CN BN
=
CQ BQ
.
于是
,
DM DQ
=
AM AQ
=
AM AQ
+ +
DM DQ
=
AD DQ + A Q
,
CN CQ
=
BN BQ
=
B
Q
BC + CQ
截线 ,故由梅氏定理 ,得
CN ·DB ·EM ND B E MC
=
1
,
即 1
r -
·7 r1
·7 7
r -
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梅涅劳斯定理及应用
定理:设Z Y X ,,分别是ABC ∆的边AB CA BC ,,或其延长线的点,则Z Y X ,,三点共线的充要条件是:
1=∙∙ZB
AZ YA CY XC BX
例1:在O B C ∆中,A 为BC 的中点,D 为OB 上的点,且21=OD BD ,E CD OA 相交于点与,则OA OE _____=
例2:如图,过ABC ∆的三个顶点C B A ,,作它的外接圆的切线,分别和BA CA BC ,,的延长线交于R Q P ,,;求证:R Q P ,,三点共线
例3:(1985年第三届美国数学邀请赛)如图,G 是ABC ∆内一点,直线CG BG AG ,,将ABC ∆分为6个小三角形,已知BDG BFG AFG ∆∆∆,,的面积分别为40,30,35,求A B C ∆的
面积
例4: (1983年全国高中数学联赛)在四边形ABCD 中,ABC BCD ABD ∆∆∆,,的面积之比是1:4:3,点M,N 分别在AC,CD 上,满足AM:AC=CN:CD ,并且B,M,N 三点共线,求证M 与N 分别是AC 和CD 的中点
练习:1(2009年中国科技大学)已知ABC ∆的面积为1,;F E D ,,分别在边AB CA BC ,,上,FB AF EA CE DC BD 2,2,2===;CF BE AD ,,两两交于R Q P ,,,求PQR ∆的面积
2 四边形ABCD (不是正方形)的内切圆分别切DA CD BC AB ,,,于H G F E ,,,,求证:GF DB HE ,,三线共点
3 (1982年第23届IMO 试题)已知CE AC ,是正六边形ABCDEF 的两条对角线,点N M ,分别在线段CE AC ,上,且使
k CE
CN AC AM ==,如果N M B ,,三点共线,试求k 的值
4(2016年湖南省高中数学夏令营):ABC ∆的内切圆分别与BC 、CA 、 AB 相切于点D 、E 、F,直线AD 与EF 相交于点H ,若直线BC EF 与相交于点G ,求证:GE
FG HE FH =。

相关文档
最新文档