平抛运动的典型例题

合集下载

高中物理当平抛遇到斜面

高中物理当平抛遇到斜面

·当平抛遇到斜面斜面上的平抛问题是一种常见的题型,本文通过典型例题的分析,希望能帮助大家突破思维障碍,找到解决办法。

一.物体的起点在斜面外,落点在斜面上1.求平抛时间例1.如图1, 以v 0= m/s 的水平初速度抛出的物体, 飞行一段时间后, 垂直地撞在倾角θ为30°的斜面上, 求物体的飞行时间解: 由图2知,在撞击处:(tan 30y v v =︒, ∴3y v t g==s.2.求平抛初速度例2.如图3,在倾角为370的斜面底端的正上方H 处,平抛一小球,该小球垂直打在斜面上的一点,求小球抛出时的初速度。

解:小球水平位移为0x v t =,竖直位移为212y gt =由图3可知,20012tan 37H gt v t-=, 《又0tan 37v gt =, 解之得:0153gH v =. 点评:以上两题都要从速度关系入手,根据合速度和分速度的方向(角度)和大小关系进行求解。

而例2中还要结合几何知识,找出水平位移和竖直位移间的关系,才能解出最终结果。

3.求平抛物体的落点例3.如图4,斜面上有a 、b 、c 、d 四个点,ab =bc =cd 。

从a 点正上方的O 点以速度v 0水平抛出一个小球,它落在斜面上b 点。

若小球从O 点以速度2v 0水平抛出,不计空气阻力,则它落在斜面上的( )A .b 与c 之间某一点B .c 点C .c 与d 之间某一点D .d 点解:当v 水平变为2v 0时,若作过b 点的直线be ,小球将落在c 的正下方的直线上一点,连接O 点和e 点的曲线,和斜面相交于bc 间的一点,故A 对.图1图2图3图4;点评:此题的关键是要构造出水平面be ,再根据从同一高度平抛出去的物体,其水平射程与初速度成正比的规律求解.二、物体的起点和落点均在斜面上此类问题的特点是物体的位移与水平方向的夹角即为斜面的倾角。

一般要从位移关系入手,根据位移中分运动和合运动的大小和方向(角度)关系进行求解。

高二物理平抛运动试题答案及解析

高二物理平抛运动试题答案及解析

高二物理平抛运动试题答案及解析1.图为一小球做平抛运动的闪光照片的一部分,图中背景方格的边长均为2.5厘米,如果取重力加速度g=10米/秒2,那么:(1)照片的闪光频率为________Hz。

(2)小球做平抛运动的初速度的大小为_______m/s。

【答案】(1)10 ;(2)0.75【解析】(1)根据,则,则照片的闪光频率为f=1/T=10Hz;(2)小球做平抛运动的初速度的大小为:【考点】研究平抛物体的运动试验。

2.如图所示,质量为0.5 kg的小球在距离车底面高20 m处以一定的初速度向左平抛,落在以7.5 m/s速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4 kg,设小球在落到车底前瞬时速度是25 m/s,g取10 m/s2,则当小球与小车相对静止时,小车的速度是()A.m/s B.5m/sC.4 m/s D.m/s【答案】B【解析】据题意,小球从20m高出向走抛出做平抛运动,落到车上时数值分速度为:,即,此时水平分速度为:,当小球和车相对静止时,据动量守恒定律有:,则小车的速度为:,故选项B正确。

【考点】本题考查动量守恒定律和平抛运动的应用。

3.在空间中水平面MN的下方存在竖直向下的匀强电场,质量为m的带电小球由MN上方的A 点以一定初速度水平抛出,从B点进入电场,到达C点时速度方向恰好水平,A、B、C三点在同一直线上,且AB=2BC,如右图所示.由此可见()A.电场力为2mgB.小球带正电C.小球从A到B与从B到C的运动时间相等D.小球从A到B与从B到C的速度变化量的大小相等【答案】D【解析】小球在水平方向不受力,所以沿水平方向做匀速直线运动,小球从A到B的运动时间是从B到C的运动时间的2倍,C错;在竖直方向,小球在AB受到的重力是小球在BC所受合力的一半,所以电场力,AB错;小球从A到B与从B到C的速度变化量的大小相等,D正确。

【考点】平抛运动电场力4.质量为m=3kg的物体在离地面高度为h=20m处,正以水平速度v=20m/s运动时,突然炸裂成两块,其中一块质量为m1=1kg.仍沿原运动方向以v1=40m/s的速度飞行,炸裂后的另一块的速度大小为______m/s.两块落到水平地面上的距离为______m(小计空气阻力,g取10m/s2).【答案】10 60【解析】物体爆炸前后,由动量守恒定律可知:,代入数据可得:,方向不变.由可知两块物体的下落时间,所以两块物体落地点间的距离为..【考点】考查动量守恒定律和平抛运动规律的应用.5.分如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点,沿水平方向以初速度v抛出一个小球,测得小球经时间t落到斜坡另一点Q,斜坡的倾角为θ,已知该星球的半径为R,引力常量为G。

平抛运动练习题含答案

平抛运动练习题含答案

平抛运动练习题一【例题1】下列说法正确的是A.做曲线运动的物体受到合外力一定不为零B.做曲线运动的物体的加速度一定是变化的C.物体在恒力作用下,不可能做曲线运动D.曲线运动中速度的方向不断改变,因而是变速运动【例题2】有一条河,河流的水速为v 1,现有一条小船沿垂直于河岸的方向从A 渡河至对岸的B 点,它在静止水中航行速度v 大小一定,当船行驶到河中心时,河水流速变为v 2(v 2>v 1),若船头朝向不变,这将使得该船( )A 、渡河时间增大B 、到达对岸时的速度增大C 、渡河通过的路程增大D 、渡河通过的路程比位移大【例题3】关于运动和力,下列说法中正确的是A. 物体受到恒定合外力作用时,一定作匀速直线运动B. 物体受到变化的合外力作用时,它的运动速度大小一定变化C. 物体做曲线运动时,合外力方向一定与瞬时速度方向垂直D. 所有曲线运动的物体,所受的合外力一定与瞬时速度方向不在一条直线上【例题4】如图所示,汽车甲以速度v1拉汽车乙前进,乙的速度为v2,甲、乙都在水平面上运动,求v1∶v2【例题5】如图3所示,蹲在树枝上的一只松鼠看到一个猎人正在用枪水平对准它,就在子弹出枪口时,松鼠开始运动,下述各种运动方式中,松鼠不能逃脱厄运而被击中的是(设树枝足够高):A .自由落下B .竖直上跳C.迎着枪口,沿AB 方向水平跳离树枝D.背着枪口,沿AC 方向水平跳离树枝【例题6】平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动,在同一坐标系中作出两个分运动的v-t图象,如图1所示,则以下说法正确的是( )A .图线1表示水平方向分运动的v-t 图线B .图线2表示竖直方向分运动的v-t 图线C .t 1时刻物体的速度方向与初速度方向夹角为45°D .若图线2的倾角为θ,当地重力加速度为g ,则一定有g =θtan 图 3图1【例题7】在足够高处将质量m=1kg的小球沿水平方向抛出,已知在抛出后第2s末时小球速度大小为25m/s,取g=10m/s2,求:⑴小球沿水平方向抛出后第0.58s末小球的加速度大小和方向如何?⑵第2s末时小球下降的竖直高度h;⑶小球沿水平方向抛出时的初速度大小。

平抛运动中的典型问题

平抛运动中的典型问题
水平:x=v0t 竖直:y=gt2/2
tan y gt
x 2v0
分解速度: 水平:vx=v0 竖直:vy=gt
v0
α
θ
v
θ vy
第4页
返回目录
v0 y x
结束放映
数字媒体资源库
【例1】如图所示,在与水平方向成37°角
的斜坡上的A点,以10m/s的速度水平抛出
一个小球,求落在斜坡上的B点与A点的距
可算出(ABC ).
A.轰炸机的飞行高度 B.轰炸机的飞行速度 C.炸弹的飞行时间 D.炸弹投出时的动能
审题设疑
1、审题中的关键着眼点在哪里?
2、通过什么办法找出各量之间的 关系,列方程求解?
第8页
数字媒体资源库ຫໍສະໝຸດ Hxv0H-h=12vyt x=v0t, vv0y=ta1n θ x=tahn θ vy=返g回t 目录
第14页
返回目录
结束放映
数字媒体资源库
典型问题二 平抛运动的临界问题
第15页
返回目录
结束放映
数字媒体资源库
【例6】如图,排球场总长18m,设网的高度为2m,运动员 站在离网3m远的线上正对网前竖直跳起把球水平击出 .(g=10m/s2). (1)设击球点的高度为2.5m,问球被水平击出时的速度在 什么范围内才能使球既不触网也不出界? (2)若击球点的高度小于某个值,那么无论球被水平击出 的速度多大,球不是触网就是出界,试求此高度?
B.小球的抛出点距斜面的竖直高度约是 15 m
C.若将小球以水平速度 v0′=5 m/s 向右抛出, 它一定落在 AB 的中点 P 的上方
D.若将小球以水平速度 v0′=5 m/s 向右抛出, 它一定落在 AB 的中点 P 处

2-3斜面上的平抛运动

2-3斜面上的平抛运动

斜面上的平抛运动一、斜面上的平抛运动○顺着斜面运动(斜面足够长)<落到斜面>1.【典型例题】如图所示,斜面倾角为θ,小球从A点以初速度v0水平抛出,恰好落到斜面B点,求:①AB间的距离;②物体在空中飞行的时间;2.如图所示,从倾角为θ的斜面上的A点,以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上B点所用的时间为()答案:B 〔同类题〕3. 跳台滑雪是勇敢者的运动,它是利用山势特别建造的跳台,运动员穿着专用滑雪板,不带雪杖在助滑路上获得高速后水平飞出,在空中飞行一段距离后着陆,这项运动极为壮观。

设一位运动员由山坡顶部的A 点沿水平方向飞出,到山坡上的B 点着陆。

如图所示,已知运动员水平飞行的速度为v 0=20m/s ,山坡倾角为θ=37°,山坡可以看成一个斜面。

(取g=10m/s 2,sin37°=0.6,cos37°=0.8)求:(1)运动员在空中飞行的时间t ; (2)AB 间的距离s 。

答案:(1)3s (2)75m解析:(1)设运动员从A 到B 时间为t ,则有x =v 0t y =gt 2由数学关系知tan θ=y /x 所以t =3s 。

(2)A 、B 间的距离为:s = m =75m 。

〔STS 〕跳台滑雪4. 如图所示,在足够长的斜面上的A 点,以水平速度v 0抛出一个小球,不计空气阻力,它落到斜面上所用的时间为t 1;若将此球改用2v 0抛出,落到斜面上所用时间为t 2,则t 1与t 2之比为( ) A .1∶1 B .1∶2 C .1∶3 D .1∶4 答案:B解析:因小球落在斜面上,所以两次位移与水平方向的夹角相等,由平抛运动规律知tan θ=12gt 21v 0t 1=12gt 222v 0t 2,所以t 1t 2=12。

〔延展题〕变初速度5. [多选]如图所示,斜面上有a 、b 、c 、d 、e 五个点,ab =bc =cd =de ,从a 点以初速度v0水平抛出一个小球,它落在斜面上的b点,速度方向与斜面之间的夹角为θ。

平抛运动斜面上的平抛问题

平抛运动斜面上的平抛问题
小球沿斜面以速度V0水平抛出,如图所示,小球滑到 底端时,水平方向位移S多大?
S v0
2L
g sin
θ s
平抛运动2--斜面上的平抛问题
如图所示,在倾角为θ的斜面上以初速度v0 水平抛出 一物体,落在斜面上,试求物体运动的时间.
x
v0
θ
y
x v0t
y 1 gt2 2
tan y
x
思考:物体飞行多久后将距离斜面最高?最高距离多少?
小球落在斜面时的速度方向与斜面夹角大于θ 小球可能落在斜面上的c点与d点之间
2
例4 如图所示,A、B、C三个小物块分别从斜面顶 端以不同的速度水平抛出,其中A、B落到斜面上, C落到水平面上。A、B落到斜面上时的速度方向与 水平方向的夹角分别为α、β,C落到水平面上时 的速度方向与水平向方的夹角为γ,则有( ) A、α=β>γ B、α=β=γ C、α=β<γ D、α<β<γ
24
例3 从倾角为θ的足够长的斜面上的A点,先后将同 一小球以不同的初速度水平向右抛出.第一次初速 度为v1,球落到斜面上的瞬时速度方向与斜面夹角 为α1,第二次初速度为v2,球落到斜面上的瞬时速度 方向与斜面夹角为α2,若v1>v2,则
A.α1>α2 B.α1=α2 C.α1<α2 D.无法确定
1
例5 如图所示,两个相对的斜面,倾角分别为37° 和53°.在顶点把两个小球以同样大小的初速度分别 向左、向右水平抛出,小球都落在斜面上,若不计空 气阻力,则A、B两个小球运动时间之比为( )
A.1∶1 C.16∶9
B.4∶3 D.9∶16
4
类平抛运动
例6:光滑斜面倾角为θ斜面长为L,斜面顶端有一
与c之间某一点 A.1∶1 B.4∶3 A.1∶1 B.4∶3 思考:物体飞行多久后将距离斜面最高?最高距离多少?

高中物理抛物运动典型问题

高中物理抛物运动典型问题

高中物理抛物运动典型问题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【例6】如图所示,从倾角为θ的斜面上的A 点以速度V0平抛一个小球,小球落在斜面上的B 点.则小球从A 到B 的运动时间为 .【例7】如图所示,将一小球从原点沿水平方向的O x 轴抛出,经一段时间到达P 点,其坐标为(x0,y0),作小球运动轨迹在P 点切线并反向延长,与O x 轴相交于Q 点,则Q 点的x 坐标为:A .2020y xB .x 0 / 2C .3x 0 / 4D .与初速大小有关【例8】如图为某小球做平抛运动时,用闪光照相的方法获得的相片的一部分,图中背景方格的边长为5cm ,g=10m/s2,则(1)小球平抛的初速度vo= m/s(2)闪光频率f= H2(3)小球过A 点的速率vA= m/sABC y 0x 0 P θ QxO y v Hv 037【例9】如图所示,A 、B 两球间用长6m 的细线相连,两球相隔0.8s 先后从同一高度处以4.5m/s 的初速度平抛,则A 球抛出几秒后A 、B 间的细线被拉直?在这段时间内A 球的位移是多大?不计空气阻力,g=10m/s2。

【例10】光滑斜面倾角为θ,长为L,上端一小球沿斜面水平方向以速度v0抛出,如图所示。

求小球滑到底端时水平方向的位移多大?【例11】:如图5所示,AB 为斜面,倾角为030,小球从A 点以初速度0v 水平抛出,恰好落到B 点,求:(1)AB 间的距离;(2)物体在空中飞行的时间;(3)从抛出开始经过多少时间小球与斜面间的距离最大?【例12】两质点在空间同一点处同时水平抛出,速度分别为v1=3.0m/s 向左和v2=4.0m/s 向右,取g=10m/s2 ,求:两个质点速度相互垂直时,它们之间的距离 ②当两个质点位移相互垂直时,它们之间的距离θv 0B AB ′A ′ A V 0 Vy v /t 300 V 0 图5【例13】:在“研究平抛物体运动”的实验中,某同学记录了运动轨迹上三点A 、B 、C ,如图1所示,以A 为坐标原点,建立坐标系,各点坐标值已在图中标出,求:(1) 小球平抛初速度大小;(2) 小球平抛运动的初始位置坐标。

平抛运动典型例题(含答案)

平抛运动典型例题(含答案)

[例1] 在倾角为的斜面上的P点, 以水平速度向斜面下方抛出一个物体, 落在斜面上的Q 点, 证明落在Q点物体速度。

解析:设物体由抛出点P运动到斜面上的Q点的位移是, 所用时间为, 则由“分解位移法”可得, 竖直方向上的位移为;水平方向上的位移为。

又根据运动学的规律可得竖直方向上,水平方向上,所以Q点的速度[例2] 如图3所示, 在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B, 两侧斜坡的倾角分别为和, 小球均落在坡面上, 若不计空气阻力, 则A和B两小球的运动时间之比为多少?图3解析: 和都是物体落在斜面上后, 位移与水平方向的夹角, 则运用分解位移的方法可以得到所以有同理则[例3] 如图6所示, 在倾角为的斜面上以速度水平抛出一小球, 该斜面足够长, 则从抛出开始计时, 经过多长时间小球离开斜面的距离的达到最大, 最大距离为多少?图6解析: 将平抛运动分解为沿斜面向下和垂直斜面向上的分运动, 虽然分运动比较复杂一些, 但易将物体离斜面距离达到最大的物理本质凸显出来。

取沿斜面向下为 轴的正方向, 垂直斜面向上为 轴的正方向, 如图6所示, 在 轴上, 小球做初速度为 、加速度为 的匀变速直线运动, 所以有①②当 时, 小球在 轴上运动到最高点, 即小球离开斜面的距离达到最大。

由①式可得小球离开斜面的最大距离当 时, 小球在 轴上运动到最高点, 它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。

由②式可得小球运动的时间为例4: 在平直轨道上以 的加速度匀加速行驶的火车上, 相继下落两个物体下落的高度都是2.45m. 间隔时间为1s. 两物体落地点的间隔是2.6m, 则当第一个物体下落时火车的速度是多大? (g 取 )分析: 如图所示. 第一个物体下落以 的速度作平抛运动, 水平位移 , 火车加速到下落第二个物体时, 已行驶距离 . 第二个物体以 的速度作平抛运动水平位移 . 两物体落地点的间隔是2.6m.解: 由位置关系得物体平抛运动的时间 20.7ht s g'=00021002000.710.252()(0.5)0.7s v t v s v t at v s v at t v '===+=+'=+⋅=+⨯由以上三式可得201sin 22sin 2/L gt L t gv m sαα===例5: 光滑斜面倾角为 , 长为L, 上端一小球沿斜面水平方向以速度 抛出(如图所示), 小球滑到底端时, 水平方向位移多大?解:小球运动是合运动, 小球在水平方向作匀速直线运动, 有0s v t = ①沿斜面向下是做初速度为零的匀加速直线运动, 有212L at =② 根据牛顿第二定律列方程sin mg ma θ= ③由①, ②, ③式解得例6: 某一物体以一定的初速度水平抛出, 在某 内其速度方向与水平方向成 变成 , 则此物体初速度大小是________ , 此物体在 内下落的高度是________ ( 取 )选题目的: 考查平抛物体的运动知识的灵活运用.解析:作出速度矢量图如图所示, 其中 . 分别是 及 时刻的瞬时速度.在这两个时刻, 物体在竖直方向的速度大小分别为 及 , 由矢量图可知:037gt v tg =︒ 0(1)53g t v tg +=︒由以上两式解得017.1/v m s = 97t s =物体在这1s 内下落的高度2211(1)22y g t gt ∆=+- 221919(1)()2727g g =+-17.9m =(1) 例7如图, 跳台滑雪运动员经过一段加速滑行后从O 点水平飞出, 经过3.0s 落到斜坡上的A 点. 已知O 点是斜坡的起点, 斜坡与水平面的夹角θ=37°, 运动员的质量m=50kg. 不计空气阻力. (取sin37°=0.60, cos37°=0.80;g 取10m/s2)求: (1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;从O 点水平飞出后, 人做平抛运动, 根据水平方向上的匀速直线运动, 竖直方向上的自由落体运动可以求得A 点与O 点的距离L ; (2)运动员离开O 点时的速度就是平抛初速度的大小, 根据水平方向上匀速直线运动可以求得;设A 点与O 点的距离为L, 运动员在竖直方向做自由落体运动, 则有: Lsin37°=0.5gt2L=gt22sin37°=75m(2)设运动员离开O点的速度为v0, 运动员在水平方向做匀速直线运动,即: Lcos37°=v0t解得: v0=20m/s答: (1)A点与O点的距离是75m;(2)运动员离开O点时的速度大小是20m/s.1: 在倾角为的斜面上的P点, 以水平速度向斜面下方抛出一个物体, 落在斜面上的Q点, 证明落在Q点物体速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平抛运动典型例题专题一:平抛运动轨迹问题——认准参考系1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说确的是( C )A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动专题二:平抛运动运动性质的理解——匀变速曲线运动(a→)2、把物体以一定速度水平抛出。

不计空气阻力,g取10,那么在落地前的任意一秒(BD )A.物体的末速度大小一定等于初速度大小的10倍B.物质的末速度大小一定比初速度大10C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m专题三:平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须( C )A.甲先抛出球 B.先抛出球C.同时抛出两球 D.使两球质量相等4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( D )A.同时抛出,且v1< v2 B.甲后抛出,且v1> v2C.甲先抛出,且v1> v2 D.甲先抛出,且v1< v2专题四:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系①基本公式、结论的掌握5、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( D )A .B .C .D .6、作平抛运动的物体,在水平方向通过的最大距离取决于( C )A.物体所受的重力和抛出点的高度B.物体所受的重力和初速度C.物体的初速度和抛出点的高度D.物体所受的重力、高度和初速度7、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。

物体与斜面接触时速度与水平方向的夹角满足 ( D )A.tan φ=sin θB. tan φ=cos θC. tan φ=tan θD. tan φ=2tan θ8、将物体在h =20m 高处以初速度v 0=10m/s 水平抛出,不计空气阻力(g 取10m/s 2),求:(1)物体的水平射程——————————————————20m(2)物体落地时速度大小————————————————m 510②建立等量关系解题9、如图所示,一条小河两岸的高度差是h ,河宽是高度差的4倍,一辆摩托车(可看作质点)以v 0=20m/s 的水平速度向河对岸飞出,恰好越过小河。

若g=10m/s 2,求:(1)摩托车在空中的飞行时间———————1s(2)小河的宽度—————————20m10、如图所示,一小球从距水平地面h 高处,以初速度v 0水平抛出。

(1)求小球落地点距抛出点的水平位移——————g 2h v 0 (2)若其他条件不变,只用增大抛出点高度的方法使小球落地点到抛出点的水平位移增大到原来的2培,求抛出点距地面的高度。

(不计空气阻力)——————————4h11、子弹从枪口射出,在子弹的飞行途中,有两块相互平行的竖直挡板A 、B (如图所示),A 板距枪口的水平距离为s 1,两板相距s 2,子弹穿过两板先后留下弹孔C 和D ,C 、D 两点之间的高度差为h ,不计挡板和空气阻力,求子弹的初速度v 0.—————————()2hS S 2S g 2221+12、从高为h 的平台上,分两次沿同一方向水平抛出一个小球。

如右图第一次小球落地在a 点。

第二次小球落地在b点,ab 相距为d 。

已知第一次抛球的初速度为,求第二次抛球的初速度是多少?—————2h2gh d V 1+专题五:平抛运动位移相等问题——建立位移等量关系,进而导出运动时间(t )13、两个物体做平抛运动的初速度之比为2∶1,若它们的水平射程相等,则它们抛出点离地面高度之比为( C )A .1∶2B .1∶C .1∶4D .4∶114、以速度v0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( C )A.此时小球的竖直分速度大小等于水平分速度大小B.此时小球的速度大小为C.小球运动的时间为D.此时小球速度的方向与位移的方向相同专题六:平抛运动位移比例问题——明确水平、竖直位移的夹角,通过夹角的正切值求得两位移比值,进而求出运动时间(t)或运动初速度(v0)①通过位移比例导出运动时间(t)15、如图所示,足够长的斜面上A点,以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上所用的时间为t1;若将此球改用2v0抛出,落到斜面上所用时间为t2,则t1 : t2为( B )A.1 : 1 B.1 : 2 C.1 : 3 D.1 : 416、如图所示的两个斜面,倾角分别为37°和53°,在顶点两个小球A、B以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上,若不计空气阻力,则A、B两个小球平抛运动时间之比为( D )A.1:1B.4:3C.16:9D.9:1617、跳台滑雪是一种极为壮观的运动,它是在依山势建造的跳台上进行的运动。

运动员穿着专用滑雪板,不带雪杖在助滑路上获得较大速度后从跳台水平飞出,在空中飞行一段距离后着陆。

如图所示,设某运动员从倾角为θ=37°的坡顶A点以速度v0=20m/s沿水平方向飞出,到山坡上的B点着陆,山坡可以看成一个斜面。

(g=10m/s2,sin37º=0.6,cos37º=0.8)求:(1)运动员在空中飞行的时间t;————————3s(2)AB间的距离s ——————————75m18、如图所示,从倾角为θ的斜面上的M 点水平抛出一个小球,小球的初速度为v 0,最后小球落在斜面上的N 点,求(1)小球的运动时间;————————————g tan 20θV (2)小球到达N 点时的速度 —————————————θ20tan 41+V②通过位移比例导出运动初速度(v 0)19、如图所示,一小球自平台上水平抛出,恰好落在临近平台的一倾角为α =53°的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h=0.8m ,g=10m/s 2,sin53°=0.8,cos53°=0.6,则(1)小球水平抛出的初速度υ0是多少?————————1.5m/s(2)斜面顶端与平台边缘的水平距离s 是多少?————————0.6m专题七:平抛运动速度比例问题——明确水平、竖直速度的夹角,通过夹角的正切值求得两速度比值,进而求出运动时间(t )或运动初(水平)速度(v 0)①通过速度比例导出运动时间(t )20、如图所示,以9.8m/s 的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30°的斜面上,可知物体完成这段飞行的时间是 ( C )A .s B .s C .s D .2s②通过速度比例导出运动初(水平)速度(v 0)21、如图所示,高为h =1.25 m 的平台上,覆盖一层薄冰,现有一质量为60 kg 的滑雪爱好者,以一定的初速度v 向平台边缘滑去,着地时的速度方向与水平地面的夹角为45°(取重力加速度g =10 m/s 2).由此可知正确的是 ( ABCD )A .滑雪者离开平台边缘时的速度大小是5.0 m/sB.滑雪者着地点到平台边缘的水平距离是2.5 mC.滑雪者在空中运动的时间为0.5 sD.滑雪者着地的速度大小为5m/s22、在冬天,高为h=1.25m的平台上,覆盖了一层冰,一乘雪橇的滑雪爱好者,从距平台边缘s=24m处以一定的初速度向平台边缘滑去,如图所示,当他滑离平台即将着地时的瞬间,其速度方向与水平地面的夹角为,取重力加速度g=10m/s2。

求:(1)滑动者着地点到平台边缘的水平距离是多大;——————————2.5m(2)若平台上的冰面与雪撬间的动摩擦因数为,则滑雪者的初速度是多大?————————9m/s专题八:平抛运动速度方向问题平抛运动速度比例问题——抓住水平速度v0不变,通过比例,导出不同的竖直速度,进而求出物体运动时间(t);利用不同的竖直速度的大小关系,通过比例,进而求出物体运动的初(水平)速度(v0)①抓住水平速度v0不变,通过比例,导出不同的竖直速度,进而求出物体运动时间(t)23、一物体自某一高度被水平抛出,抛出1s后它的速度与水平方向成45°角,落地时速度与水平方向成60°角,取g=10m/s2,求:(1)物体刚被抛出时的速度大小;——————————10m/s(2)物体落地时的速度大小;———————————20m/s(3)物体刚被抛出时距地面的高度.——————————15m②利用不同的竖直速度的大小关系,通过比例,进而求出物体运动的初(水平)速度(v0)24、水平抛出一小球,t秒末速度方向与水平方向的夹角为θ1,(t+Δt)秒末速度方向与水平方向的夹角为θ2,忽略空气阻力作用,则小球的初速度大小是( C )A. gΔt(cosθ2-cosθ1)B. gΔt/(cosθ2-cosθ1)C. gΔt/(tanθ2-tanθ1)D. gΔt(tanθ2-tanθ1)专题九:平抛运动离开斜面最大高度问题——运动速度、加速度(g)沿垂直于斜面的方向分解并结合“类竖直上抛”运动,求得“类竖直上抛”运动到最高点的距离(H)25、如图所示,一小球自倾角θ=37°的斜面顶端A以水平速度v0=20m/s抛出,小球刚好落到斜面的底端B(空气阻力不计),求小球在平抛运动过程中离开斜面的最大高度.——————9m专题十:平抛运动实验题在选择、计算中的体现——已知完整运动,求各段时间,利用自由落体的比例规律求解即可;已知部分运动,求各段时间,需要利用自由落体运动部分的△h=gT2求解①已知完整运动,求各段时间26、如图所示,某同学用一个小球在O点对准前方的一块竖直放置的挡板,O与A在同一高度,小球的水平初速度分别是,不计空气阻力。

打在挡板上的位置分别是B、C、D,且。

则之间的正确关系是( A )A.B.C.D.②已知部分运动,求各段时间27、如图所示,A、B、C为平抛物体运动轨迹上的三点,已知A、B间与B、C间的水平距离均为x,而竖直方向间的距离分别为y1、y2.试根据上述条件求平抛物体的初速度及B点瞬时速度的大小.2 121 0y-y y-yg)(XV=;()[]212212y-yyy4g2++=XV B。

相关文档
最新文档