《 初、高中衔接:因式分解》教案
高中校本课程_初高中衔接因式分解教学设计学情分析教材分析课后反思

1第一讲因式分解一、学习目标:1、掌握因式分解的常用方法:乘法公式法(立方和及立方差公式)、分组分解法、十字相乘法2、了解换元、添项拆项分解因式的方法。
3、能够灵活运用上述方法进行因式分解变形了解换元、添项拆项分解因式的方法。
学习重点:分组分解法、十字相乘法、 学习难点:添、拆项和公式法学法指导:带领学生复习初中因式分解的相关知识,为高中知识的学习做好铺垫。
讲练结合预习案一、知识回顾因式分解的几种典型方法: 1、提取公因式法:2、公式法:(1)平方差公式:22________________a b -= (2)完全平方公式:222_____________a ab b ++= 222_____________a ab b -+= 3、十字相乘法:2()x p q x pq +++型:二、用适当的方法分解因式: 1、22ab a b += 2、(1)29x -= (2)269x x -+= 3、(1)232x x -+= (2)21126x x +-=探究案探究一:公式法(立方和、立方差公式)2(3)立方和、立方差公式:33_______________________a b +=33_______________________a b -=例:33(1) 8 (2) 0.12527x b +-练习:() (2) 34761381a b b a ab --探究二:十字相乘法:212122112()a a x a c a c x c c +++型:例1:因式分解:3762--x x例2:因式分解:2222224)()(2b a x b a x -++-练习:22222(1)6 (2)812()()x xy y x x x x +-+-++(3)310434422-+---y x y xy x探究三:分组分解法例:2105ax ay by bx -+-(3练习1、因式分解2x 2 + 4xy +2y 2 -8z 2练习2、因式分解:ab(c 2-d 2)-(a 2-b 2)cd探究四:配方法2221616 (2)44()x x x xy y +-+-探究五:利用添项法、拆项法因式分解因式分解:3234x x -+练习:(1)763-+x x (2)15++x x训练案选用恰当的方法分解下列因式 (1))()(66x y z y z y x x --+-+4(2)222224)1(b a b a --+(3)832434--+m m m(4)44+x(5)893+-x x小结与反思:【学情分析】对我们学校的学生来说,数学基础欠扎实,思维、灵活性受基础等原因制约欠佳,对前后知识间的联系、理解、应用有一定难度,反应速度相对较慢。
因式分解数学教案优秀5篇

因式分解数学教案优秀5篇更多因式分解数学教案资料,在搜索框搜索因式分解数学教案(篇1)教学目标1.学问与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,把握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探究因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养乐观的进取意识,体会数学学问的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探究:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,老师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。
因式分解数学教案(篇2)【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
初中、高中衔接课(第1课时)因式分解 学案(含答案)

初中、高中衔接课(第1课时)因式分解学案(含答案)初中.高中衔接课第1课时因式分解学习目标1.理解提取公因式法.分组分解法.2.掌握字相乘法.3.对于复杂的问题利用因式分解简化运算.知识点一常用的乘法公式1平方差公式ababa2b2.2立方差公式aba2abb2a3b3.3立方和公式aba2abb2a3b3.4完全平方公式ab2a22abb2.5三数和平方公式abc2a2b2c22ab2ac2bc.6完全立方公式ab3a33a2b3ab2b3.知识点二因式分解的常用方法1字相乘法字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数,即运用乘法公式xaxbx2abxab的逆运算进行因式分解.2提取公因式法当多项式的各项有公因式时,可以把这个公因式提到括号外面,将多项式写成因式乘积形式的方法.3公式法把乘法公式反过来用,把某些多项式因式分解的方法.4求根法若关于x的方程ax2bxc0a0的两个实数根是x1,x2,则二次三项式ax2bxca0就可分解为axx1xx2.5试根法对于简单的高次因式,可以通过先试根再分解的方法分解因式.如2x3x1,试根知x1为2x3x10的根,通过拆项,2x3x12x32x22x22xx1提取公因式后分解因式.1.a3b3aba2abb2.2.a22abb2c22ac2bcabc2.3.a33a2b3ab2b3ab3.4.多项式ax2bxca0一定可以分解成axx1xx2的形式.突破一配方法因式分解例1把下列关于x的二次多项式分解因式1x22x1;2x24xy4y2.解1原式x122x1x1.2原式x24xy4y28y2x2y28y2x2y2yx2y2y.反思感悟这种设法配成有完全平方式的方法叫做配方法,配方后将二次三项式化为两个平方式,然后用平方差公式分解.当然,本题还有其它方法,请大家试验.跟踪训练1分解因式x26x16.解x26x16x22x3323216x3252x35x35x8x2.突破二字相乘法因式分解命题角度1形如x2pqxpq型的因式分解这类式子在许多问题中经常出现,其特点是1二次项系数是1;2常数项是两个数之积;3一次项系数是常数项的两个因数之和.x2pqxpqx2pxqxpqxxpqxpxpxq.因此,x2pqxpqxpxq,运用这个公式,可以把某些二次项系数为1的二次三项式分解因式.我们也可以用一个图表,此方法叫做字相乘法.例2把下列各式因式分解1x23x2;2x24x12;3x2abxyaby2;4xy1xy.解1如图1,将二次项x2分解成图中的两个x的积,再将常数项2分解成1与2的乘积,而图中的对角线上的两个数乘积的和为3x,就是x23x2中的一次项,所以,有x23x2x1x2.今后在分解与本例类似的二次三项式时,可以直接将图1中的两个x用1表示如图2所示.2由图3,得x24x12x2x6.3由图4,得x2abxyaby2xayxby.4xy1xyxyxy1x1y1如图5.反思感悟字相乘法简单来讲就是字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项,其实质是乘法公式xaxbx2abxab的逆运算.跟踪训练2把下列各式因式分解1x2xy6y2;2x2x28x2x12.解1x2xy6y2x3yx2y.2x2x28x2x12x2x6x2x2x3x2x2x1.命题角度2形如一般二次三项式ax2bxc型的因式分解我们知道,a1xc1a2xc2a1a2x2a1c2a2c1xc1c2.反过来,就得到a1a2x2a1c2a2c1xc1c2a1xc1a2xc2我们发现,二次项系数a分解成a1a2,常数项c分解成c1c2,把a1,a2,c1,c2写成,这里按斜线交叉相乘,再相加,就得到a1c2a2c1,如果它正好等于ax2bxc的一次项系数b,那么ax2bxc 就可以分解成a1xc1a2xc2,其中a1,c1位于上一行,a2,c2位于下一行.这种借助画字交叉线分解系数,从而将二次三项式分解因式的方法,也叫做字相乘法.例3把下列各式因式分解112x25x2;25x26xy8y2.解112x25x23x24x1.25x26xy8y2x2y5x4y.反思感悟用字相乘法分解二次三项式很重要.当二次项系数不是1时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法“凑”,看是否符合一次项系数,否则用加法“凑”,先“凑”绝对值,然后调整,添加正.负号.跟踪训练3把下列各式因式分解16x25x1;26x211x7;342x233x6;42x45x23.解12x13x1.22x13x7.36x37x2.42x1x1.1.分解因式x23x2为A.x1x2B.x1x2C.x1x2D.x1x2答案B2.分解因式x2x1为A.x1x1B.x1x2C.D.答案C3.分解因式m24mn5n2________.答案mnm5n4.分解因式ab211ab28________.答案ab4ab75.分解因式x2y2x3y2____________.答案xy2xy1。
因式分解教案四篇

因式分解教案四篇因式分解教案篇1一、运用平方差公式分解因式教学目标1、使学生了解运用公式来分解因式的意义。
2、使学生理解平方差公式的意义,弄清平方差公式的形式和特点;使学生知道把乘法公式反过来就可以得到相应的因式分解。
3、掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次)重点运用平方差公式分解因式难点灵活运用平方差公式分解因式教学方法比照发现法课型新授课教具投影仪教师活动学生活动情景设置:同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?(学生或许还有其他不同的解决方法,教师要给予充分的肯定) 新课讲解:从上面992-1=(99+1)(99-1),我们容易看出,这种方法利用了我们刚学过的哪一个乘法公式?首先我们来做下面两题:(投影)1.计算以下各式:(1)(a+2)(a-2)=;(2)(a+b)(a-b)=;(3)(3a+2b)(3a-2b)=.2.下面请你根据上面的算式填空:(1)a2-4=;(2)a2-b2=;(3)9a2-4b2=;请同学们比照以上两题,你发现什么呢?事实上,像上面第2题那样,把一个多项式写成几个整式积的形式叫做多项式的因式分解。
(投影)比方:a2–16=a2–42=(a+4)(a–4)例题1:把以下各式分解因式;(投影)(1)36–25x2;(2)16a2–9b2;(3)9(a+b)2–4(a–b)2.(让学生弄清平方差公式的形式和特点并会运用)例题2:如图,求圆环形绿化区的面积练习:第87页练一练第1、2、3题小结:这节课你学到了什么知识,掌握什么方法?教学素材:A组题:1.填空:81x2-=(9x+y)(9x-y);=利用因式分解计算:=。
2、以下多项式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把以下各式分解因式(1)1-16a2(2)9a2x2-b2y2(3).49(a-b)2-16(a+b)2B组题:1分解因式81a4-b4=2假设a+b=1,a2+b2=1,那么ab=;3假设26+28+2n是一个完全平方数,那么n=.由学生自己先做(或互相讨论),然后答复,假设有答不全的,教师(或其他学生)补充.学生答复1:992-1=99某99-1=9801-1=9800学生答复2:992-1就是(99+1)(99-1)即100某98学生答复:平方差公式学生答复:(1):a2-4(2):a2-b2(3):9a2-4b2学生轻松口答(a+2)(a-2)(a+b)(a-b)(3a+2b)(3a-2b)学生答复:把乘法公式(a+b)(a-b)=a2-b2反过来就得到a2-b2=(a+b)(a-b)学生上台板演:36–25x2=62–(5x)2=(6+5x)(6–5x)16a2–9b2=(4a)2–(3b)2=(4a+3b)(4a–3b)9(a+b)2–4(a–b)2=[3(a+b)]2–[2(a–b)]2=[3(a+b)+2(a–b)][3(a+b)–2(a–b)]=(5a+b)(a+5b)解:352π–152π=π(352–152)=(35+15)(35–15)π=50某20π=1000π(m2)这个绿化区的面积是1000πm2学生归纳总结因式分解教案篇2教学目标1、会运用因式分解进行简单的多项式除法。
因式分解教案

因式分解教案标题:因式分解教案一、教学目标:1. 理解因式分解的概念及其应用;2. 能够因式分解简单的代数表达式;3. 能够运用因式分解解决实际问题。
二、教学准备:1. 教案投影或白板;2. 活动所需的教具、教材和练习题;3. 清晰的示范因式分解的步骤和策略;4. 知识点总结和复习的资料。
三、教学过程:1. 导入(5分钟)引导学生回顾代数表达式的基础知识,例如常数项、变量项和系数等,然后提出以下问题:“你对因式分解有什么了解?你能给我举一个例子吗?”2. 知识讲解(15分钟)解释因式分解的概念,并用简单的实例进行示范。
重点讲解因式分解的原则和步骤,例如先找出公因式,然后运用配方法则等。
解释不同情况下的分解策略,例如差的平方公式、和差的立方公式等。
3. 集体合作(20分钟)将学生分成小组,发放练习题,要求他们在小组内合作进行因式分解。
教师可以在此阶段提供必要的帮助和指导,确保每个学生都能理解并掌握因式分解的基本方法。
4. 主题拓展(15分钟)向学生介绍实际问题,例如多项式函数的图像分析、面积和体积的计算等,并让学生应用所学的因式分解方法解决这些问题。
引导学生思考因式分解在解决实际问题中的作用和意义。
5. 总结与评价(5分钟)总结本节课的重点和难点,并与学生一起回顾教学目标是否达到。
鼓励学生提出问题和困惑,并进行解答和评价。
四、作业布置:布置一些练习题,要求学生独立完成。
作业的重点可以放在更复杂的因式分解和实际问题的应用上。
五、教学反思:教师应及时对学生的掌握情况进行反馈和评估,并针对性地调整教学策略。
同时,教师也应注意与学生的互动和沟通,鼓励学生提问、发表观点,以促进学生的参与和主动学习。
因式分解教案4篇

因式分解教案4篇因式分解教案篇1教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.2-4=()();3.2-2y+y2=()2.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究(1)下列各式从左到右的变形是否为因式分解:①(+1)(-1)=2-1;②a2-1+b2=(a+1)(a-1)+b2;③7-7=7(-1).(2)在下列括号里,填上适当的项,使等式成立.①92(______)+y2=(3+y)(_______);②2-4y+(_______)=(-_______)2.四、随堂练习,巩固深化课本练习.计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知下列从左到右的变形是否是因式分解,为什么?(1)22+4=2(2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)2+4y-y2=(+4y)-y2;(4)m(+y)=m+my;(5)2-2y+y2=(-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式42-和y2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在42-中的公因式是,在y2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法多项式42-86,16a3b2-4a3b2-8ab4各项的公因式是什么?提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学把-42yz-12y2z+4yz分解因式.解:-42yz-12y2z+4yz=-(42yz+12y2z-4yz)=-4yz(+3y-1)分解因式,3a2(-y)3-4b2(y-)2观察所给多项式可以找出公因式(y-)2或(-y)2,于是有两种变形,(-y)3=-(y-)3和(-y)2=(y-)2,从而得到下面两种分解方法.解法1:3a2(-y)3-4b2(y-)2=-3a2(y-)3-4b2(y-)2=-[(y-)23a2(y-)+4b2(y-)2]=-(y-)2 [3a2(y-)+4b2]=-(y-)2(3a2y-3a2+4b2)解法2:3a2(-y)3-4b2(y-)2=(-y)23a2(-y)-4b2(-y)2=(-y)2 [3a2(-y)-4b2]=(-y)2(3a2-3a2y-4b2)用简便的方法计算:0.84×12+12×0.6-0.44×12.引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学把下列各式分解因式:(投影显示或板书)(1)2-9y2;(2)164-y4;(3)12a22-27b2y2;(4)(+2y)2-(-3y)2;(5)m2(16-y)+n2(y-16).在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.分四人小组,合作探究.解:(1)2-9y2=(+3y)(-3y);(2)164-y4=(42+y2)(42-y2)=(42+y2)(2+y)(2-y);(3)12a22-27b2y2=3(4a22-9b2y2)=3(2a+3by)(2a-3by);(4)(+2y)2-(-3y)2=[(+2y)+(-3y)][(+2y)-(-3y)] =5y (2-y);(5)m2(16-y)+n2(y-16)=(16-y)(m2-n2)=(16-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知1.分解因式:(1)-92+4y2;(2)(+3y)2-(-3y)2;(3) 2-0.01y2.因式分解教案篇2学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。
因式分解教案3篇

因式分解教案3篇因式分解教案篇1教学目标1、会运用因式分解进行简单的多项式除法。
2、会运用因式分解解简单的方程。
二、教学重点与难点教学重点:教学重点因式分解在多项式除法和解方程两方面的应用。
教学难点:应用因式分解解方程涉及较多的推理过程。
三、教学过程(一)引入新课1、知识回顾(1)因式分解的几种方法:①提取公因式法: ma+mb=m(a+b)②应用平方差公式: = (a+b)(a—b)③应用完全平方公式:a 2ab+b =(ab)(2)课前热身:①分解因式:(x +4) y — 16x y(二)师生互动,讲授新课1、运用因式分解进行多项式除法例1 计算:(1)(2ab —8a b)(4a—b)(2)(4x —9)(3—2x)解:(1)(2ab —8a b)(4a—b) =—2ab(4a—b)(4a—b) =—2ab (2)(4x —9)(3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3一个小问题:这里的x能等于3/2吗?为什么?想一想:那么(4x —9)(3—2x)呢?练习:课本P162课内练习合作学习想一想:如果已知()()=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢?(让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A 和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、运用因式分解解简单的方程例2 解下列方程:(1) 2x +x=0 (2)(2x—1) =(x+2)解:x(x+1)=0 解:(2x—1)—(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2等练习:课本P162课内练习2做一做!对于方程:x+2=(x+2),你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4)—16x =0解:将原方程左边分解因式,得(x +4)—(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2)(x—2) =0接着继续解方程,5、练一练①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b)—c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a ﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c)﹤0 ,因此 a —2ab+b —c 小于零。
《 初、高中衔接:因式分解》教案

分 解 因 式因式分解的主要方法有:提取公因式法、公式法、分组分解法、十字相乘法,另外还应了解求根法。
我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a a b b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a a b b a b+-+=+; (2)立方差公式 2233()()a b a a b b a b-++=-; (3)三数和平方公式 2222()2()a b c a b c a b b c a c++=+++++; (4)两数和立方公式 33223()33a b a a b a b b +=+++; (5)两数差立方公式 3322()33a b a a b a b b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 说明:前面有*的供选用1.提取公因式法与分组分解法、公式法 例1 分解因式:(1)2(y -x )2+3(x -y )(2)mn (m -n )-m (n -m )222223223292442456()(1)x y xy a ab b a b x x y xy ya b a ab b --+++----++---(3)(4)()()2.十字相乘法例2 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).-1 -2 x x 图1.2-1-1 -2 1 1 图1.2-2-2 6 1 1 图1.2-3 -ay -by x x 图1.2-4说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).(2)由图1.2-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.2-5所示).*例3 因式分解:(双十字相乘法)22222(1)282143(2)534(3)2x xy y x y x y x y xy y x y +-++--+++++--3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.(求根法)若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3 把下列关于x 的二次多项式分解因式:(1)221x x +-;(2)2244x xy y +-. 解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1xx ⎡⎤⎡⎤-----⎣⎦⎣⎦=(11x x +-++.(2)令2244x xy y +-=0,则解得1(2xy =-+,1(2x y =--, ∴2244x xy y +-=[2(1][2(1]x y x y ++.-1 1x y图1.2-5练 习1.选择题:(1)多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y -(2)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(3)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数2.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).3.分解因式:(1)5(x -y )3+10(y -x )2()()22222c ab a b c +-+()·()()()422232x x y x x y xy y x ---+-() 44322a a -()(5)8a 3-b 3; (6)x 2+6x +8;(7)4(1)(2)x y y y x -++- (8)424139x x -+;()()422422292033710510596a ab b x x x x -+-+--()()*(11)2235294x xy y x y +-++-.*(12)222456x xy y x y +--+-.4.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+.5.分解因式:x 2+x -(a 2-a ).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分 解 因 式
因式分解的主要方法有:提取公因式法、公式法、分组分解法、十字相乘法,另外还应了解求根法。
我们在初中已经学习过了下列一些乘法公式:
(1)平方差公式 22()()a b a b a b +-=-;
(2)完全平方公式 222
()2a b a a b b ±=±+. 我们还可以通过证明得到下列一些乘法公式:
(1)立方和公式 2233
()()a b a a b b a b
+-+=+; (2)立方差公式 2233
()()a b a a b b a b
-++=-; (3)三数和平方公式 222
2()2()a b c a b c a b b c a c
++=+++++; (4)两数和立方公式 33223
()33a b a a b a b b +=+++; (5)两数差立方公式 3322()33a b a a b a b b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 说明:前面有*的供选用
1.提取公因式法与分组分解法、公式法 例1 分解因式:
(1)2(y -x )2+3(x -y )
(2)mn (m -n )-m (n -m )2
22223
2
2
3
2
92442456()(1)x y xy a ab b a b x x y xy y
a b a ab b --+++----++---(3)(4)()()
2.十字相乘法
例2 分解因式:
(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.
解:(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有
x 2-3x +2=(x -1)(x -2).
-1 -2 x x 图1.2-1
-1 -2 1 1 图1.2-2
-2 6 1 1 图1.2-3 -ay -by x x 图1.2-4
说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).
(2)由图1.2-3,得
x 2+4x -12=(x -2)(x +6). (3)由图1.2-4,得
22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1
=(x -1) (y+1) (如图1.2-5所示).
*例3 因式分解:(双十字相乘法)
22222(1)282143(2)534(3)2
x xy y x y x y x y xy y x y +-++--+++++--
3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.(求根法)
若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式
2(0)ax bx c a ++≠就可分解为12()()a x x x x --.
例3 把下列关于x 的二次多项式分解因式:
(1)221x x +-;
(2)2
244x xy y +-. 解: (1)令221x x +-=0,则解得1
1x =-
21x =-,
∴221x x +-=(1(1x
x ⎡⎤⎡
⎤-----⎣⎦⎣⎦
=(11
x x +-++.
(2)令2244x xy y +-=0,则解得1(2x
y =-+
,1(2x y =--, ∴2244x xy y +-=[2(1][2(1]x y x y ++.
-1 1
x y
图1.2-5
练 习
1.选择题:
(1)多项式2
2
215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y -
(2)若21
2
x mx k +
+是一个完全平方式,则k 等于 ( ) (A )2
m (B )214m (C )213m (D )2116m
(3)不论a ,b 为何实数,22
248a b a b +--+的值 ( )
(A )总是正数 (B )总是负数
(C )可以是零 (D )可以是正数也可以是负数
2.填空:
(1)221111
()9423
a b b a -=+( )
; (2)(4m + 22
)164(m m =++ );
(3 ) 2222
(2)4(a b c a b c +-=+++ ).
3.分解因式:
(1)5(x -y )3+10(y -x )2
()()2
2
222c ab a b c +-+()·
()()()422
232x x y x x y xy y x ---+-() 44322
a a -()
(5)8a 3-b 3; (6)x 2+6x +8;
(7)4(1)(2)x y y y x -++- (8)4
2
4139x x -+;
()()4224
2
2292033710510596
a a
b b x x x x -+-+--()()
*(11)2
2
35294x xy y x y +-++-.
*(12)222456x xy y x y +--+-.
4.在实数范围内因式分解:
(1)253x x -+ ; (2)2
3x --;
(3)2
2
34x xy y +-; (4)2
2
2
(2)7(2)12x x x x ---+.
5.分解因式:x 2+x -(a 2-a ).。