第二章 控制系统的状态空间描述

合集下载

浙大控制考研-现代控制理论(浙大)第二章

浙大控制考研-现代控制理论(浙大)第二章

1 A2t 2 2!
1 k
Aktk
)
b0
t 0 x(0) b0
x(t) (I At 1 A2t 2 1 Akt k )x(0)
2!
k
eAt I At 1 A2t 2 1 Akt k
2!
k
矩阵指数函数
Φ(t) 状态转移矩阵
x(t) eAtx(0) 描述了状态向量由初始状态x(0)向任意时 刻状态 x(t)转移的内在特性。
eAt I At 1 A2t 2 1 Akt k
2!
k
1)根据状态转移矩阵的定义求解:
eAt I At 1 A2t 2 1 Akt k
2!
k!
对所有有限的t值来说,这个无穷级数都是收敛的 。
求出的解不是解析形式,适合于计算机求解。
例:求解系统状态方程 解:
x1
x2
0 0
-11
6
-6 -11 5
试计算状态转移矩阵 eAt .
解: 1) 特征值
1 1
I A 6 -11 6 1 2 3 0
6 11 5
1 1,2 2,3 3
2) 计算特征向量:
1 1 1 p1 0, p2 2, p3 6
1 4 9
3) 构造变换阵P:
1 1 1 P 0 2 6
(A B)3 A3 B3 3A2B 3AB 2
(9) x Px Φ(t) P-1Φ(t)P P-1eAtP
证明:非奇异线性变换
x Px
n n非奇异矩阵 另一组状态变量
x Px
x P1AP x x(t) eP1AP x(0)
x Ax APx 新的系统矩阵 新的状态转移矩阵
Ax
eAt x(0) Φ(t)x(0)

现代控制理论知识点汇总

现代控制理论知识点汇总

第一章控制系统的状态空间表达式1.状态空间表达式n 阶 DuCx y Bu Ax x +=+=&1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。

2.状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。

②状态方程和输出方程都是运动方程。

③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。

④状态变量的选择不唯一。

⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。

⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。

⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。

3.模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。

4.状态空间表达式的建立① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x &;c 由模拟图写出状态方程和输出方程。

② 由系统的机理出发建立状态空间表达式:如电路系统。

通常选电容上的电压和电感上的电流作为状态变量。

利用KVL 和KCL 列微分方程,整理。

③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。

第二章 状态空间表达式

第二章 状态空间表达式
y (t ) = Cx(t ) + Du(t )
⎧ y1 = x = x1 ⎪ & = x2 ⎨ y2 = x ⎪ y = && ⎩ 3 x
⎛ ⎛ y1 ⎞ ⎜ 1 ⎜ ⎟ ⎜ y = 0 ⎜ 2 ⎜ ⎟ ⎜y ⎟ ⎜ k ⎝ 3 ⎠ ⎜− ⎝ m
⎞ ⎛ ⎜ 0 0 ⎟ ⎟ ⎛ x1 ⎞ ⎜ 1 ⎟⎜ ⎟ + ⎜ 0 x 2⎠ ⎜ ⎝ ⎟ f 1 − ⎟ ⎜− m⎠ ⎝ m
外部描述:微分方程、传递函数 数学模型
{
u
R(s) ( )
G (s )
C(s) ( )
内部描述:状态空间表达式

x(t ) = Ax(t ) + Bu(t ) y (t ) = Cx(t ) + Du(t )
y

动力学部件
输入引起内部状态 的变化,用一阶微 分方程组表示----状 态方程
x
输出部件
内部状态和输入引 起输出的变化,用 代数方程表示----输 出方程
统的输入量,质量的位移y(t)为输出量,试列写该系统的状 态方程和输出方程。
k u(t) m f y (t )
1.选择状态变量: x1 (t ) = y (t ) 、 x 2 (t ) = y(t )
2.列写状态方程

x1 (t ) = x 2 (t )
1 x 2 (t ) = − m
• • ⎤ ⎡ 1 u (t ) ⎢ ky (t ) + f y (t )⎥ + ⎣ ⎦ m k f 1 =− x 1 (t ) − x 2 (t ) + u (t ) m m m
⎞ 0⎟ ⎟⎛ F ⎞ 0 ⎟⎜ ⎟ V ⎝ ⎠ ⎟ f ⎟ m⎠

现代控制理论课后题及答案

现代控制理论课后题及答案

第2章 “控制系统的状态空间描述”习题解答2.1有电路如图P2.1所示,设输入为1u ,输出为2u ,试自选状态变量并列写出其状态空间表达式。

图P2.1解 此题可采样机理分析法,首先根据电路定律列写微分方程,再选择状态变量,求得相应的系统状态空间表达式。

也可以先由电路图求得系统传递函数,再由传递函数求得系统状态空间表达式。

这里采样机理分析法。

设1C 两端电压为1c u ,2C 两端的电压为2c u ,则212221c c c du u C R u u dt++= (1) 112121c c c du u duC C dt R dt+= (2) 选择状态变量为11c x u =,22c x u =,由式(1)和(2)得:1121121121212111c c c du R R C u u u dt R R C R C R C +=--+ 2121222222111c c c du u u u dt R C R C R C =--+ 状态空间表达式为:12111211212121212122222221111111R R C x x x u R R C R C R C x x x u R C R C R C y u u x +⎧=--+⎪⎪⎪=--+⎨⎪⎪==-⎪⎩即: 12121121211112222222211111R R C R C R R C R C x x u x x R C R C R C +⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎢⎥⎢⎥⎣⎦⎣⎦[]11210x y u x ⎡⎤=-+⎢⎥⎣⎦2.2 建立图P22所示系统的状态空间表达式。

1图P2.2解 这是一个物理系统,采用机理分析法求状态空间表达式会更为方便。

令()f t 为输入量,即u f =,1M ,2M 的位移量1y ,2y 为输出量, 选择状态变量1x =1y ,2x = 2y ,3x =1dy dt,24dyx dt =。

控制系统的状态空间描述

控制系统的状态空间描述
解: 方法一、直接根据微分方程求解
03
方法二、根据传递函数求解
状态方程的标准形式
状态方程的定义 状态方程 所谓状态方程,就是描述系统的状态之间以及输入和状态之间动态关系的一阶微分方程组。
3.2.2 状态空间表达式
向量矩阵形式为
状态向量
输入向量
维的函数向量
3、线性定常系统的状态方程
向量矩阵形式为
维的系数矩阵
维的系数矩阵
输出方程
输出方程的标准形式
解:列写回路的电压方程和节点的电流方程
选取 为状态变量,输出 ,得系统的状态空间表达式为
消去 并整理得
设初始条件为零,对上式两端进行拉普拉斯变换,得
写成向量矩阵形式为
其中
输入变量的Laplace变换象函数
2)数目最小的含义:是指这个变量组中的每个变量都是相互独立的。
二、状态向量
若一个系统有n个状态变量: ,用这n个状态变量作为分量所构成的向量 ,就称为该系统的状态向量,用 表示。
例 试建立下图所示电路网络的状态方程和输出方程。
01
考虑标量的一阶微分方程
02
用拉氏变换解有:
3.2.2 状态微分方程的解
定义矩阵指数函数为:
上式也经常写做状态转移矩阵的形式
系统的零输入响应为:
1.3 传递函数矩阵
例:系统如下图所示,输入为 和 ,输出为 。
较之传递函数,状态空间描述的优点有:
3、状态空间分析是一种时域分析方法,可用计算机直接在时域中进行数值计算。
2、由前面的分析可以看出,对于不同维数的系统,可以采用同一表达方式来进行描述,由此可见从低维系统得到的结论可以方便地推广到高维系统,只是计算复杂一些而已。

第2章(1)-控制系统的状态空间表达式

第2章(1)-控制系统的状态空间表达式

第二章 控制系统的状态空间表达式2-1 状态、状态变量、状态空间、状态方程、动态方程任何一个系统在特定时刻都有一个特定的状态,每个状态都可以用最小的一组(一个或多个)独立的状态变量来描述。

设系统有n 个状态变量n x x x ,,21,它们都是时间t 的函数,控制系统的每一个状态都可以在一个由n x x x ,,21为轴的n 维状态空间上的一点来表示,用向量形式表示就是:()t x 称作系统的状态向(矢)量。

设系统的控制输入为:r u u u ,,,21 ,它们也是时间t 的函数。

记:那么表示系统状态变量x(t)随系统输入u(t)以及时间t 变化的规律的方程就是控制系统的状态方程:其中()()()[]T=t f t f t f f n 21 是一个函数矢量。

设系统的输出变量为m y y y ,,,21 ,则()Tm y y y y ,,,21 = 称为系统的输出向量。

表示输出变量y(t)与系统状态变量x(t)、系统输入u(t)以及时间t 的关系的方程就称作系统的输出方程: 其中()Tm g g g g ,,,21 = 是一个函数矢量。

在现代控制理论中,用系统的状态方程和输出方程来描述系统的动态行为,状态方程和输出方程合起来称作系统的状态空间表达式或称动态方程。

根据函数向量F 和G 的不同情况,一般控制系统可以分为如下四种: ∙线性定常(时不变)系统(LTI-Linear Time-Invariant); ∙ 线性不定常(时变)系统(Linear Time-Variant); ∙ 非线性定常系统(Nonlinear Time-Invariant); ∙ 非线性时变系统(Nonlinear Time-Variant)。

在本课程中,我们主要考虑线性定常系统(LTI)。

这时,系统的状态空间表达式可以表示如下: 写成矢量形式为:其中:n n nn n n n n a a a a a a a a a A ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 212222111211 , r n nr n n r r b b b b b bb b b B ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 212222111211n m mn m m n n c c c c c c c c c C ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 212222111211 , rm mr m m r r a a a a a aa a d D ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 212222111211n n A ⨯----称为系统矩阵,由系统内部结构及其参数决定,体现了系统内部的特性;r n B ⨯----称为输入(或控制)矩阵,主要体现了系统输入的施加情况;n m C ⨯----称为输出矩阵,它表达了输出变量与状态变量之间的关系,r m D ⨯----称为直接传递(转移)矩阵,表示了控制向量U 直接转移到输出变量Y 的转移关系。

现代控制理论-第二章 控制系统的状态空间描述

现代控制理论-第二章  控制系统的状态空间描述
12 中南大学信息学院自动化系
DgXu
2.2.1.由物理机理直接建立状态空间表达式: 例2.2.1 系统如图所示
L
R2
u
iL
R1
uc
选择状态变量:
x1 iL , x2 uC ,
13 中南大C diL 1 iL (u L ) C dt R1 dt duC diL L uC C R2 u dt dt
y(s) [C(sI A) B D]U (s)
1
1

9
G(s) C (sI A) B D
命题得证
中南大学信息学院自动化系
1
DgXu
例2.1.3
已知系统的状态空间描述为
x1 0 1 0 x1 0 x 0 1 1 x 1 u 2 2 x3 0 0 3 x3 1
28 中南大学信息学院自动化系
DgXu
故有(n-1) 个状态方程:
对xl求导数且考虑式 (2.3.12),经整理有:
则式 (2.3.12) bn=0 时的动态方程为:
(2.3.16)
式中:
29 中南大学信息学院自动化系
DgXu
30 中南大学信息学院自动化系
DgXu
3)
化输入-输出描述为状态空间描述
11 中南大学信息学院自动化系
DgXu
2.3. 线性定常连续系统状态空间表达式的建立
建立状态空间表达式的方法主要有两种: 一是直接根据系统的机理建立相应的微分方程或差分方 程,继而选择有关的物理量作为状态变量,从而导出其状态 空间表达式; 二是由已知的系统其它数学模型经过转化而得到状态达 式。由于微分方程和传递函数是描述线性定常连续系统常用 的数学模型,故我们将介绍已知 n 阶系统微分方程或传递函 数时导出状态空间表达式的一般方法,以便建立统一的研究 理论,揭示系统内部固有的重要结构特性。

第2章(2) 控制系统的状态空间表达式

第2章(2) 控制系统的状态空间表达式

2-3 由控制系统的方块图求系统状态空间表达式系统方块图是经典控制中常用的一种用来表示控制系统中各环节、各信号相互关系的图形化的模型,具有形象、直观的优点,常为人们采用。

要将系统方块图模型转化为状态空间表达式,一般可以由下列三个步骤组成:第一步:在系统方块图的基础上,将各环节通过等效变换分解,使得整个系统只有标准积分器(1/s )、比例器(k )及其综合器(加法器)组成,这三种基本器件通过串联、并联和反馈三种形式组成整个控制系统。

第二步:将上述调整过的方块图中的每个标准积分器(1/s )的输出作为一个独立的状态变量i x ,积分器的输入端就是状态变量的一阶导数dtdx i。

第三步:根据调整过的方块图中各信号的关系,可以写出每个状态变量的一阶微分方程,从而写出系统的状态方程。

根据需要指定输出变量,即可以从方块图写出系统的输出方程。

例2-5 某控制系统的方块图如图2-6所示,试求出其状态空间表达式。

解:该系统主要有一个一阶惯性环节和一个积分器组成。

对于一阶惯性环节,我们可以通过等效变换,转化为一个前向通道为一标准积分器的反馈系统。

图2-6所示方块图经等效变换后如下图所示。

我们取每个积分器的输出端信号为状态变量1x 和2x ,积分器的输入端即1x和2x 。

图2-6 系统方块图从图可得系统状态方程: ()⎪⎪⎩⎪⎪⎨⎧+--=-+-==uT K x T x T K K x K u T K x T x x T K x 112111311311212222111 取y 为系统输出,输出方程为:1x y =写成矢量形式,我们得到系统的状态空间表达式:[]⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎦⎤⎢⎢⎣⎡=x y u T K x K K T K x 010********例2-6 求如图2-7(a )所示系统的动态方程。

解:图2-7(a)中第一个环节21++s s 可以分解为⎪⎭⎫ ⎝⎛+-211s ,即分解为两个通道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论
1.1控制理论的发展历程简介
人类利用自动控制技术的历史,可以追溯到几千年前。

但是,把自动控制技术在工程实践中的一些规律加以总结提高,进而以此去指导和推进工程实践,形成自动控制理论,并作为一门独立的学科存在和发展,则是20世纪中叶的事情。

一、经典控制理论
20世纪三四十年代,奈奎斯特、伯德,维纳等人的著作为自动控制理论的初步形成奠定了基础;二次世界大战以后,经众多学者的努力,在总结了以往的时间和关于反馈理论、频率响应理论并加以发展的基础上,形成了较为完善的自动控制系统设计的频率发理论。

1949年又出现了根轨迹法,至此自动控制理论发展的第一阶段基本形成。

这种以频率法和根轨迹基础上的理论,称为经典控制理论。

经典控制理论以拉普拉斯变换为数学工具,以单输入单输出的线性定常系统为主要的研究对象,将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此为基础在频率域中对系统进行分析和设计,确定控制的结构和参数。

通常采用反馈控制,构成闭环控制系统。

经典控制理论具有明显的局限性,特别是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。

二、现代控制理论的发展
在20世纪50年代蓬勃兴起的航空航天技术的推动和计算机技术飞速发展的支持下,控制理论在1960年前后有了重大的突破和创新。

在此期间,贝尔曼提出寻求最优控制的动态规划法,庞特里亚金证明了极大值定理,是的最优控制理论得到了极大的发展。

卡尔曼系统地把状态空间法引入到系统与控制理论中来,并提出能控性、能观测性的概念和新的滤波方法。

这些就构成了后来被称为现代控制理论的起点和基础。

现代控制理论以线性代数和微分方程为主要的数学工具,以状态空间法为基础来分析与设计控制系统。

状态空间法本质上是一种时域方法,它不仅描述了系统的外部特性,而且描述和揭示了系统的内部状态和性能。

它分析和综合的目标是在揭示系统内在规律的基础上,实现系统在一定意义下的最优化。

它的构成具有更高的仿生特点,既不限于单纯的闭环,而扩展为适应环、学习环等。

现代控制理论的研究对象要广泛的多,原则上讲,它既可以是单变量的、线性的、定常的、连续的,也可以是多变量的、非线性的、时变的、离散的。

三、大系统理论和智能控制理论
20世纪60年代末和70年代初,控制理论进入了一个多样化发展的时期,在广度和深度上进入了新的阶段,出现了大系统理论和智能控制理论等。

所谓大系统是指规模庞大、结构复杂、变量众多的信息与控制系统,涉及生产过程、交通运输、生物控制、计划管理、环境保护、空间技术等方面的控制与信息化处理问题。

而只能控制是某些仿人智能的工程控制与信息处理问题,其中最为典型就是智能机器人。

20世纪70年代以后,出现了一些新的控制思想和新的理论,两大分支:多变量频率域控制理论和模糊控制理论。

1.2现代控制理论的主要内容
⑴线性系统理论
●现代控制理论的基础。

●主要研究线性系统状态的运动规律和改变这些规律的可能性和实
施方法;建立和揭示系统结构、参数、行为和性能之间的关系。

●包括系统的能控性、能观测性、稳定性分析、状态反馈、状态估
计及补偿器的理论和设计方法。

⑵最优滤波理论
●研究对象是有随机微分方程或随机差分方程所描述的随机系统。

(除了具有描述系统与外部联系的输入、输出之外,还承受不确定因素(随机噪声)的作用)
●研究利用被噪声污染的量测数据,按照某种判别准则,获得有用
信号的最优估计。

●卡尔曼滤波理论是用状态空间法设计的最佳滤波器,实用性强且
适用于非平稳过程,是滤波理论的一大突破。

⑶系统辨识
●在系统的输入输出的试验数据的基础上,从一组给定的模型类中
确定一个与所测系统本质特性相等价的模型。

●当模型的结构已经确定,只需用输入输出的量测数据来确定其参
数的,叫做参数估计。

●同时确定模型结构和参数的称为系统辨识。

⑷最优控制
●在给定限制条件和性能指标下,寻找使系统性能在一定意义下为
最优的控制规律。

●在解决最优控制问题中,庞特利亚金的极大值定理和贝尔曼动态
规划法是两种最重要的方法。

⑸自适应控制
●随时辨识系统的数学模型并按此模型去调整最优控制律。

●基本思想:当被控对象内部的结构和参数以及外部的环境干扰存
在不确定性时,在系统运行期间,系统自身能对有关信息实现在线测量和处理,从而不断地修正系统结构的有关参数和控制作用,使之处于所要求的最优状态,得到人们所期望的控制结果。

⑹非线性系统理论
●主要研究非线性系统状态的运动规律和改变这些规律的可能性与
实施方法,建立和揭示系统结构、参数、行为和性能之间的关系。

●主要包括能控性、能观测性、稳定性、线性化、解耦以及反馈控
制、状态估计等。

相关文档
最新文档