隐函数的求导方法总结
隐函数的求导公式

Fx = 2x,
均连续。 Fy = 2y, 均连续。
x0 = 0, y0 = 1. F(0,1) = 0,
Fy (0,1) = 2 ≠ 0,
理知方程x2 + y2 − 1 = 0在 (0,1)的 邻 依定 点 某 域内能唯一确定一个单值可导、 域内能唯一确定一个单值可导、且x = 0时
y = 1的函数y = f (x).
的函数, 把y看成x, z 的函数,对z求偏导数得
∂y ∂y 1 = fu ⋅ ( + 1) + fv ⋅ ( xy + xz ), ∂z ∂z
整理得
∂y 1 − fu − xy ⋅ fv . = ∂z fu + xz ⋅ fv
二、方程组的情形
F( x, y, u, v) = 0 G( x, y, u, v) = 0
′ Fz = ( z − f (u, v))z
= 1 − fu ⋅ ( x + y + z)′y − fv ⋅ ( xyz)′y = 1− fu − x y fv .
Fx fu + yz ⋅ fv ∂z 于是, 于是, ∂x = − F = 1 − f − xy ⋅ f . z u v
∂x = − Fy = − fu + xz ⋅ fv . fu + yz ⋅ fv Fx ∂y
何时唯一确定函数u = u( x, y), v = v( x, y)?
∂u = ? ∂x
∂u = ? ∂y
∂v ? = ∂x
∂v = ? ∂y
隐函数存在定理3 隐函数存在定理 3 设F( x, y, u, v)、G( x, y, u, v)在点P( x0 , y0 , u0 , v0 )的某 一邻域内有对各个变量的连续偏导数, 一邻域内有对各个变量的连续偏导数,且F( x0 , y0 , u0 , v0 ) = 0,G( x0 , y0 , u0 , v0 ) = 0,且偏导数所组成的 函数行列式(或称雅可比式) 函数行列式(或称雅可比式)
隐函数求导方法

隐函数求导方法
隐函数求导方法是一种用于求解非显式函数的导数的技巧。
与显式函数不同,隐函数没有直接的形式来表示其自变量和因变量之间的关系。
因此,为了求解其导数,我们需要使用一种特殊的方法。
隐函数求导的基本思路是通过对该隐函数进行微分,然后利用链式法则来进行推导。
下面是具体的步骤:
1. 首先,将隐函数表示为一个等式,例如:
F(x, y) = 0
2. 对上述等式两边关于x进行求导,得到:
∂F/∂x + ∂F/∂y * dy/dx = 0
3. 根据求导法则,我们知道∂F/∂x 表示 F 关于x的偏导数,而∂F/∂y 表示 F 关于y的偏导数。
4. 我们希望求得 dy/dx,可以通过移项得到:
dy/dx = - (∂F/∂x) / (∂F/∂y)
通过上述步骤,我们可以得到隐函数的导数。
需要注意的是,这种方法只适用于能够将隐函数表示为一个等式的情况,并且可以通过求导来解出 dy/dx。
在一些复杂的情况下,可能需要更多的推导和技巧来求解。
隐函数求导法则

隐函数求导法则隐函数求导法则是微积分中的重要内容,它用于求解含有隐函数的导数。
在实际问题中,很多函数并不是显式地以y=f(x)的形式给出,而是以隐式方程的形式存在。
这时就需要用到隐函数求导法则来求解导数。
本文将介绍隐函数求导法则的原理和具体应用。
1. 隐函数的概念在代数中,如果一个方程中存在两个变量,并且其中一个变量无法用另一个变量表示,那么这个方程就是一个隐函数。
例如,方程x^2+y^2=1就是一个隐函数,因为无法用y=f(x)的形式来表示。
在实际问题中,很多函数都是以隐函数的形式存在的,因此需要用到隐函数求导法则来求解导数。
2. 隐函数求导法则的原理隐函数求导法则是通过对含有隐函数的方程两边求导来求解导数的方法。
假设有一个隐函数方程F(x, y)=0,其中y是x的函数,即y=g(x)。
为了求解y关于x的导数,可以对方程两边关于x求导,然后通过链式法则来求解。
具体来说,如果F(x, y)=0两边关于x求导,得到∂F/∂x+∂F/∂y*dy/dx=0,然后可以解出dy/dx的表达式。
3. 隐函数求导法则的具体应用隐函数求导法则的具体应用包括求解曲线的切线斜率、求解参数方程的导数、求解隐函数的高阶导数等。
在求解曲线的切线斜率时,可以将方程两边关于x求导,然后代入切点的坐标来求解斜率。
在求解参数方程的导数时,可以将参数方程化为隐函数方程,然后利用隐函数求导法则来求解导数。
在求解隐函数的高阶导数时,可以多次对方程两边求导,然后通过链式法则来求解高阶导数。
4. 隐函数求导法则的应用举例下面通过一个具体的例子来说明隐函数求导法则的应用。
假设有一个隐函数方程x^2+y^2=1,要求解y关于x的导数。
首先对方程两边关于x求导,得到2x+2y*dy/dx=0,然后可以解出dy/dx=-x/y。
这样就求得了y关于x的导数。
5. 隐函数求导法则的总结隐函数求导法则是微积分中的重要内容,它用于求解含有隐函数的导数。
通过对隐函数方程两边关于自变量求导,然后利用链式法则来求解导数。
隐函数求导的简单方法

隐函数求导的简单方法
隐函数是一类特殊的函数,它隐藏了某些变量的变化而显示出另一些变量的变化,这些变量的变化依赖于函数的输入变量,而在这些变量中有一个或多个变量称为隐变量,也就是说,隐函数隐藏了某些变量的变化,只表示另一些变量的变化。
隐函数求导法是求解某个函数关于隐变量的偏导数的方法,它能够建立某个函数的变化规律,从而计算该函数的极值,极值的应用范围广泛。
求隐函数的导数有几种方法,其中最常用的方法是链式法则。
链式法则主要是根据Sandwich公式和洛必特准则来求导的,即“将函数的积分用链式的形式表示出来,并用标准的微分法将其展开”。
在求导的过程中,只需要将函数化简,并把它用某些常数和未知量连接起来,然后将它们分离出来,就可以求导出对应的某个变量的偏导数。
另外一种求隐函数求导的方法是微分分离方法。
微分分离法是一种基于微分技术的求导方法,其特点在于可以从函数要求出多个变量微分结果中求出函数参数的关系。
隐函数的求导公式

的求导运算,尤其是在求指定点的二阶偏导数时,
dy y 1.已知 ln x y arctan ,求 . x dx
2 2
2. 求由方程
x y
y
x
所确定的
隐函数 y f ( x)的导数.
(2)、二元隐函数求导法则
设方程 F ( x, y, z ) =0确定z是x, y的具有连续偏导 数的函数 z f ( x, y),将 z f ( x, y) 代入上述方 程,得到关于x,y 的恒等式 :
F ( x, y, f ( x, y)) 0
,
如果函数 F ( x, y, z ) 具有连续的偏导数,将上述 两端对x,y求偏导,根据复合函数求导法则有
F F z 0, x z x
若
F F z 0, y z y
Fz 0 ,得:
z Fx x Fz
②直接法
方程两边连续求导两次
方程两边对x求导得:Fx Fy 方程两边再对x求导得:
dy 0 dx
Fx
x y
x
Fy dy dy Fx Fx dy Fy d2y 1 ( 1 ) Fy 2 0 x y dx x y dx dx dx dy dy 2 d2y Fxx 2 Fxy Fyy ( ) Fy 2 0 dx dx dx 2 2 2 F F 2 F F F F F xy x y yy x 解得: d y xx y dx2 Fy3
dFy dFx Fy Fx 2 d y dx 于是 2 dx dx Fy2
Fy dx Fy dy Fx dx Fx dy ( ) Fy Fx ( ) x dx y dx x dx y dx Fy2
第六节隐函数的求导公式

下页 返回
若F( x, y )的二阶偏导数也都连续,则
Fx d2y Fx d y ( ) ( ) 2 d x x Fy y Fy d x
Fx Fy
x
y
x
x Fy Fx Fx F x F 2 ( 求二阶导数 y y d y x y 或 2 x 2 的通常方法 ) dx Fy dy dy ( Fxx Fxy )Fy Fx ( Fyx Fyy ) dx dx 2 d y F x Fy d x F 2 2 y Fxx Fy 2 Fxy FxFy Fyy Fx . 3 Fy 上页 下页 返回
上页
下页 返回
x y z x y z
x x
dy dz z xf ( x y ) y y( x ) 例5、 设 确定 , 求 及 . y, z) 0 dx dx F ( x, z z( x )
解:将每个方程两边对 x求导得
z f xf (1 y )
2 FxFz Fx Fx z Fz Fzy z Fy Fz Fz z Fx Fy . 3 Fz 2 2 2 F F 2 F F F F F z Fx d y xx y xy x y yy x x Fz dx 2 Fy 3
上页
下页 返回
y
若F( x , y, z ) 的二阶偏导数也都连续,则
2 2 Fx x Fz 2Fx z Fx Fz Fz z Fx z . 2 3 x Fz 2 2 2 Fy y Fz 2Fy z Fy Fz Fz z Fy z . 2 3 y Fz 2
隐函数的求导法则

Fu Fy 1 (F ,G ) v = = Gu G y J ( u, y ) y
例 5
Fu Fv . Gu Gv
设xu yv = 0,yu + xv = 1,
u u v v 求 , , 和 . x y x y
直接代入公式; ቤተ መጻሕፍቲ ባይዱ接代入公式;
解1
运用公式推导的方法, 解2 运用公式推导的方法, 将所给方程的两边对 x 求导并移项
1 = 3 [FxxFz2 2FxzFxFz + FzzFx2 ] Fz
( Fx )Fz Fx ( Fz ) 2 z x = x 2 Fz2
Fx z = , Fz x
2z 2z 类似地可求得 , 2 x y y ②直接法 方程两边连续求导两次
z Fx + Fz = 0 x
z z 2 2z Fxx + 2 Fxz + Fzz ( ) + Fz 2 = 0 x x x
dy dz F ( x , y , z ) = 0 两边对 x 求导 怎样求 , dx dx
注意左边是复合函数(三个中间变量), 注意左边是复合函数(三个中间变量),
dy dz Fx + Fy + Fz = 0 dx dx
同理
dy dz Φ x + Φ y + Φz = 0 dx dx Fy Fz 若 则 J= ≠0 Φy Φz
练习题
一,填空题: 填空题:
y 1 ,设 ln x 2 + y 2 = arctan ,则 x dy = ___________________________. dx 2, 2,设 z x = y z ,则 z = ___________________________, x z = ___________________________. y 二,设 2 sin( x + 2 y 3 z ) = x + 2 y 3 z , z z 证明: + 证明: = 1. x y
(完整版)隐函数的求导方法总结

河北地质大学课程设计(论文)题目:隐函数求偏导的方法学院:信息工程学院专业名称:电子信息类小组成员:史秀丽角子威季小琪2016年05月27日摘要 (3)一.隐函数的概念 (3)二.隐函数求偏导 (3)1.隐函数存在定理1 (3)2.隐函数存在定理2 (4)3.隐函数存在定理3 (4)三. 隐函数求偏导的方法 (6)1.公式法 (6)2.直接法 (6)3.全微分法 (6)参考文献 (8)摘要本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导关键字:隐函数 偏导数 方法一.隐函数的概念一般地,如果变量满足方程,在一定条件下,当取某区间的任y x 和()0,=y x F x 一值时,相应地总有满足这方程的唯一的值存在,那么就说方程在该区间内y ()0,=y x F 确定了一个隐函数。
例如,方程表示一个函数,因为当变量在013=-+y x x 内取值时,变量有确定的值与其对应。
如。
()∞+∞-,y 等时时321,10=-===y x y x 二.隐函数求偏导1.隐函数存在定理1 设函数在P (x 。
,y 。
)在某一领域内具有连续偏导数,0),(=y x F 且,,则方程在点(x 。
,y 。
)的某一领域内恒能0),(= y x F 0),(≠ y x F y 0),(=y x F 唯一确定一个连续且具有连续导数的函数,它满足条件,并有)(x f y =)( x f y =。
yxy F F d d x -=例1:验证方程-=0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=12x 2y 时y=1的隐函数y=,并求该函数的导数在x=1处的值。
)(x fdxdy解令=-,则),(y x F 2x 2y=2x ,=-2y ,=0,=-2≠0x F y F )1,1(F )1,1(y F由定理1可知,方程-=0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函2x 2y 数,当x=1时,y=1的隐函数为y=x ,且有===dx dy y x F F-y x 22yx 故==11=x dxdy)1,(!yx2.隐函数存在定理2设函数在点的某一邻域内具有连续()z y x F,,)( z y x P ,,偏导数,且=0,,则方程在点的某一邻)( z y x F ,,0,,≠)( z y x F z ()0,,=z y x F () z y x ,,域内恒能唯一确定一个连续且具有连续偏导数的函数,它满足条件()y x f z ,=并有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百度文库- 让每个人平等地提升自我河北地质大学课程设计(论文)题目:隐函数求偏导的方法学院:信息工程学院专业名称:电子信息类小组成员:史秀丽角子威季小琪2016年05月27日摘要 (3)一.隐函数的概念 (3)二.隐函数求偏导 (3)1.隐函数存在定理1 (3)2.隐函数存在定理2 (4)3.隐函数存在定理3 (4)三. 隐函数求偏导的方法 (5)1.公式法 (5)2.直接法 (6)3.全微分法 (6)参考文献 (8)摘要本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法一.隐函数的概念一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确定了一个隐函数。
例如,方程013=-+y x 表示一个函数,因为当变量x 在()∞+∞-,内取值时,变量y 有确定的值与其对应。
如等时时321,10=-===y x y x 。
二.隐函数求偏导1.隐函数存在定理1 设函数0),(=y x F 在P (x 。
,y 。
)在某一领域内具有连续偏导数,且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。
,y 。
)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有yxy F F d d x -=。
例1:验证方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dxdy在x=1处的值。
解 令),(y x F =2x -2y ,则x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有dx dy =y x F F -=y x 22=yx故1=x dxdy=)1,(!yx=1 2.隐函数存在定理2 设函数()z y x F ,,在点)( z y x P ,,的某一邻域内具有连续偏导数,且)( z y x F ,,=0,0,,≠)( z y x F z ,则方程()0,,=z y x F 在点() z y x ,,的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数()y x f z ,=,它满足条件() y x f z ,=并有zy z x F F y zF F x z -=∂∂-=∂∂,。
例2:设函数()y x z z ,=由方程z y x z xy ++=2所确定,求yz∂∂ 解:设()z y x z xy z y x F ---=2,,则012≠-=xy F z (将x ,y 当常数,对z 求偏导)12-=xyz F z (将x ,y 当做常数,对y 求偏导)根据定理2:22112112xy xyz xy xyz F F y z z y --=---=-=∂∂ 3.隐函数存在定理3 设()v u y x F ,,,、()v u y x G ,,,在点()0000,,,v u y x P 的某一邻域内具有对各个变量的连续偏导数,又()()0,,,,0,,,00000000==v u y x G v u y x F ,且偏导数所组成的函数行列式(或称雅可比(Jacobi))()()v F vG u F u G v u G F J ∂∂∂∂∂∂∂∂=∂∂=,,在点()0000,,,v u y x P 不等于零,则方程组()()0,,,,0,,,00000000==v u y x G v u y x F 在点()0000,,,v u y x 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数),(),,(y x v v y x u u ==,它们满足条件),(000y x u u =,),(000y x v v =,并有GvGu Fv Fu Gv Gx FvFx v x G F J u -=∂∂-=∂∂),(),(1xGvGu Fv Fu Gx Gu FxFux u G F J v -=∂∂-=∂∂),(),(1xGv Gu Fv Fu Gv Gy FvFyv y G F J u -=∂∂-=∂∂),(),(1yGvGu Fv Fu Gy Gu FyFuy u G F J v -=∂∂-=∂∂),(),(1y例3:设1,0=+=-xv yu yv xu ,求.,,,yvx v y u x u ∂∂∂∂∂∂∂∂ 解:⎩⎨⎧→⎪⎩⎪⎨⎧⎩⎨⎧−−−−−→−-=∂∂⋅-∂∂⋅-=∂∂⋅+∂∂⋅=⋅∂∂-∂∂⋅+=∂∂⋅++∂∂⋅=-=+u xvy x u x v x v x x u y y x v x u x u x v x v x u y x yv xu xv yu 0001求导方程两边对由定理3可求 022≠+===-∂∂∂∂∂∂∂∂J y x J y xx y v F vG u F uG 且则22yx yvxu xu y xx y y x u v +=-==∂∂----22y x xvyu xv y xx y u v x y +-==∂∂---{⎪⎩⎪⎨⎧→⎪⎩⎪⎨⎧−−−−−→−=∂∂⋅-∂∂⋅-=∂∂⋅+∂∂⋅=∂∂⋅--∂∂⋅=∂∂⋅+∂∂⋅+=-=+v y v y y u x u yv x y u y yv y v y u x y vx y u y u yv xu xv yu 00y 01求导方程两边对同上可求得22y x yu xv y u +-=∂∂ 22yx yuxv y v +--=∂∂三. 隐函数求偏导的方法1.公式法:即将方程中所有非零项移到等式一边,并将其设为函数F,注意应将x,y,z 看作独立变量,对F(x,y,z)=0分别求导,利用公式=x z -Z X F F ,=y z-zy F F 。
类型条件公式()0,=y x F()00≠≠x y F F 或⎪⎪⎭⎫ ⎝⎛-=-=x y yx F F dx dyF F dx dy或 类型 条件 公式()0,,=z y x F0≠x Fxz x y F F z x F F y x -=∂∂-=∂∂,0≠y Fyz y x F F z y F F x y -=∂∂-=∂∂,0≠z Fzy z x F F y z F F x z-=∂∂-=∂∂,()(){,,,0,,,==v u y x F v u y x G()(),≠=∂∂=∂∂∂∂∂∂∂∂v F vG u F u G v u G F J ,()()v x G F J x u ,,1∂∂-=∂∂,()()x u G F J x v,,1∂∂-=∂∂ ()()v y G F J y u ,,1∂∂-=∂∂,()()y u G F J y v ,,1∂∂-=∂∂2.直接法:分别将F(x,y,z)=0两边同时对x,y 看作独立变量,z 是x,y 的函数,得到含yz x z ,的两个方程,解方程可求出yz x z ,.3.全微分法:利用微分形式的不变性,对所给方程两边求微分,整理成,),,(),,(dy z y x v dx z y x u dz +=则dy dx ,的系数便是yz x z ,,在求全微分时,z 应看做自变量.例1.已知x y y x arctan ln 22=+,求22dxy d . 解. 方法一:令22ln ),(y x y x F +=-)ln(21arctan 22y x x y +=xy arctan -则2222),(,),(y x xy y x F y x y x y x F yx +-=++=所以=dx dy =-y x F F xy y x -+-上式再对x 求导得3222'22)()(2)(22y x y x y x y xy dx y d -+=--= 方法二: 方程,0arctanln22=-+xyy x 两端分别对x 求导得 22'y x yy x ++022'=+--y x yxyyx y x dx dy -+= 3222'22)()(2)(22y x y x y x y xy dx y d -+=--= 方法三:方程xyy x arctan ln22=+,两端分别求微分得)(arctan )(ln 22xyd y x d =+利用全微分不定性,上式化为x yd xy y x dy dx 2222221121+=++ 由全微分运算法则计算并化简得3222'22)()(2)(22)()(y x y x y x y xy dx y d xy y x dx dy dxy x dy y x -+=--=-+=+=-参考文献【1】同济大学数学系.高等数学第七版下册【M】北京:高等教育出版社,【2】段生贵,曹南斌.高等数学学习指导【M】成都:电子科技大学出版社,【3】邵燕南.高等数学【M】北京:高等教育出版社,【4】王顺风,吴亚娟.高等数学【M】南京:东南大学出版社,【5】陈纪修,於崇华,金路.数学分析【M】北京:高等教育出版社,。