医学生专业生物化学课本知识点总结
医学生生物化学复习知识点总结

第一章蛋白质的结构与功能第一节蛋白质的分子组成1.主要组成元素:C(50%~55%), H(6%~7%), O(19%~24%) N,(13%~19%)S(0~4%)。
有些蛋白质还含有少量的磷和金属元素铁,铜等,个别蛋白质还含有碘。
其中蛋白质的含氮量比较稳定,平均为16%。
2.含氮量和蛋白质的计算公式:1gN = 6.25gPr3.蛋白质的基本组成单位:氨基酸。
(人体内有20种氨基酸参与蛋白质的合成,通常是L-a-氨基酸)4.结构通式:R-CH-COOH(其中R表示侧链基团)INH25.氨基酸的分类:(1)酸性氨基酸: 谷氨酸(GIu),天冬氨酸(Asp)(2)碱性氨基酸:精氨酸(Arg),赖氨酸(Lys),组氨酸(His)6.氨基酸具有的理化性质:(1)具有两性电离的性质。
其解离方式取决于其所处溶液的酸碱度。
所有的氨基酸都含有碱性的a-氨基和酸性a--羧基,可在酸性溶液中与质子(H+)结合带正电荷的阳离子(NH3+),也可在碱性溶液中与OH-结合,失去质子变成带负电荷的阴离子(-COO-)。
7.氨基酸的等电点:某一溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性电子,成电中性,该溶液的PH值为该氨基酸的等电点。
8.肽键:一分子氨基酸的a-羧基和一分子氨基酸的a-氨基脱水缩合形成的酰胺键,即-CO-NH-。
氨基酸戒肽键联结成多肽链,是蛋白质分子中的主要共价键,性质比较稳定。
9.多肽:十个以上和五十个以下的氨基酸残基。
10.谷胱甘肽(GSH):谷氨酸,半胱氨酸和组氨酸组成的三肽。
GSH的巯基(-SH)具有还原性,抗氧化作用强。
第二节蛋白质的分子结构1.蛋白质的一级结构(1)概念:氨基酸的排列顺序(2)主要化学键:二硫键(-S-S-)(3)结构特点:结构各不相同,一级结构是蛋白质空间构象和特异生物学功能的基础。
2.二级结构(1)概念:多肽链的局部有规则重复的主链构象。
(2)主要类型:A.参与肽键形成的6个原子在同一个平面。
医学生物化学知识点

医学生物化学知识点医学生物化学是医学专业的重要基础学科之一,主要研究生物体内的生物大分子结构和功能、代谢途径以及相关的调控机制。
本文将介绍一些医学生物化学中常见的知识点,帮助读者更好地理解这门学科的重要内容。
1. 蛋白质蛋白质是生物体内最重要的大分子,由氨基酸通过肽键连接而成。
蛋白质在生物体内起着各种重要的功能,如结构支持、酶催化、免疫调节等。
蛋白质的结构包括一级结构、二级结构、三级结构和四级结构,通过这些结构可以确定蛋白质的功能和作用机制。
2. 碳水化合物碳水化合物是生物体内重要的能量来源,也是细胞膜的主要组成成分。
碳水化合物包括单糖、双糖和多糖三种类型,通过糖酵解和糖异生途径可以转化为ATP分子,为生命活动提供能量。
3. 脂质脂质是生物体内的重要结构物质,包括甘油三酯、磷脂和固醇等多种类型。
脂质在细胞膜的组成中发挥重要作用,同时还参与能量存储和细胞信号传导等生物过程。
4. 核酸核酸是生物体内负责遗传信息传递的大分子,包括DNA和RNA两种类型。
DNA携带着细胞的遗传信息,通过遗传密码决定生物体的生长发育和功能表现;而RNA则参与蛋白质的合成和调控过程,是蛋白质合成的重要组成部分。
5. 酶酶是生物体内催化化学反应的生物催化剂,具有高度选择性和效率。
酶通过调节化学反应的活化能,加速生物体内代谢过程,参与碳水化合物、脂质、蛋白质等生物分子的合成和分解过程。
总结:医学生物化学知识点涉及到生物体内的各种组织和大分子的结构、功能、代谢途径和调控机制。
通过学习这些知识点,可以更好地理解生命的本质和机理,为医学研究和诊断治疗提供理论基础和实践指导。
希望本文所介绍的医学生物化学知识点对读者有所启发和帮助。
医学生物化学重要考点梳理

医学生物化学重要考点梳理生物化学是医学生物学的重要组成部分,它研究生物体内各种化学成分的组成、结构和功能以及它们的相互作用关系。
对于医学生物化学的学习,我们需要了解一些重要的考点,以便更好地掌握和应用这门学科知识。
本文将对医学生物化学中的重要考点进行梳理。
一、氨基酸和蛋白质1. 氨基酸的结构和分类氨基酸是构成蛋白质的基本单位,它们由一个中心碳原子、一个羧基、一个氨基和一个侧链组成。
根据侧链的性质,氨基酸可分为极性氨基酸、非极性氨基酸和特殊氨基酸。
2. 蛋白质的结构层级蛋白质的结构层级包括一级结构、二级结构、三级结构和四级结构。
一级结构指的是氨基酸的线性排列顺序,二级结构指的是蛋白质中氨基酸的局部空间排布模式,三级结构指的是整个蛋白质分子的立体构型,四级结构指的是由多个蛋白质亚单位组成的复合物。
3. 蛋白质的功能蛋白质具有多种功能,包括酶的催化作用、结构支持、运输和存储、抗体的免疫作用等。
了解蛋白质的功能有助于我们理解生命活动的机理。
二、酶和酶动力学1. 酶的性质和分类酶是生物体内的催化剂,可以加速化学反应的速率。
酶根据其催化反应的类型可分为氧化还原酶、转移酶、水解酶、异构酶等。
2. 酶的底物和产物结合方式酶与底物结合形成酶底物复合物,经过催化反应生成酶产物复合物,然后释放产物。
酶底物结合方式包括酶亲和力、酶底物复合物的稳定性等。
3. 酶动力学参数酶动力学参数包括酶的最大催化速率(Vmax)、酶的底物浓度为一半时的催化速率(Km)以及酶的催化效率(kcat/Km)等。
了解这些参数有助于研究酶的催化机理以及制定相应的抑制剂。
三、代谢途径和能量转化1. 糖酵解途径糖酵解是生物细胞中糖类代谢的重要途径,它将葡萄糖分解成乳酸或丙酮酸,同时产生少量ATP。
了解糖酵解途径有助于我们了解能量的产生和利用过程。
2. 三羧酸循环三羧酸循环是生物体内能量产生的中心环节,它将葡萄糖、脂肪酸和氨基酸氧化分解,产生大量的还原能,主要以NADH和FADH2的形式存在。
生物化学重点笔记(基本知识)

生物化学重点绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第一章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
医疗生化知识点总结

医疗生化知识点总结一、生物分子基础1. 蛋白质蛋白质是生物体的重要组成成分,是由氨基酸通过肽键连接而成的大分子化合物。
蛋白质的结构包括一级结构(氨基酸序列)、二级结构(α-螺旋和β-折叠)、三级结构(立体构象)和四级结构(多肽亚单位的组合)。
蛋白质的功能包括酶、激素、抗体、结构蛋白等。
2. 糖类糖类是生物体内重要的能量来源,包括单糖、双糖、多糖等。
糖类在生物体内参与能量代谢、细胞信号传导等生理过程。
3. 脂类脂类是生物体内的重要结构成分,包括甘油三酯、磷脂、胆固醇等。
脂类在细胞膜结构、能量储备、信号传导等方面发挥重要作用。
4. 核酸核酸包括DNA和RNA,是生物体内遗传信息的载体。
DNA包括双链DNA和单链DNA,RNA包括mRNA、tRNA、rRNA等。
核酸在遗传信息传递、蛋白质合成等生理过程中起重要作用。
二、细胞生物化学1. 细胞膜结构细胞膜由磷脂双分子层和蛋白质组成,具有选择性通透性。
细胞膜在维持细胞内外环境平衡、细胞信号传导等方面发挥重要作用。
2. 能量代谢能量代谢包括糖酵解、三羧酸循环和氧化磷酸化等过程,是细胞内产生能量的重要途径。
这些过程产生的ATP是细胞内的能量储备。
3. 细胞信号传导细胞信号传导包括细胞外信号(激素、生长因子等)通过受体与细胞内信号传导蛋白(G蛋白、酶联受体等)相互作用,最终调节细胞内的生理过程。
4. 细胞凋亡细胞凋亡是细胞自身程序性死亡,参与机体发育、免疫调节等生理过程。
细胞凋亡与肿瘤、神经退行性疾病等疾病的发生发展密切相关。
三、临床生化检测1. 血清生化指标血清生化指标包括血糖、血脂、肝功能指标、肾功能指标、电解质等,可以反映机体的代谢、排泄、内分泌等状况。
2. 酶学指标酶学指标包括丙氨酸氨基转移酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP)、γ-谷氨酰转移酶(GGT)等,可以反映肝脏、心肌等组织损伤的程度。
3. 肿瘤标志物肿瘤标志物是一些特异性蛋白质,可以通过血清或尿液检测来辅助肿瘤的诊断、疗效评价和预后判断。
医学生物化学知识点

医学生物化学知识点医学生物化学是一门研究生物体内分子结构、功能和代谢过程的学科。
它是医学生物学和生物化学的交叉学科,对医学发展和临床实践具有重要的意义。
本文将介绍一些医学生物化学的基础知识点,包括蛋白质、核酸、糖类和代谢等方面。
一、蛋白质1.1 蛋白质的组成蛋白质由氨基酸组成,氨基酸分为20种常见氨基酸和一些稀有氨基酸。
其中,20种常见氨基酸可以分为两类,一类是疏水性氨基酸,一类是亲水性氨基酸。
1.2 蛋白质的结构蛋白质的结构包括一级结构、二级结构、三级结构和四级结构。
一级结构是指多肽链的氨基酸序列,二级结构是指蛋白质的局部空间排布方式,包括α螺旋和β折叠等形式,三级结构是指蛋白质整体的三维结构,四级结构是指由多个多肽链组合而成的复合物。
1.3 蛋白质的功能蛋白质是细胞的重要组成部分,具有多种功能,包括结构支持、酶催化、运输、信号传导等。
例如,肌动蛋白和微管蛋白是细胞骨架的主要组成部分,DNA聚合酶是参与DNA复制的关键酶。
二、核酸2.1 核酸的组成核酸是由核苷酸组成,核苷酸由碱基、糖和磷酸组成。
核酸可分为DNA和RNA两类,其中DNA是遗传信息的携带者,RNA参与蛋白质合成等生物过程。
2.2 核酸的结构DNA的结构是双螺旋结构,由两个互补链通过碱基配对而形成。
碱基配对规则是腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,鸟嘌呤(G)与胞嘧啶(C)之间形成三个氢键。
2.3 核酸的功能核酸具有储存、传递和表达遗传信息的功能。
DNA通过遗传物质的复制和遗传物质的转录过程,将遗传信息传递给下一代细胞。
RNA参与蛋白质合成的过程,是信息的中间传递者。
三、糖类3.1 糖类的分类糖类可以分为单糖、双糖和多糖三类。
单糖是最基本的糖单元,双糖由两个单糖分子通过糖苷键连接而成,多糖是由多个单糖分子组成。
3.2 糖类的功能糖类是细胞的重要能量来源,参与细胞的代谢过程。
此外,糖类还具有结构支持和细胞识别的功能。
例如,葡萄糖是主要的能量供应物质,胰岛素是调节血糖水平的重要激素。
生物化学必看知识点总结优秀

引言概述:生物化学是研究生物体内化学成分的组成、结构、功能以及各种生物化学过程的机理的学科。
掌握生物化学的基本知识是理解生物体内各种生命现象的基础,也是进一步研究生物医学、生物工程等领域的必备知识。
本文将从分子生物学、酶学、代谢、蛋白质和核酸等五个方面,总结生物化学中必看的知识点。
正文内容:1.分子生物学1.1DNA的结构和功能1.1.1DNA的碱基组成1.1.2DNA的双螺旋结构1.1.3DNA的复制和转录过程1.2RNA的结构和功能1.2.1RNA的种类和功能区别1.2.2RNA的结构和特点1.2.3RNA的转录和翻译过程1.3蛋白质的结构和功能1.3.1氨基酸的结构和分类1.3.2蛋白质的三级结构和四级结构1.3.3蛋白质的功能和种类1.4基因调控1.4.1转录调控和翻译调控1.4.2基因的启动子和转录因子1.4.3RNA的剪接和编辑1.5遗传密码1.5.1遗传密码的组成和特点1.5.2密码子的解读和起始密码子1.5.3用户密码监测2.酶学2.1酶的分类和特点2.1.1酶的命名规则和酶的活性2.1.2酶的结构和功能2.1.3酶的催化机制2.2酶促反应动力学2.2.1酶反应速率和反应速率常数2.2.2酶的最适温度和最适pH值2.2.3酶的抑制和激活调节2.3酶的应用2.3.1酶工程和酶的改造2.3.2酶在医学和工业上的应用2.3.3酶和药物相互作用3.代谢3.1糖代谢3.1.1糖的分类和代谢路径3.1.2糖酵解和糖异生3.1.3糖的调节和糖尿病3.2脂代谢3.2.1脂的分类和代谢途径3.2.2脂肪酸的合成和分解3.2.3脂的调节和脂代谢疾病3.3氮代谢3.3.1氨基酸的合成和降解3.3.2尿素循环和氨的排出3.3.3蛋白质的降解和合成3.4核酸代谢3.4.1核酸的合成和降解途径3.4.2核酸的功能和结构特点3.4.3DNA修复和基因突变3.5能量代谢调节3.5.1ATP的合成和利用3.5.2代谢途径的调节和平衡3.5.3能量代谢和细胞呼吸4.蛋白质4.1蛋白质的结构和维持4.1.1蛋白质结构的层次和稳定性4.1.2蛋白质质量控制和折叠4.2蛋白质表达和合成4.2.1蛋白质的翻译和翻译后修饰4.2.2蛋白质的定位和运输4.2.3蛋白质合成的调节和失调4.3蛋白质与疾病4.3.1蛋白质异常与疾病的关系4.3.2蛋白质药物和治疗策略4.3.3蛋白质组学在疾病研究中的应用5.核酸5.1DNA的复制和修复5.1.1DNA复制的机制和控制5.1.2DNA损伤修复和维持稳定性5.1.3DNA重组和基因转座5.2RNA的合成和调控5.2.1RNA转录的调节和翻译5.2.2RNA剪接和编辑5.2.3RNA和疾病的关系5.3RNA干扰和基因沉默5.3.1RNA干扰机制和调控5.3.2RNA干扰在基因治疗中的应用5.3.3RNA沉默和抗病毒防御总结:生物化学是研究生物体内化学成分和生物化学过程的重要学科,掌握其中的关键知识点对于理解生命的本质和生物体的正常功能至关重要。
生物化学各章知识点总结

生物化学各章知识点总结一、生物化学基本概念1. 生物化学的基本概念生物化学是在分子水平上研究生物体内各种生物分子之间的相互作用和生物体内生物分子的合成、转化和降解规律的一门学科。
生物体内的生物分子包括蛋白质、核酸、碳水化合物、脂类等,它们是生物体内最基本的能量来源和结构组分。
2. 生物大分子的结构和功能(1)蛋白质是生物体内最重要的大分子,是生命活动的基本组成单元,具有结构、酶、携氧、抗体等生物学功能。
(2)核酸是生物体遗传信息的基本载体,包括DNA和RNA两大类,是生物体的遗传物质,具有储存遗传信息和遗传信息传递的功能。
(3)碳水化合物是生物体内最常见的有机化合物,是生物体内能量转化和物质代谢的主要来源。
(4)脂类是生物体内主要的储存能量的物质,还在细胞膜的结构和功能中起重要作用。
二、蛋白质的结构和功能1. 蛋白质的结构(1)蛋白质的结构级别蛋白质的结构级别包括一级结构、二级结构、三级结构和四级结构。
一级结构是指蛋白质的氨基酸序列,二级结构是指蛋白质的α-螺旋、β-折叠等次级结构,三级结构是指蛋白质的立体构象,四级结构是指蛋白质的多肽链之间的相互作用。
(2)蛋白质的构象变化蛋白质的构象包括原生构象、变性构象和热力学稳定性构象。
蛋白质的构象变化直接影响着蛋白质的功能。
2. 蛋白质的功能蛋白质作为生物体内最主要的功能分子,具有结构、酶、携氧、抗体等多种功能。
其中,酶是蛋白质的主要功能之一,是细胞内代谢调节的主要媒介,参与了生物体内几乎所有的代谢过程。
三、酶的性质和功能1. 酶的结构和功能(1)酶的结构酶是一种大分子蛋白质,其结构由氨基酸残基序列决定,具有特定的三级结构和活性位点。
(2)酶的功能酶是生物体内最主要的催化剂,能够加速生物体内化学反应的进行,参与了生物体内的新陈代谢。
2. 酶的性质(1)酶的活性酶的活性受到多种因素的影响,包括温度、pH值、金属离子等。
(2)酶的抑制酶的活性可以被抑制,包括竞争性抑制、非竞争性抑制等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物化学重点蛋白质的元素组成:碳氢氧氮,测定的含氮量:除以16%= pr的含量,如氮5克pr为31.5克。
L-α-氨基酸其(脯氨酸是一种L-α-亚氨基酸),,酸性氨基酸:天门冬氨酸,谷氨酸; 碱性氨基酸赖氨酸精氨酸组氨酸。
蛋白质的理化性质:1.两性解离与等电点:蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸一样具有两性解离的性质。
在某一PH溶液中,蛋白质分子所带正、负电荷相等时,此时整个分子呈电中性,此时的pH值称为蛋白质的等电点。
2.蛋白质的胶体性质:蛋白质具有亲水溶胶的性质。
蛋白质分子表面的水化膜和表面所带的同性电荷是稳定蛋白质亲水溶胶的两个重要因素。
3.蛋白质的紫外吸收:蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强,最大吸收峰为280nm。
4.蛋白质的变性:在某些理化因素的作用下,破坏蛋白质分子的副键,其特定的空间结构被破坏而导致其理化性质改变及生物活性丧失,这种现象称为蛋白质的变性。
引起蛋白质变性的因素有:高温、高压涉及的化学键二硫键非共价键!蛋白质维持一级结构稳定的化学键:肽键,二硫键二级结构的主要形式:α-螺旋,β-折叠,β-转角,无规卷曲三级结构结构稳定因素:氢键、疏水键、范德华力、盐键,二硫键!DNA的二级结构①为右手双螺旋,两条链以反平行方式排列;②主链位于螺旋外侧,碱基位于内侧;③两条链间存在碱基互补,通过氢键连系,且A-T、G-C(碱基互补原则);④螺旋的稳定因素为氢键和碱基堆积力;⑤螺旋的螺距为3.4nm,直径为2nm。
!蛋白质的合成时与密码子AUG结合物质是甲硫氨酸反密码子CAU!核酸中核苷酸连接的化学键为3’,5’-磷酸二酯键,核苷中碱基与戊糖的连接键为N-C糖苷键! tRNA三叶草结构中的四个环:双氢尿嘧啶环,反密码子环,额外环,TψC环!维生素A的分类:维生素A的化学结构是含有脂环的不饱和一元醇A1视黄醇在海鱼肝脏A23-脱氢视黄醇淡水鱼,A2比A1在环上多一个双键,但其活性只有A1的一半,!.TPP:即焦磷酸硫胺素,由硫胺素(Vit B1)焦磷酸化而生成,是脱羧酶的辅酶,在体内参与糖代谢过程中α-酮酸的氧化脱羧反应。
!黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),是核黄素(VitB2)的衍生物在小肠中被黄素激酶催化。
FMN或FAD通常作为脱氢酶的辅基,在酶促反应中作为递氢体(双递氢体)!VD2麦角钙化醇VD3胆钙化醇,.生物素:是羧化酶的辅基,在体内参与CO2的固定和羧化反应。
FH4:由叶酸衍生而来。
四氢叶酸是体内一碳单位基团转移酶系统中的辅酶。
!酶促反应的特点:1.具有极高的催化效率:2.具有高度的底物特异性:一种酶只作用于一种或一类化合物,以促进一定的化学变化,生成一定的产物,这种现象称为酶作用的特异性。
⑴绝对特异性:琥珀酸脱氢酶。
⑵相对特异性脂肪酶。
⑶立体异构特异性L-精氨酸酶。
3.酶的催化活性是可以调节的:4酶的不稳定性!结合酶的组成及功能:全酶由酶蛋白和铺因子,铺因子由铺酶和金属离子组成,金属离子的作用:1. 稳定构象:稳定酶蛋白催化活性所必需的分子构象;2. 构成酶的活性中心:作为酶的活性中心的组成成分,参与构成酶的活性中心;3. 连接作用:作为桥梁,将底物分子与酶蛋白整合起来。
4传递电子。
酶蛋白具有专一性辅酶和辅基的作用:化学反应中传递电子质子或一些基团!酶的活性中心:与酶的活性直接相关的基团为酶的必需基团(结合基团和催化集团),必需基团集中存在形成具有一定空间结构的区域,特异地与底物结合,直接催化底物向产物转变,该区称为··! 酶促反应快的因素:底物浓度和酶的浓度(矩形双曲线)PH 温度(钟形曲线)抑制剂,激活剂。
!米氏方程:ν= Vmax[S]/(Km+[S])。
其中,Vmax为最大反应速度,Km为米氏常数。
⑶Km和Vmax的意义:①当ν=Vmax/2时,Km=[S]Km等于酶促反应速度达最大值一半时的底物浓度。
②当Km值越小,则酶与底物的亲和力越大;反之,则越小。
③反映激活剂与激动剂的存在④Km是酶的特征性常数。
⑤Km可用来判断酶的最适底物:Km值最小者,为该酶的最适底物。
⑥Km可用来确定酶活性测定时所需的底物浓度:⑦Vmax可用于酶的转换数的计算!不可逆性抑制剂:以共价键与酶的必需基团进行不可逆结合而使酶丧失活性。
1共价键2有机磷化物对胆碱酯酶3金属离子对硫基物的抑制作用。
!可逆性抑制剂:1以非共价键结合而使酶的活性降低或丧失2用透析超滤等物理方法将抑制剂除去后,酶的活性可以恢复,以此种抑制作用称为··!竞争性抑制作用的特点:1抑制剂与底物结构相似2竞争性占据酶的活性中心3抑制作用的强弱取决于抑制剂与底物的相对作用!磺胺药抑菌机理1属于可逆抑制2增加底物浓度抑制作用减弱3磺胺药与酶的活性中心基团结合抑制二氢叶酸合成酶!糖的无氧酵解:指葡萄糖或糖原在无氧条件下分解生成乳酸并释放出能量的过程。
其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子A TP。
糖的无氧酵解代谢过程可分为四个阶段: 1. 活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。
这一阶段需消耗两分子A TP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。
2. 裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸二羟丙酮+ 3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。
3. 放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。
此阶段有OOHHHH2O3POCH2CH2OHOHHOHOOHOHHHH OHHCH2OHHOPO3H2磷酸己糖异构酶(G-6-P)6磷酸葡萄糖(F-6-P)6磷酸糖果两次底物水平磷酸化的放能反应,共可生成2×2=4分子A TP。
丙酮酸激酶为关键酶。
4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。
即丙酮酸→乳酸。
!糖无氧酵解的调节:关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。
己糖激酶的变构抑制剂是G-6-P;肝中的葡萄糖激酶是调节肝细胞对葡萄糖吸收的主要因素,受长链脂酰CoA的反馈抑制;6-磷酸果糖激酶-1是调节糖酵解代谢途径流量的主要因素,受A TP和柠檬酸的变构抑制,AMP、ADP、1,6-双磷酸果糖和2,6-双磷酸果糖的变构激活;丙酮酸激酶受1,6-双磷酸果糖的变构激活,受A TP的变构抑制,肝中还受到丙氨酸的变构抑制。
!糖无氧酵解的生理意义: 1. 在无氧和缺氧条件下,作为糖分解供能的补充途径:⑴骨骼肌在剧烈运动时的相对缺氧;⑵从平原进入高原初期;⑶严重贫血、大量失血、呼吸障碍、肺及心血管疾患所致缺氧。
2. 在有氧条件下,作为某些组织细胞主要的供能途径:如表皮细胞,红细胞及视网膜等,由于无线粒体,故只能通过无氧酵解供能。
糖的有氧氧化:葡萄糖或糖原在有氧条件下彻底氧化分解生成C2O和H2O,并释放出大量能量的过程称为糖的有氧氧化。
绝大多数组织细胞通过糖的有氧氧化途径获得能量。
此代谢过程在细胞胞液和线粒体内进行,一分子葡萄糖彻底氧化分解可产生36/38分子A TP。
糖的有氧氧化代谢途径可分为三个阶段:1.葡萄糖经酵解途径生成丙酮酸:阶段在细胞胞液中进行,与糖的无氧酵解途径相同,涉及的关键酶也相同。
2.丙酮酸磷酸葡萄糖变位酶OOHOHHH OHHCH2OHHOHPO3H2OOHOHHHH OHHCH2OHHOPO3H2(G-1-P)磷酸葡萄糖1(G-6-P)6磷酸葡萄糖氧化脱羧生成乙酰CoA : 丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化下氧化脱羧生成(NADH+H+)和乙酰CoA 。
此阶段可由两分子(NADH+H+) 丙酮酸脱氢酶系为关键酶,该酶由三种酶单体构成,涉及六种辅助因子,即NAD+、FAD 、CoA 、TPP 、硫辛酸和Mg2+。
3.经三羧酸循环彻底氧化分解:生成的乙酰CoA 可进入三羧酸循环彻底氧化分解为CO2和H2O ,并释放能量合成A TP 。
一分子乙酰CoA 氧化分解后共可生成12分子A TP ,故此阶段可生成2×12=24分子A TP 。
三羧酸循环是指在线粒体中,乙酰CoA 首先与草酰乙酸缩合生成柠檬酸,然后经过一系列的代谢反应,乙酰基被氧化分解,而草酰乙酸再生的循环反应过程,由八步反应构成:(1)柠檬酸生成 在柠檬酸合成酶催化下,乙酰CoA 与草酰乙酸缩合生成柠檬酰CoA ,后再水解成柠檬酸和CoA ,此过程不可逆,是三羧酸循环的第一个限速步骤。
CH 3COSCoA COOH C +H 2O+CoASH+柠檬酸酰辅酶A 乙柠檬酸合 酶O=COOHCH 2C COOH HO CH 2COOHCH 2COOH草酰乙酸(2)柠檬酸转变为异柠檬酸 柠檬酸在乌头酸酶催化下,先脱水再水化反应生成异柠檬酸,为氧化脱羧做准备。
柠檬酸CHCOOH CCOOH CH 2COOHCHCOOHCHCOOH CH 2COOH异 柠檬酸顺 乌头 酸H 2OH 2OCHCOOH CH 2COOHCOOHC HO H HO(3)异柠檬酸氧化脱羧生成α-酮戊二酸 在异柠檬酸脱氢酶催化下,异柠檬酸脱氢后迅速脱羧生成α-酮戊二酸。
这是三羧酸循环第一次脱羧生成CO2的反应,使六碳化合物转变为五碳化合物,脱下的2H 由NAD +传递。
CCOOHCHCOOHCH 2COOHO 草酰琥珀酸COCOOHCH 2CH 2COOHNAD 异柠檬酸脱氢酶异柠檬酸脱氢酶+CO 2++NADH+H CHCOOHCHCOOH CH 2COOH O H α-酮 戊 二酸异柠檬酸(4)α-酮戊二酸氧化脱羧生成琥珀酰CoA α-酮戊二酸受α-酮戊二酸脱氢酶系催化,生成琥珀酰CoA 。
这是三羧酸循环的第二次脱羧,使五碳化合物转变为四碳化合物。
+CoA-SH NAD+CH 2COOHCH 2COSCoA+CO 2+NADH H++琥 珀 酰 CoA+COCOOH CH 2CH 2COOHα- 酮 戊 二酸脱氢酶系α-酮 戊 二酸(5)琥珀酰CoA 转变成琥珀酸 此反应由琥珀酰CoA 合成酶(也称琥珀酸硫激酶)催化,在H3PO4和GDP 存在下,琥珀酰CoA 生成琥珀酸。
琥珀酰CoA 高能硫酯基团的能量转移,使GDP 生成GTP 。