材料成型基本原理
材料成型基本原理

材料成型基本原理材料成型是指通过一定的工艺方法,将原材料加工成所需形状和尺寸的工件的过程。
在工程制造中,材料成型是非常重要的一环,它直接关系到产品的质量、效率和成本。
而材料成型的基本原理则是在材料的物理性能和加工工艺的相互作用下,实现材料的形状改变和尺寸精度控制。
首先,材料成型的基本原理包括了材料的塑性变形和断裂行为。
在加工过程中,材料会受到外力的作用,从而发生塑性变形,使得原材料形成所需的形状。
而材料的塑性变形又受到材料的物理性能和加工条件的影响,例如材料的硬度、韧性、屈服强度等,以及加工温度、应变速率等因素。
在材料成型过程中,需要根据不同材料的特性和加工要求,选择合适的成型工艺,以实现塑性变形的控制和优化。
其次,材料成型的基本原理还包括了材料的流变行为和变形机制。
在材料成型过程中,材料会发生流变行为,即在受力作用下发生形变。
而材料的流变行为又受到应力、温度、应变速率等因素的影响,从而影响材料的变形机制和成型效果。
在实际工程中,需要通过实验和模拟手段,研究材料的流变行为和变形机制,以指导成型工艺的优化和控制。
最后,材料成型的基本原理还包括了成型工艺的设计和优化。
在实际生产中,需要根据产品的设计要求和加工条件,选择合适的成型工艺,以实现材料的形状改变和尺寸精度控制。
而成型工艺的设计和优化又涉及到材料的选择、模具设计、加工参数的确定等方面,需要综合考虑材料的特性和加工要求,以实现成型工艺的高效、稳定和可控。
综上所述,材料成型的基本原理是在材料的物理性能和加工工艺的相互作用下,实现材料的形状改变和尺寸精度控制。
在实际工程中,需要深入理解材料成型的基本原理,通过科学的方法和手段,指导成型工艺的优化和控制,以实现产品质量的提升和生产效率的提高。
材料成型基本原理课后答案解析

第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明相同点不同点液体具有自由表面;可压缩性很低具有流动性,不能承受切应力;远程无序,近程有序固体不具有流动性,可承受切应力;远程有序液体完全占据容器空间并取得容器内腔形状;具有流动性远程无序,近程有序;有自由表面;可压缩性很低气体完全无序;无自由表面;具有很高的压缩性(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。
由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。
2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。
N1 表示参考原子周围最近邻(即第一壳层)原子数。
r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。
3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。
答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。
近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。
材料成型基本原理作业及答案

第二章凝固温度场4. 比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。
解:一般在体积相同的情况下上述物体的表面积大小依次为:A 球<A 块<A 板<A 杆根据 K R =τ 与 11A V R = 所以凝固时间依次为: t 球>t 块>t 板>t 杆。
5. 在砂型中浇铸尺寸为30030020 mm 的纯铝板。
设铸型的初始温度为20℃,浇注后瞬间铸件-铸型界面温度立即升至纯铝熔点660℃,且在铸件凝固期间保持不变。
浇铸温度为670℃,金属与铸型材料的热物性参数见下表:热物性材料导热系数λ W/(m ·K) 比热容C J/(kg ·K) 密度ρ kg/m 3 热扩散率a m 2/s 结晶潜热 J/kg 纯铝212 1200 2700 6.510-5 3.9105砂型 0.739 1840 1600 2.510-7 试求:(1)根据平方根定律计算不同时刻铸件凝固层厚度s,并作出τ-s 曲线;(2)分别用“平方根定律”及“折算厚度法则”计算铸件的完全凝固时间,并分析差别。
解:(1) 代入相关已知数解得: 2222ρλc b =,=1475 ,()()[]S i T T c L T T b K -+ρπ-=10112022 = 0.9433 (m s m /)根据公式K ξτ=计算出不同时刻铸件凝固层厚度s 见下表,τξ-曲线见图3。
τ (s) 020 40 60 80 100 120 ξ (mm)0 4.22 6.00 7.31 8.44 9.43 10.3(2) 利用“平方根定律”计算出铸件的完全凝固时间:图3 τξ-关系曲线取ξ =10 mm , 代入公式解得: τ=112.4 (s) ;利用“折算厚度法则”计算铸件的完全凝固时间:11A V R = = 8.824 (mm) 2⎪⎭⎫ ⎝⎛=K R τ = 87.5 (s) 采用“平方根定律”计算出的铸件凝固时间比“折算厚度法则”的计算结果要长,这是因为“平方根定律”的推导过程没有考虑铸件沿四周板厚方向的散热。
材料成型基本原理完整版

第一章:液态金属的结构与性质1雷诺数Re:当Re>2300时为紊流,Re<2300时为层流。
Re=Du/v=Duρ/η,D为直径,u 为流动速度,v为运动粘度=动力粘度η/密度ρ。
层流比紊流消耗能量大。
2表面张力:表面张力是表面上平行于切线方向且各方向大小相同等的张力。
润湿角:接触角为锐角时为润湿,钝角时为不润湿。
3压力差:当表面具有一定的曲度时,表面张力将使表面的两侧产生压力差,该压力差值的大小与曲率半径成反比,曲率半径越小,表面张力的作用越显著。
4充型能力:充型过程中,液态金属充满铸型型腔,获得形状完整轮廓清晰的铸件的能力,即液态金属充型能力。
5长程无序、近程有序:液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性,表现出长程无序特征;而相对于完全无序的气体,液体中存在着许多不停游荡着的局域有序的原子集团,液体结构表现出局域范围内的近程有序。
拓扑短程序:Sn Ge Ga Si等固态具有共价键的单组元液体,原子间的共价键并未完全消失,存在着与固体结构中对应的四面体局域拓扑有序结构。
化学短程序:Li-Pb Cs-Au Mg-Bi Mg-Zn Mg-Sn Cu-Ti Cu-Sn Al-Mg Al-Fe等固态具有金属间化合物的二元熔体中均有化学短程序的存在。
6实际液态金属结构:实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇空穴所组成,同时也含有各种固态液态和气态杂质或化合物,而且还表现出能量结构及浓度三种起伏特征,其结构相对复杂。
能量起伏:液态金属中处于热运动的原子的能量有高有低,同一原子的能量也在随时间不停的变化,时高时低,这种现象成为能量起伏。
结构起伏:由于能量起伏,液体中大量不停游动的局域有序原子团簇时聚时散,此起彼伏而存在结构起伏。
浓度起伏:游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化,这一现象成为浓度起伏。
材料成型原理教案

材料成型原理教案教案名称:材料成型原理教学目标:1.理解材料成型原理的概念和基本原理。
2.掌握常见的材料成型方法和工艺流程。
3.能够分析材料成型过程中可能遇到的问题,并提出解决方案。
教学重点:1.材料成型原理的基本概念和基本原理。
2.常见的材料成型方法和工艺流程。
教学难点:1.对材料成型过程中可能遇到的问题进行分析,并提出解决方案。
教学准备:教材、幻灯片、实物样品、案例分析。
教学过程:一、导入(15分钟)1.引入材料成型原理的概念和目的。
2.分析材料成型在日常生活中的应用。
3.提出学生对材料成型原理的认知问题。
二、材料成型原理的基本概念和基本原理(30分钟)1.解释材料成型的概念和作用。
2.介绍材料成型的基本原理,包括材料形状和结构改变的原理等。
3.分析材料成型的条件和限制。
三、常见的材料成型方法和工艺流程(30分钟)1.介绍常见的材料成型方法,包括压力成型、热成型、冷成型、注射成型等。
2.分析各种成型方法的适用范围和特点。
3.展示实物样品,辅助学生理解不同成型方法的应用实例。
四、案例分析(30分钟)1.基于实际案例,引导学生分析材料成型过程中可能遇到的问题。
2.分组讨论,并提出解决方案。
3.学生代表展示讨论结果,并进行讨论和补充。
五、总结与拓展(15分钟)1.总结今天的教学内容,强调材料成型原理的重要性。
2.拓展材料成型原理的应用领域和发展趋势。
3.提出学生对材料成型原理的进一步学习方向和方法。
教学手段:1.课堂讲授:通过讲解、演示和提问等方式,让学生学习材料成型原理的基本概念和基本原理。
2.案例分析:通过实际案例的分析,让学生应用所学知识解决问题,提高解决问题的能力。
3.小组讨论:通过小组讨论的形式,培养学生的合作能力和团队意识。
教学评估:1.教师观察学生的参与情况和学习态度。
2.课堂讨论:根据学生的回答和讨论的内容,评估学生对材料成型原理的理解程度。
3.案例分析:评估学生对材料成型过程中可能遇到的问题并提出解决方案的能力。
材料成型原理复习总结

材料成型原理复习总结名词解释:1溶质平衡分配系数:定义为特定温度下固相合金成分浓度与液相合金成分浓度达到平衡时的比值。
2液态金属的充型能力:充型过程中,液态金属充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力。
3孕育处理:是在浇注之前或者浇注过程中向液态金属中添加少量物质以达到细化晶粒,改善宏观组织目的的一种工艺方法。
4最小阻力定律:当变形体质点有可能沿不同方向移动时,则物体各质点将沿着阻力最小的方向移动。
5金属的超塑性:所谓超常的塑性变形行为,具有均匀变形能力,其伸长率可以达到百分之几百,甚至几千,这就是金属的超塑性6定向凝固原则:就是在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,尔后是靠近你冒口部位凝固,最后才是冒口本身的凝固。
7偏析:合金在凝固过程中发生的化学成分不均匀的现象称为偏析。
8平衡凝固:是指液,固相溶质成分完全达到平衡状态图对应温度的平衡成分。
9相变应力:具有固态相变的合金,若各部分发生相变的时刻及相变的程度不同,其内部就可能产生应力,这种应力就成为相变引力。
10晶体择优生长:在发展成为柱状晶组织的过程中需要淘汰取向不利的晶体,这个互相竞争淘汰的晶体生长过程称为晶体的择优生长。
简答题1.简述金属压力加工(塑性成形)的特点和应用。
答:1生产效率高。
(适用于大批量生产)2.改善了金属的组织和结构(钢锭内部的组织缺陷经塑性变形后组织变得致密,夹杂物被击碎;与机械加工相比,金属的纤维组织不会被切断,因而结构性能得到提高)3材料的利用率高(无切削,只有少量的工艺废料,因此利用率高)4尺寸精度高(精密锻造,精密挤压,精密冲裁零件,可以达到不需要机械加工就可以使用的程度)应用:金属的塑性加工在汽车,拖拉机,船舶,兵器,航空和家用电器等行业都有广泛的应用。
2.什么是缩孔和缩松?请分别简述这两种铸造缺陷产生的条件和基本原因。
答:铸件在凝固的过程中,由于合金的液态收缩和凝固收缩,往往在铸件最后凝固的部位出现孔洞.容积大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。
材料成型基本原理期末考试

材料成型基本原理期末考试一、题目解析1.1 题目背景材料成型是指通过加工和改变材料的形状、结构和性能,将材料转化为所需产品的过程。
材料成型基本原理是材料工程学中的重要内容,对于理解材料的性质和制备过程具有关键意义。
本次期末考试旨在考察学生对材料成型基本原理的理解和掌握程度,以检验其对材料工程学知识的灵活运用能力。
1.2 题目要求本次期末考试分为两个部分,共计四道题目。
结构如下:•第一部分:选择题,包括单选题和多选题。
•第二部分:解答题,要求对题目进行详细解答。
二、选择题部分2.1 单选题1.材料成型的基本原理是指()a.获得理想材料的制备方法b.通过加工和改变材料的形状、结构和性能来制备材料c.确定材料的使用条件d.材料在特定条件下的物理、化学和机械性能的变化2.下列哪一项不属于常见的材料成型方法()a.压力成型b.粉末冶金c.离子掺杂d.热处理3.下列哪种常见材料成型方法主要用于金属类材料()a.挤压b.注塑c.热压d.拉伸4.在注塑成型方法中,下列哪一项不属于注塑机的组成部分()a.锁模机构b.注射系统c.温控系统d.冷却系统2.2 多选题1.下列哪些材料成型方法适用于聚合物材料()a.注塑b.热压c.真空吸塑d.高温火焰喷射2.材料成型的基本原理包括()a.加工和改变材料形状的方法b.改变材料结构和性能的途径c.制备理想材料的过程d.材料使用条件的确定三、解答题部分3.1 问题一请简要描述选择注塑成型方法的优点和适用范围。
3.2 问题二请解释挤压成型方法的基本原理,并结合实际案例说明其应用。
3.3 问题三请以铸造成型方法为例,简要介绍其工艺流程,并分析铸造成型方法的局限性。
3.4 问题四请说明粉末冶金成型方法的特点和应用领域。
四、答题要求1.答题过程中应注意合理组织答案结构,条理清晰,语句通顺。
2.对于解答题,应结合相关理论进行阐述,并加以实际案例或具体数据支持。
3.题目要求的解答字数范围为200-300字。
材料成型基本原理复习

1-3 如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。
近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。
晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。
而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。
②从金属熔化过程看物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化 Vm/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
另一方面,金属熔化潜热 Hm约为气化潜热 Hb 的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。
由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。
可以说,在熔点(或液相线)附近,液态金属(或合金)的原子集团内短程结构类似于固体。
③ Richter等人利用X衍射、中子及电子衍射手段,对碱金属、Au、Ag、Pb和Tl等熔体进行了十多年的系统研究,认为液体中存在着拓扑球状密排结构以及层状结构,它们的尺寸范围约为10-6-10-7cm。
④ Reichert观察到液态Pb局域结构的五重对称性及二十面体的存在,并推测二十面体存在于所有的单组元简单液体。
⑤在Li-Pb、Cs-Au、Mg-Bi、Mg-Zn、Mg-Sn、Cu-Ti、Cu-Sn、 Al-Mg、Al-Fe等固态具有金属间化合物的二元熔体中均被发现有化学短程序的存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明相同点不同点液体具有自由表面;可压缩性很低具有流动性,不能承受切应力;远程无序,近程有序固体不具有流动性,可承受切应力;远程有序液体完全占据容器空间并取得容器内腔形状;具有流动性远程无序,近程有序;有自由表面;可压缩性很低气体完全无序;无自由表面;具有很高的压缩性(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化∆Vm/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。
由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。
2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。
N1 表示参考原子周围最近邻(即第一壳层)原子数。
r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。
3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。
答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。
近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。
晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。
而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。
②从金属熔化过程看物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化∆Vm/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
另一方面,金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。
由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。
可以说,在熔点(或液相线)附近,液态金属(或合金)的原子集团内短程结构类似于固体。
③Richter等人利用X衍射、中子及电子衍射手段,对碱金属、Au、Ag、Pb和Tl等熔体进行了十多年的系统研究,认为液体中存在着拓扑球状密排结构以及层状结构,它们的尺寸范围约为10-6-10-7cm 。
④ Reichert 观察到液态Pb 局域结构的五重对称性及二十面体的存在,并推测二十面体存在于所有的单组元简单液体。
⑤ 在Li-Pb 、Cs-Au 、Mg-Bi 、Mg-Zn 、Mg-Sn 、Cu-Ti 、Cu-Sn 、 Al-Mg 、Al-Fe 等固态具有金属间化合物的二元熔体中均被发现有化学短程序的存在。
4.如何理解实际液态金属结构及其三种“起伏”特征?答:理想纯金属是不存在的,即使非常纯的实际金属中总存在着大量杂质原子。
实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构相当复杂。
能量起伏是指液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地变化,时高时低的现象。
结构起伏是指液态金属中大量不停“游动”着的原子团簇不断地分化组合,由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变的现象。
浓度起伏是指在多组元液态金属中,由于同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化的现象。
5. 根据图1-10及式(1-7)说明为动力学粘度η的物理意义,并讨论液体粘度η(内摩擦阻力)与液体的原子间结合力之间的关系。
答:物理意义:作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dV X /dy 的比例系数。
通常液体的粘度表达式为)/exp(T k U C B =η。
这里B k 为Bolzmann 常数,U 为无外力作用时原子之间的结合能(或原子扩散势垒),C 为常数,T 为热力学温度。
根据此式,液体的粘度η随结合能U 按指数关系增加,这可以理解为,液体的原子之间结合力越大,则内摩擦阻力越大,粘度也就越高。
6. 总结温度、原子间距(或体积)、合金元素或微量元素对液体粘度η高低的影响。
答:η与温度T 的关系受两方面(正比的线性及负的指数关系)所共同制约,但总的趋势随温度T 而下降。
粘度随原子间距δ增大而降低,与3δ成反比。
合金组元或微量元素对合金液粘度的影响比较复杂。
许多研究者曾尝试描述二元合金液的粘度规律,其中M-H (Moelwyn-Hughes )模型为:⎪⎪⎭⎫⎝⎛-+=RT H X X m 21)(2211ηηη (1-9) 式中η1、η2、X 1、X 2 分别为纯溶剂和溶质的粘度及各自在溶液中的mole 分数,R 为气体常数,H m 为两组元的混合热。
按 M-H 模型,如果混合热H m 为负值,合金元素的增加会使合金液的粘度上升。
根据热力学原理,H m 为负值表明异类原子间结合力大于同类原子,因此摩擦阻力及粘度随之提高。
M-H 模型得到了一些实验结果的验证。
当溶质与溶剂在固态形成金属间化合物,由于合金液中存在异类原子间较强的化学结合键,合金液的粘度将会明显高于纯溶剂金属液的粘度。
当合金液中存在表面及界面活性微量元素(如Al-Si 合金变质元素Na )时,由于冷却过程中微量元素抑制原子集团的聚集长大,将阻碍金属液粘度的上升。
通常,表面活性元素使液体粘度降低,非表面活性杂质的存在使粘度提高。
7.过共析钢液η=0.0049Pa ﹒S ,钢液的密度为7000kg/m 3,表面张力为1500mN/m ,加铝脱氧,生成密度为5400 kg/m 3的Al 2O 3 ,如能使Al 2O 3颗粒上浮到钢液表面就能获得质量较好的钢。
假如脱氧产物在1524mm 深处生成,试确定钢液脱氧后2min 上浮到钢液表面的Al 2O 3最小颗粒的尺寸。
答: 根据流体力学的斯托克斯公式:ηρρυ2)(92r g B m -⋅=,式中:υ为夹杂物和气泡的上浮速度,r 为气泡或夹杂的半径,ρm 为液体合金密度,ρB 为夹杂或气泡密度,g 为重力加速度。
41034.1)(29-⨯=-⋅=B m g r ρρυηm分析物质表面张力产生的原因以及与物质原子间结合力的关系。
答:表面张力是由于物体在表面上的质点受力不均所造成。
由于液体或固体的表面原子受内部的作用力较大,而朝着气体的方向受力较小,这种受力不均引起表面原子的势能比内部原子的势能高。
因此,物体倾向于减小其表面积而产生表面张力。
原子间结合力越大,表面内能越大,表面张力也就越大。
但表面张力的影响因素不仅仅只是原子间结合力,与上述论点相反的例子大量存在。
研究发现有些熔点高的物质,其表面张力却比熔点低的物质低,如Mg 与Zn 同样都是二价金属,Mg 的熔点为650℃,Zn 的熔点为420℃,但Mg 的表面张力为559mN/m ;Zn 的表面张力却为782mN/m 。
此外,还发现金属的表面张力往往比非金属大几十倍,而比盐类大几倍。
这说明单靠原子间的结合力是不能解释一切问题的。
对于金属来说,还应当从它具有自由电子这一特性去考虑。
9. 表面张力与界面张力有何异同点?界面张力与界面两侧(两相)质点间结合力的大小有何关系? 答:界面张力与界面自由能的关系相当于表面张力与表面自由能的关系,即界面张力与界面自由能的大小和单位也都相同。
表面与界面的差别在于后者泛指两相之间的交界面,而前者特指液体或固体与气体之间的交界面,但更严格说,应该是指液体或固体与其蒸汽的界面。
广义上说,物体(液体或固体)与气相之间的界面能和界面张力为物体的表面能和表面张力。
当两个相共同组成一个界面时,其界面张力的大小与界面两侧(两相)质点间结合力的大小成反比,两相质点间结合力越大,界面能越小,界面张力就越小;两相间结合力小,界面张力就大。
相反,同一金属(或合金)液固之间,由于两者容易结合,界面张力就小。
10.液态金属的表面张力有哪些影响因素?试总结它们的规律。
答:液态金属的表面张力的影响因素有: (1)原子间结合力原子间结合力越大,表面内能越大,表面张力也就越大。
但表面张力的影响因素不仅仅只是原子间结合力,研究发现有些熔点高的物质,其表面张力却比熔点低的物质低。
此外,还发现金属的表面张力往往比非金属大几十倍,而比盐类大几倍。
这说明单靠原子间的结合力是不能解释一切问题的。
对于金属来说,还应当从它具有自由电子这一特性去考虑。
(2)温度液态金属表面张力通常随温度升高而下降,因为原子间距随温度升高而增大。
(3)合金元素或微量杂质元素合金元素或微量杂质元素对表面张力的影响,主要取决于原子间结合力的改变。
向系统中加入削弱原子间结合力的组元,会使表面张力减小,使表面内能降低,这样,将会使表面张力降低。
合金元素对表面张力的影响还体现在溶质与溶剂原子体积之差。
当溶质的原子体积大于溶剂原子体积,由于造成原子排布的畸变而使势能增加,所以倾向于被排挤到表面,以降低整个系统的能量。
这些富集在表面层的元素,由于其本身的原子体积大,表面张力低,从而使整个系统的表面张力降低。
原子体积很小的元素,如O、S、N等,在金属中容易进入到熔剂的间隙使势能增加,从而被排挤到金属表面,成为富集在表面的表面活性物质。
由于这些元素的金属性很弱,自由电子很少,因此表面张力小,同样使金属的表面张力降低。
(4)溶质元素的自由电子数目大凡自由电子数目多的溶质元素,由于其表面双电层的电荷密度大,从而造成对金属表面压力大,而使整个系统的表面张力增加。