材料成型基本原理期末考试总结

合集下载

材料成形工艺设计期末复习总结

材料成形工艺设计期末复习总结

7.简述铸造成型的实质及优缺点。

答:铸造成型的实质是:利用金属的流动性,逐步冷却凝固成型的工艺过程。

优点:1.工艺灵活生大,2.成本较低,3.可以铸出外形复杂的毛坯缺点:1.组织性能差,2机械性能较低,3.难以精确控制,铸件质量不够稳定4.劳动条件太差,劳动强度太大。

8.合金流动性取决于哪些因素?合金流动性不好对铸件品质有何影响?答:合金流动性取决于1.合金的化学成分 2.浇注温度 3.浇注压力4.铸型的导热能力5.铸型的阻力合金流动性不好:产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣和缩孔缺陷的间接原因。

9.何谓合金的收缩,影响合金收缩的因素有哪些?答:合金的收缩:合金在浇注、凝固直至冷却到室温的过程中体积或缩减的现象影响因素:1.化学成分2 浇注温度 3.铸件的结构与铸型条件11.怎样区别铸件裂纹的性质?用什么措施防止裂纹?答:裂纹可以分为热裂纹和冷裂纹。

热裂纹的特征是:裂纹短、缝隙宽,形状曲折,裂纹内呈氧化色。

防止方法:选择凝固温度范围小,热裂纹倾向小的合金和改善铸件结构,提高型砂的退让。

冷裂纹的特征是:裂纹细小,呈现连续直线状,裂缝内有金属光泽或轻微氧化色。

防止方法:减少铸件内应力和降低合金脆性,设置防裂肋13.灰铸铁最适合铸造什么样的铸件?举出十种你所知道的铸铁名称及它们为什么不用别的材料的原因。

答:发动机缸体,缸盖,刹车盘,机床支架,阀门,法兰,飞轮,机床,机座,主轴箱原因是灰铸铁的性能:[组织]:可看成是碳钢的基体加片状石墨。

按基体组织的不同灰铸铁分为三类:铁素体基体灰铸铁;铁素体一珠光体基体灰铸铁;珠光体基体灰铸铁。

[力学性能]:灰铸铁的力学性能与基体的组织和石墨的形态有关。

灰铸铁中的片状石墨对基体的割裂严重,在石墨尖角处易造成应力集中,使灰铸铁的抗拉强度、塑性和韧性远低于钢,但抗压强度与钢相当,也是常用铸铁件中力学性能最差的铸铁。

同时,基体组织对灰铸铁的力学性能也有一定的影响,铁素体基体灰铸铁的石墨片粗大,强度和硬度最低,故应用较少;珠光体基体灰铸铁的石墨片细小,有较高的强度和硬度,主要用来制造较重要铸件;铁素体一珠光体基体灰铸铁的石墨片较珠光体灰铸铁稍粗大,性能不如珠光体灰铸铁。

材料成型期末考试重点整理 by jerry

材料成型期末考试重点整理 by jerry

PS:各位备考兄台,由于时间有限,这里只将本次材料成型原理考试的最重要的内容做了一个小结,细节部分仍需看教材,这里仅包含老师点过的重点,如有遗漏欢迎补充,并分享。

By Jerry Wei2009年光棍节巨献材料成型基本原理重点考试内容总结第一章液态金属的结构和性质1)液态金属的特征:近程有序,而远程无序。

2)物质或系统的能量总是趋向保持最小状态,是自然界的普遍规律。

3) 金属内部的三大起伏极其特征:液态金属中处于热运动的原子的能量有高有低,同一原子的能量也在同一时间随时间不停地变化,时高时低,这种现象叫做“能量起伏”。

液态金属是由大量不停游动着的原子团簇组成,団簇内为某种有序结构,団簇周围是一些散乱无序的原子,这种现象叫做“结构起伏”。

由于同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易结合在一起,把别的原子排挤到别处,表现为游动原子团之间存在成份的差异,而这种局域成份不均匀性随原子热运动在不时发生着变化,这一现象称为“浓度起伏”。

4)表面张力是表面平行于表面切线方向且各方向大小相等的张力。

5)表面张力大小可以用湿润角来表示,湿润表示两物体间的亲和力大,反之,亲和力小,当角度小于90度时候,表现为湿润,大于90度时为不湿润。

6)液态金属的流动性随着结晶温度范围的增大而下降。

7)影响铸型冲型能力的因素:第一,金属性质方面的因素。

第二,铸型性质方面的因素。

第三,浇注条件的因素。

第四,铸件结构方面的因素。

教材358)热流密度:单位时间内通过单位面积的热量。

9)热传导过程中的热流密度的大小于该部位的温度梯度成正比。

10)铸件的凝固方式的分类:根据固液相区的宽度,分为逐层凝固,中间凝固以及体积凝固方式。

11)当温度梯度很大时候,固液相区的较窄,合金近逐层凝固方式,当温度较为平坦时候,近体积凝固方式。

12)焊接中温度场的特点:第一,焊接温度增加,焊接场的能量增加。

第二,焊接温度增加,焊接场越宽。

《材料成形原理》考试要点重点及答案

《材料成形原理》考试要点重点及答案

简答题1实际液态金属的结构实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现岀能量、结构及浓度三种起伏特征,其结构相当复杂。

2 液态金属表面张力的影响因素1)表面张力与原子间作用力的关系:原子间结合力uO T-表面内能T P表面自由能T-表面张力T2)表面张力与原子体积(S3成反比,与价电子数Z 成正比3 )表面张力与温度:随温度升高而下降4 )合金元素或微量杂质元素对表面张力的影响。

向系统中加入削弱原子间结合力的组元,会使uO减小,使表面内能和表面张力降低。

3简述大平板铸件凝固时间计算的平方根定律T =2/K2,即金属凝固时间与凝固层厚度的平方成正比。

K 为凝固系数,可由试验测定。

当凝固结束时,E为大平板厚度的一半。

4铸件凝固方式的分类(3分)根据固、液相区的宽度,可将凝固过程分为逐层凝固方式与体积凝固方式(或糊状凝固方式)。

当固液相区很窄时称为逐层凝固方式,反之为体积凝固方式。

固液相区宽度介于两者之间的称为中间凝固方式”。

5简述Jackson因子与界面结构的关系Jackson因子a可视为固一液界面结构的判据:凡aW2勺物质,晶体表面有一半空缺位置时自由能降低,此时的固一液界面形态被称为粗糙界面,大部分金属属于此类;凡属a >5的物质凝固时界面为光滑面,有机物及无机物属于此类;a =2〜5的物质,常为多种方式的混合,Bi、Si、Sb等属于此类。

6试写出固相无扩散,液相只有有限扩散”条件下成分过冷”的判据,并分析哪些条件有助于形成成分过冷”。

固相无扩散,液相只有有限扩散”条件下成分过G m L C°(1-K。

)—< --------------------冷”的判据:R D L K o下列条件有助于形成成分过冷”:(1)液相中温度梯度G L小,即温度场不陡。

⑵晶体生长速度快(R大)。

(3)液相线斜率m L大。

材料成型基本原理总结

材料成型基本原理总结

.材料成型力学原理部分第十四章金属塑性变形的物理基础1、塑形成形:利用金属的塑性,使金属在外力作用下成形的一种加工方法,亦称金属塑性加工或金属压力加工。

2、金属塑性成形的优点:生产效率高、材料利用率高、组织性能亦改变、尺寸精度高。

3、塑性成形工艺:锻造、轧制、拉拔、挤压、冲裁、成型4、金属冷塑形变形的形式:1、晶内变形:滑移和孪生2、晶间变形:晶粒间发生相互滑动和转动5、加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升,为了使变形继续下去,就需要增加变形外力或变形功。

(指应变对时间的变化率)6、热塑性变形时金属组织和性能的变化1、改善晶粒组织2、锻合内部缺陷3、破碎并改善碳化物和非金属夹杂物在钢中的分布4、形成纤维组织5、改善偏析7、织构的理解:多晶体取向分布状态明显偏离随机分布的取向分布结构。

8、细化晶粒:1、晶粒越细小,利于变形方向的晶粒越多2、滑移从晶粒内发生止于晶界处,晶界越多变形抗力越大9、热塑性变形机理:晶内滑移、晶界滑移和扩散蠕变10、塑性:不可逆变形,表征金属的形变能力11、塑性指标:金属在破坏前产生的最大变形程度12、影响塑性的因素:1、化学成分和合金成分对金属塑性的影响2、组织状态对金属塑性的影响3、变形温度4、应变速率5、应力状态13、单位流动压力P:接触面上平均单位面积上的变形力14、碳和杂质元素的影响碳:其含量越高,塑性越差;磷:冷脆;硫:热脆性;氧:热脆性;氮:时效脆性、蓝脆、气孔;氢:氢脆、白点、气孔和冷裂纹等15、合金元素的影响:塑性降低硬度升高16、金属组织的影响(1)晶格类型(2)晶粒度(3)相组成(4)铸造组织17、变形温度对金属塑性的影响:对大多少金属而言,总的趋势是随着温度升高,塑性增加。

但是这种增加并不是线性的,在加热的某些温度区间,由于相态或晶界状态的变化而出现脆性区,使金属的塑性降低。

(蓝脆区和热脆区)18、变形抗力:指金属在发生塑性变形时,产生抵抗变形的能力一般用接触面上平均单位面积变形力来表示,又称单位面积上的流动压力19、质点的应力状态:变形体内某点任意截面上应力的大小和方向20、对变形抗力的影响因素:①化学成分:纯金属和合金②组织结构:组织状态、晶粒大小和相变③变形温度④变形程度:加工硬化⑤变形速度⑥应力状态21、金属的超塑性:细晶超塑性、相变超塑性第十五章应力分析1、研究塑性力学时的四个假设:①连续性假设:变形体不存在气孔等缺陷②匀质性假设:质点的组织、化学成分等相同③各向同性假设④体积不变假设2、质点:有质量但不存在体积或形状的点3、内力:在外力作用下,物体内各质点之间就会产生相互作用的力。

材料成型基本原理期末考试总结

材料成型基本原理期末考试总结

名词解释1溶质平衡分配系数;特定温度T*下固相合金成分浓度C*S与液相合金成分C*L达到平衡时的比值。

2缩孔:纯金属火共晶合金铸件中最后凝固部位形成的大而集中的孔洞;缩松:具有宽结晶温度温度范围的合金铸件凝固中形成的细小而分散的缩孔;3沉淀脱氧:将脱氧元素(脱氧剂)溶解到金属液中以FeO直接进行反应而脱氧,把铁还原的方法.4均质形核:形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,所以也成“自发形核”(实际生产中均质形核是不太可能的)非均质形核:依靠外来质点或型壁界面而提供的衬底进行生核过程,亦称“异质形核”或“非自发形核”。

5.简单加载:是指在加载过程中各应力分量按同一比例增加,应力主轴方向固定不变。

6.冷热裂纹:冷裂纹是指金属经焊接或铸造成形后冷却到较低温度时产生的裂纹,热裂纹是金属冷却到固相线附近的高温区时所产生的开裂现象7.最小阻力定律:当变形体质点有可能沿不同方向移动时,则物体各质点将沿着阻力最小的方向移动。

填空1。

动力学细化四个内容:铸型振动、超声波振动、液相搅拌、流变铸造2.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区三个不同的形态的晶区3.细化铸件宏观凝固组织的措施有合理地控制浇注工艺和冷却条件、孕育处理、动力学细化等三个方面4.微观偏析的两种主要类型为晶内偏析与晶界偏析,宏观偏析按由凝固断面表面到内部的成分分布,有正常偏析与逆偏析两类5。

铸造过程中的气体主要来源是熔炼过程和浇注过程和铸型6.我们所学的特殊条件下的凝固包括快速凝固和失重条件下凝固和定向凝固7。

液态金属(合金)凝固的驱动力由过冷度提供,而凝固时的形核方式有:均质形核和非均质形核两种8.晶体的生长方式有连续生长和台阶方式生长两种9.凝固过程的偏析可分为:微观偏析和宏观偏析两种10.液体原子的分布特征为:长程无序,短程有序,即液态金属原子团的结构更类似于固态金属11.Jakson因子α可以作为固液界面微观结构的判据,凡α〈=2的晶体,其生长界面为粗糙,凡α〉5的晶体,其生长界面为光滑12.液态金属需要净化的有害元素包括碳氧硫磷13.塑形成形中的三种摩擦状态分别是干摩擦、流体摩擦、边界摩擦14.对数应变的特点是具有真实性、可靠性、和可加性15。

《工程材料及成型技术基础》期末考试重点总结

《工程材料及成型技术基础》期末考试重点总结

1、金属三种晶格类型:体心立方晶格、面心立方晶格、密排六方晶格。

2、晶体缺陷:点缺陷、线缺陷、面缺陷。

位错属于线缺陷。

3、材料抵抗外物压入其表面的能力称为硬度。

HRC表示洛氏硬度,HB表示布氏硬度,HV维氏硬度4、金属塑性加工性能用塑性和变形抗力衡量。

5、铸造应力分为:热应力和机械应力。

其中热应力属于残余应力。

6、单相固溶体压力加工性能好,共晶合金铸造加工性能好。

7、金属经过冷塑性变形后强度提高,塑性降低的现象称为形变强化。

8、铸造性能是指:流动性和收缩性。

9、板料冲压成形基本工序:分离工序和成形工序两大类。

10、工艺选择四条基本原则:①使用性能足够原则②工艺性能良好原则③经济性能合理原则④材料、成形工艺、零件结构相适应原则。

11、HT200是灰铸铁材料,其中200表示:最低抗拉强度为200MPa。

12、确定钢淬火加热温度的基本依据是:Fe-3C相图。

13、为保证铸造质量,顺序凝固适合于:缩孔倾向大的铸造合金。

14、锤上锻模时,锻件最终成型是在终锻模膛中完成的,切边后才符合要求。

15、材料45钢、T12、20钢、20Gr.中,焊接性能最好的是20钢(含碳量越高,焊接性能越差)16、机床床身用灰铸铁铸造成型17、固溶体分为:置换固溶体和间隙固溶体18、金属件化合物:正常价化合物、电子化合物、间隙化合物。

19、塑性衡量:伸长率和断面收缩率。

20、晶粒大小:①常温下晶粒越小,金属的强度、硬度越高,塑性、韧性越好。

②晶粒大小与形核率和长大速度有关③影响因素:过冷度和难溶杂质④细化晶粒:增大过冷度,变质处理。

机械搅拌21、单相固溶体合金塑性好,变形抗力好,变形均匀,不易开裂,加工性能好22、单相固溶体塑性变形形式:滑移和孪生23、退火:目的:1,、降低硬度,改善切削加工性2、消除残余应力,稳定尺寸,减少变形与开裂倾向3、细化晶粒,调整组织,消除组织缺陷。

完全退火:适用于亚共析钢,锻件及焊接件。

加热到Ac3以上使奥氏体化,作用:使加热过程中造成的粗大不均匀组织均匀细化,降低硬度,提高塑性,改善加工性能,消除内应力。

《材料成形基本原理》考试复习题

《材料成形基本原理》考试复习题

《材料成形原理》期末考试复习焊接成形部分一、名词解释:焊接热影响区;长渣;短渣;先期脱氧;沉淀脱氧;熔合比;残余应力;残余变形;裂纹;热裂纹;冷裂纹;扩散氢;熔合区;区域偏析;微观偏析。

二、问答题:1. 简述焊接区气体的来源?2. 简述氢对焊缝组织性能的影响?3. 简述熔渣在焊接过程中的作用?4. 简述焊接时选用脱氧剂的原则及其主要反应方程式?5. 简述凝固裂纹的种类、特征、影响因素、形成机理及防止措施?6. 简述冷裂纹的种类、特征、影响因素、形成机理及防止措施?塑形成形部分1、已知变形体某点的应力状态为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=40000104004070ij σ(MPa ) 1)、求出主应力1σ、2σ、3σ和球应力张量,偏应力张量,并画出应力莫尔圆。

2)、求出主切应力,最大切应力m ax τ和等效应力σ之值各为多少。

解:1)主应力特征方程为:400010*******=---σσσ按第3行展开得:()01040407040=---σσσ()()()[]0401070402=--⋅--σσσ ()()0160070080402=-+--σσσ ()()090080402=---σσσ()()()0109040=+--σσσ解方程得:901=σ,402=σ,103-=σ403=++=zy x m σσσσ球应力张量为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⋅400004000040ij m δσMPa 偏应力张量为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⋅-=0000304004030'ij m ij ij δσσσMPa 应力莫尔圆为:2)主切应力为:2522112±=-±=σστMPa 2523223±=-±=σστMPa5023113±=-±=σστMPa50max =τMPa()()()6.8635021213232221≈=-+-+-=σσσσσσσMPa2、一薄壁管,内径φ80mm ,壁厚4mm ,承受内压p ,材料的屈服点为200=s σMPa ,现忽略管壁上的径向应力(即设0=ρσ)。

材料成型技术基础考点总结

材料成型技术基础考点总结

第2章铸造定义:熔炼金属、制造铸型并将熔融金属浇入铸型凝固后,获得具有一定形状、尺寸和性能的金属零件或毛坯的成形方法包括砂型铸造和特种铸造两大类优点:工艺适应性强,铸件的结构形状和尺寸和大小几乎不受限制,常用的合金都能铸造;原材料来源广泛,价格低廉,设备投资较少应用:适于制造形状复杂、特别是内腔形状复杂的零件或毛坯,尤其是要求承压、抗振或耐磨的零件。

缺点:工艺因素影响较大,铸件易出现浇不到、缩孔、气孔、裂纹等缺陷,组织疏松,晶粒粗大。

质量不稳定,一般情况下,铸件的力学性能远不及塑性成形件金属液的充型能力:金属液充满铸型型腔,获得轮廓清晰、形状、准确的铸件的能力。

充型能力差的液态合金易产生浇不到和冷隔等缺陷。

取决于液态金属的流动性、铸型条件、浇注条件1.金属的流动性:金属液本身的流动能力,流动性好则充型能力强,易于获得轮廓清晰、壁薄而形状复杂的铸件,且易于防止各类铸造缺陷。

衡量:螺旋型流动试样长度影响金属流动性本质因素(1)合金成分:共晶成分和纯金属最好(2)合金的质量热容、密度和热导率:质量热容和密度大,含热量大;流动性好热导率小,散热慢;流动性好影响金属流动性本质因素2.铸型条件铸型的蓄热系数:其值越大,激冷能力越强,金属液保持液态的时间就较短,充型能力越低选用蓄热系数小的造型材料,在型腔壁喷涂料铸型温度:铸型的温度越高,金属液冷却就越慢,保持液态时间就越长铸型中的气体:形成影响充型的气体阻力3.浇注条件浇注温度:浇注温度高,金属液的粘度低,保持液态的时间长。

若温度过高,增大了缩孔、气孔、粘砂等缺陷倾向充型压力:充型压力越大,流动性就越好。

充型压力过大,会造成金属飞溅加剧氧化,及因气体来不及排出而产生气孔、浇不到等缺陷。

注:铸件的结构过于复杂、壁厚过小等,也使金属液充型困难铸型从金属液吸收并储存热量的能力金属的收缩特性:收缩指铸造合金从液态凝固和冷却至室温过程中产生的体积和尺寸的缩减。

收缩较大的合金易产生缩孔、缩松缺陷,以及因铸造应力的出现而易产生变形、裂纹等铸造缺陷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释
1溶质平衡分配系数;特定温度T*下固相合金成分浓度C*S与液相合金成分C*L达到平衡时的比值。

2缩孔:纯金属火共晶合金铸件中最后凝固部位形成的大而集中的孔洞;
缩松:具有宽结晶温度温度范围的合金铸件凝固中形成的细小而分散的缩孔;
3沉淀脱氧:将脱氧元素(脱氧剂)溶解到金属液中以FeO直接进行反应而脱氧,把铁还原的方法。

4均质形核:形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,所以也成“自发形核”(实际生产中均质形核是不太可能的)非均质形核:依靠外来质点或型壁界面而提供的衬底进行生核过程,亦称“异质形核”或“非自发形核”。

5.简单加载:是指在加载过程中各应力分量按同一比例增加,应力主轴方向固定不变。

6.冷热裂纹:冷裂纹是指金属经焊接或铸造成形后冷却到较低温度时产生的裂纹,热裂纹是金属冷却到固相线附近的高温区时所产生的开裂现象
7.最小阻力定律:当变形体质点有可能沿不同方向移动时,则物体各质点将沿着阻力最小的方向移动.
填空
1.动力学细化四个内容:铸型振动、超声波振动、液相搅拌、流变铸造
2.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区三个不同的形态的晶区
3.细化铸件宏观凝固组织的措施有合理地控制浇注工艺和冷却条件、孕育处理、动力学细化等三个方面
4.微观偏析的两种主要类型为晶内偏析与晶界偏析,宏观偏析按由凝固断面表面到内部的成分分布,有正常偏析与逆偏析两类
5.铸造过程中的气体主要来源是熔炼过程和浇注过程和铸型
6.我们所学的特殊条件下的凝固包括快速凝固和失重条件下凝固和定向凝固
7.液态金属(合金)凝固的驱动力由过冷度提供,而凝固时的形核方式有:均质形核和非均质形核两种
8.晶体的生长方式有连续生长和台阶方式生长两种
9.凝固过程的偏析可分为:微观偏析和宏观偏析两种
10.液体原子的分布特征为:长程无序,短程有序,即液态金属原子团的结构更类似于固态金属
11.Jakson因子α可以作为固液界面微观结构的判据,凡α<=2的晶体,其生长界面为粗糙,凡α>5的晶体,其生长界面为光滑
12.液态金属需要净化的有害元素包括碳氧硫磷
13.塑形成形中的三种摩擦状态分别是干摩擦、流体摩擦、边界摩擦
14.对数应变的特点是具有真实性、可靠性、和可加性
15.就大多数金属而言,其总的趋势是随着温度的升高,塑形增加
16.钢冷挤压时,需要对胚料表面进行磷化、皂化润滑处理
选择题1.塑形变形时,工具表面粗糙度对摩擦系数的影响(A)工件表面的粗糙度对摩擦系数的影响 A大于B等于C小于
2.塑形变形时,不产生硬化的材料叫做(A)A理想塑形材料B理想弹性材料C硬化材料
3.用近似平衡微分方程和近似塑形条件求解塑形成形问题的方法称为(B)A解析法B主应力法C滑移线法
4.韧性金属材料屈服时(A)准则较符合实际的 A密席斯B屈雷斯加C密席斯与屈雷斯加
5.塑形变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做(B)A理想弹性材料B理性刚塑形材料C塑形材料
6.硫元素的存在使碳钢易产生(A)A热脆性B冷脆性C兰脆性
7.应力状态中的(B)应力,能充分发挥材料的塑形A拉应力B压应力C拉应力与压应力
8.平面应变时,其平均正应力σs(B)中间主应力σz.A大于B等于C小于
9.钢材中磷使钢的强度、硬度提高,塑形、韧性(B).A提高B降低C没有变化
简答题1.简述顺序凝固原则和同时凝固原则的优缺点和适用范围
答:(1)铸件的顺序凝固原则是采取各种措施保证铸件各部分按照距离冒口的远近,由远及近朝着冒口方
向凝固,冒口本身最后凝固,铸件按照这一原则凝固时,可使缩孔集中在冒口中,获得致密的铸件。

顺序凝固原则的优点:可以充分发挥冒口的补缩作用,防止缩孔与缩松的形成,获得致密铸件,其缺点为:顺序凝固时,铸件各部分存在温差,在凝固过程中易产生热裂,凝固后容易使铸件产生变形。

此外,由于需要使用冒口和补贴,工艺出品率较低。

其适用范围为:凝固收缩大、结晶温度范围小的合金。

(2)同时凝固原则是采取工艺措施保证铸件各部分之间没有温差,或温差尽量小,使各部分同时凝固。

同时凝固原则的优点:同时凝固时铸件温差小,不易产生热裂,凝固后不易引起应力和变形。

其缺点为:同时凝固条件下,扩张角φ=0,没有补缩通道,无法实现补缩。

其适用范围为:1)碳硅含量高的灰铸铁,其体收缩较小甚至不收缩,合金本身不易产生缩孔和缩松。

2)结晶温度范围大,容易产生缩松的合金(如锡青铜),对气密性要求不高时,可采用这一原则,以简化工艺。

3)壁厚均匀的铸件,尤其是均匀薄壁铸件,倾向于同时凝固,消除缩松困难,应采用同时凝固原则。

4)球墨铸铁件利用石墨化膨胀进行自补缩时,必须采用同时凝固原则。

5)某些适合采用顺序凝固原则的铸件,当热裂、变形成为主要矛盾时,可采用同时凝固原则。

2.简述影响变形抗力的因素(1)材料:化学成分、组织结构(2)变形程度(3)变形温度(4)变形速度(5)应力状态(6)接触面积(接触摩擦)
判断题1.液态金属的流动性越强,其充型能力越好。

(√)2.金属结晶过程中,过冷度越大,则形核率越高。

(√)3.实际液态金属(合金)凝固过程中的形核方式多为异质形核。

(√)4、稳定温度场通常是指温度不变的温度场。

(√)5、根据熔渣的分子理论,B>1时氧化物渣被称为碱性渣。

(√)6、根据熔渣的离子理论,B2>0时氧化物渣被称为碱性渣。

(√)7、按密席斯屈服准则所得到的最大摩擦系数μ=0.5。

( x )8、塑性变形时,工具表面的粗糙度对摩擦系数的影响小于工件表面的粗糙度对摩擦系数的影响。

(x )9、静水压力的增加,对提高材料的塑性没有影响。

(x)10、在塑料变形时要产生硬化的材料叫理想刚塑性材料。

(x)11、塑性变形体内各点的最大剪应力的轨迹线叫滑移线。

(√)。

相关文档
最新文档