抽样方法全面介绍
抽样方法有哪些

抽样方法有哪些在统计学和市场调研中,抽样是一种常见的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
不同的抽样方法适用于不同的研究目的和总体特征。
下面将介绍几种常见的抽样方法。
1. 简单随机抽样。
简单随机抽样是最基本的抽样方法之一,其特点是每个样本被抽到的概率相等且相互独立。
在进行简单随机抽样时,需要先对总体进行编号,然后利用随机数表或随机数发生器来进行抽样。
简单随机抽样适用于总体分布均匀、样本之间相互独立的情况。
2. 分层抽样。
分层抽样是将总体按照某种特征分成若干层,然后从每一层中分别进行随机抽样,最后将各层抽样结果合并在一起。
分层抽样能够保证各层样本的代表性,并且适用于总体具有明显分层特征的情况。
3. 系统抽样。
系统抽样是按照一定的规律从总体中抽取样本,例如每隔k个单位抽取一个样本。
系统抽样简单方便,适用于总体有序排列的情况,但如果总体中存在周期性规律,可能会导致抽样偏差。
4. 整群抽样。
整群抽样是将总体分成若干个群体,然后随机抽取部分群体作为样本。
整群抽样适用于总体分群明显、群体内部差异较小的情况,能够减少抽样工作量,并且方便实施调查。
5. 方便抽样。
方便抽样是指根据调查者的方便程度来选择样本,例如选择离调查者较近或容易接触的样本。
方便抽样简单快捷,但可能导致样本选择偏差,不具有代表性。
6. 分层整群抽样。
分层整群抽样是将总体先按照某种特征分层,然后再在每一层内进行整群抽样。
这种抽样方法能够兼顾分层和整群的优点,适用于总体具有复杂特征的情况。
以上介绍了几种常见的抽样方法,每种方法都有其适用的场景和局限性。
在实际应用中,需要根据研究目的和总体特征选择合适的抽样方法,以确保样本具有代表性和可靠性。
抽样的方案有哪几种

抽样的方案有哪几种抽样的方案有哪几种摘要:抽样是一种常见的数据收集方法,用于从总体中选择一部分样本,以便进行统计推断。
在实际应用中,有多种抽样方案可供选择。
本文将介绍六种常见的抽样方案,并分别展开叙述其特点、适用场景以及优缺点。
通过了解各种抽样方案的特点,研究人员或决策者可以根据具体情况选择合适的抽样方案,确保数据的可靠性和代表性。
第一节:随机抽样1.1 特点:随机抽样是一种基于概率的抽样方法,通过随机选择样本,使得每个个体被选中的概率相等。
这样可以保证样本在一定程度上能够代表总体。
随机抽样通常使用随机数生成器或抽签等方法进行样本的选择。
1.2 适用场景:随机抽样适用于总体中的每个个体都具有相同重要性的情况,例如人口普查、调查问卷等。
它可以确保样本的代表性,并且可以推广到整个总体。
1.3 优缺点:优点:随机抽样可以减小抽样误差,样本的代表性较高,结果的可靠性较强。
缺点:需要进行随机数生成或抽签等操作,操作复杂性较高,样本选择过程可能存在偏差。
第二节:分层抽样2.1 特点:分层抽样是将总体分为若干个层次,然后从每个层次中进行随机抽样。
通过分层抽样,可以保证不同层次的个体在样本中的比例与总体中的比例相似。
分层抽样可以提高样本的代表性。
2.2 适用场景:分层抽样适用于总体具有层次结构的情况,例如区域人口普查、不同年龄群体的调查等。
通过分层抽样,可以保证每个层次的个体都有机会被选中,从而提高样本的代表性。
2.3 优缺点:优点:分层抽样可以保证各个层次的个体在样本中的比例与总体中的比例相似,样本的代表性较高。
缺点:在样本选择过程中需要进行分层操作,操作复杂性较高。
同时,当总体的层次结构复杂时,可能导致样本选择的困难性增加。
第三节:整群抽样3.1 特点:整群抽样是将总体分为若干个群体,在随机选择的群体中,选择其中的所有个体作为样本。
整群抽样可以减少调查成本和时间,同时可以保证样本的代表性。
3.2 适用场景:整群抽样适用于总体中存在自然群体的情况,例如学校、企业等。
常见的抽样方案包括

常见的抽样方案包括常见的抽样方案包括:简单随机抽样、系统抽样、整群抽样、分层抽样、多阶段抽样和方便抽样。
本文将对这些抽样方案进行详细介绍,并探讨其适用范围和优缺点。
一、简单随机抽样简单随机抽样是最常见、最简单的抽样方法之一。
该方法要求从总体中随机选择一定数量的个体,以保证每个个体被选中的概率相等。
简单随机抽样适用于总体中各个个体相互独立、同质性较高的情况。
这种抽样方法的优点是容易实施、结果具有较好的代表性,但其缺点是可能存在抽样误差,且不适用于总体中个体之间存在明显差异的情况。
二、系统抽样系统抽样是一种按照一定规律从总体中选择样本的抽样方法。
该方法要求根据某种规则选择一个起始个体,然后按照固定间隔依次选择其他个体作为样本。
系统抽样适用于总体中个体之间存在一定规律的情况,例如时间序列中的数据。
这种抽样方法的优点是相对简单,且结果具有代表性。
然而,如果总体中的个体呈现出某种周期性或规律性,那么系统抽样可能导致样本的偏倚。
三、整群抽样整群抽样是一种将总体划分为若干个互不相交的群体,然后选择部分群体进行抽样的方法。
在选定的群体中,可以使用简单随机抽样或其他抽样方法选择个体作为样本。
整群抽样适用于总体中个体存在一定的聚类现象,且群体间差异较大的情况。
这种抽样方法的优点是节省时间和成本,且结果具有较好的代表性。
但是,如果群体内部存在较大的差异,那么整群抽样可能导致样本的偏倚。
四、分层抽样分层抽样是一种将总体划分为若干个层级,然后从每个层级中选择样本的方法。
不同层级的选择可以使用简单随机抽样或其他抽样方法。
分层抽样适用于总体中个体存在不同特征或差异较大的情况。
这种抽样方法的优点是结果具有较好的代表性,并且可以对不同特征的样本进行比较分析。
然而,分层抽样需要事先确定好各个层级的划分标准,如果划分不准确,可能导致样本的偏倚。
五、多阶段抽样多阶段抽样是一种将总体划分为多个阶段,逐步进行抽样的方法。
在每个阶段中,可以使用不同的抽样方法选择样本。
谈谈几种典型的抽样方法

谈谈几种典型的抽样方法抽样是一种统计学中常用的数据收集方法,通过在总体中选择一部分代表性的样本进行研究和分析,以得出总体的特征和规律。
下面将介绍几种典型的抽样方法。
1. 简单随机抽样(Simple Random Sampling)简单随机抽样是最基本、最常见的一种抽样方法。
其思想是从总体中随机选择n个个体作为样本,每个个体被选中的概率是相等且独立的。
简单随机抽样可以保证样本具有代表性,但在总体容量较大时,实施起来可能不太方便。
2. 系统抽样(Systematic Sampling)系统抽样是在总体中随机选择一个起始点,然后按照事先规定的间隔选择个体作为样本。
例如,如果总体容量为N,需要选择n个样本,那么每隔N/n个个体选择一个,即可得到n个样本。
系统抽样比简单随机抽样实施起来更方便,但需要保证总体中个体的排列顺序是随机的。
3. 分层抽样(Stratified Sampling)分层抽样是将总体划分为若干层,然后从每一层中分别随机选择样本。
分层抽样可以确保每一层都有代表性的样本,从而减小估计误差。
例如,对于一个城市人口总体,可以按照年龄、性别等因素进行分层抽样,从每一层中随机选择一定数量的样本。
4. 整群抽样(Cluster Sampling)整群抽样是将总体划分为若干个相互独立的群或区域,然后从其中随机选择若干个群作为样本,并对选择的群内的所有个体进行调查。
整群抽样适用于总体分布不均匀或者在随机单元内调查成本较低的情况。
例如,对于一个大学,可以将各个学院看作是群,然后从中随机选择若干个学院进行调查。
5. 效应抽样(Stratified Cluster Sampling)效应抽样是将分层抽样和整群抽样相结合的一种方法。
总体首先按照一些特征进行分层,然后从每一层中随机选择若干个群或区域,再在选择的群或区域中进行个体抽样。
效应抽样可以同时考虑个体和群体的特征,提高样本的代表性和效率。
以上是几种典型的抽样方法的简要介绍。
统计学中的抽样方法

统计学中的抽样方法统计学是一门研究数据收集、整理、分析和解释的学科。
在统计学中,抽样是一种重要的方法,用于从总体中选择部分样本,以推断总体特征。
抽样方法的选择对于统计研究的准确性和可靠性至关重要。
本文将介绍统计学中常用的几种抽样方法。
一、简单随机抽样法简单随机抽样法是最常用的抽样方法之一。
它的基本原理是,从总体中随机选择大小为n的样本,使得每个样本被选择的概率相等。
简单随机抽样法适用于总体规模较小、总体分布不明确或总体无明显结构的情况下。
通过此方法得到的样本具有代表性,能够提供准确的估计结果。
二、系统抽样法系统抽样法是从总体中每隔一定间隔选择一个样本的抽样方法。
它的特点是相对简单易用,适用于总体规模较大的情况。
使用此方法时,需要确保总体中个体的顺序是随机的,以避免系统性偏差。
系统抽样法一般适用于总体呈现明确的结构或规律的情况,如按时间、空间或其他特定顺序排列的总体。
三、整群抽样法整群抽样法是将总体分为若干个互不重叠的群体或区域,从中随机选择一部分群体作为样本进行研究。
这种抽样方法适用于总体结构复杂、群体间差异较小的情况。
例如,研究某市各区域的学生体质健康水平时,可以将各区域作为群体,从中随机选择若干个区域进行调查。
整群抽样法可以有效减少调查成本,并简化统计分析过程。
四、分层抽样法分层抽样法是将总体划分为若干个互不重叠的层次,然后从每个层次中选取样本。
分层抽样法常用于总体具有明显层次结构的情况下。
通过此方法,可以在整体和各层次上都获得准确的统计结果。
例如,研究某校各年级学生的学习成绩时,可以将每个年级视为一个层次,从每个年级中随机选取一定数量的样本进行研究。
五、整齐化抽样法整齐化抽样法是一种常用于质量控制的抽样方法。
它根据每个样本单位的品质检验结果,决定是否接受或拒绝该单位。
当样本单位的品质通过检验时,继续抽取下一个单位;当样本单位的品质未通过检验时,停止抽样并进行调整。
整齐化抽样法可以有效地控制质量,提高产品或服务的合格率。
统计学中的抽样方法

统计学中的抽样方法统计学是一门研究如何收集、整理、分析和解释数据的学科。
在统计学中,抽样是一种常用的方法,用于从总体中选择部分样本,以便对总体的特性进行推断。
抽样方法旨在保证样本的代表性,以便将样本的结果推广到整个总体中。
本文将介绍统计学中常见的抽样方法。
一、简单随机抽样简单随机抽样是最基本的抽样方法之一。
在简单随机抽样中,每个个体有相等的机会被选入样本。
这可以通过随机数表、随机数生成器或投掷硬币等方式实现。
简单随机抽样的优点是容易实施,同时能够保证样本的代表性。
二、分层抽样分层抽样是将总体划分为若干层次,然后从每个层次中随机选择样本。
这种方法可以保证每个层次都能够得到足够的样本,从而更好地反映总体的特征。
例如,一个城市总体可以根据不同的社会经济条件划分为低、中、高三个层次,然后从每个层次中随机选取一定数量的样本。
三、整群抽样整群抽样是将总体划分为若干个群体,然后随机选择部分群体进行抽样。
在选中的群体内,可以使用简单随机抽样或其他抽样方法选择样本。
整群抽样的优点是可以减少调查成本和时间,适用于大规模的调查研究。
四、多阶段抽样多阶段抽样是将总体分为多个阶段,然后依次进行抽样。
首先选择若干个区域或群体,再在选中的区域或群体内进行抽样。
这种方法常用于难以直接访问的总体,例如流动人口或随机事件的发生地点。
多阶段抽样可以充分考虑样本选择的实际情况,同时保持较好的代表性。
五、系统抽样系统抽样是从总体中按照一定的间隔选择样本。
例如,从一串数据中每隔五个选择一个样本,或者按照时间顺序每隔一段时间选择一个样本。
系统抽样的优点是相对简便,同时能够保持样本的代表性。
六、配额抽样配额抽样是根据总体的某些特征,按照一定的比例选择样本。
例如,根据性别、年龄、教育程度等特征设定配额,然后在每个配额中随机选择样本。
配额抽样常用于面向大众的调查,例如街头访问调查。
总之,统计学中的抽样方法是一种重要的数据收集工具。
根据研究目的和实际情况,可以选择合适的抽样方法来获取样本。
抽样方法全面介绍

抽样方法全面介绍抽样方法是将研究对象中的一部分作为样本进行观察或调查的方法,旨在通过对样本的研究,来推断全体研究对象的特征和规律。
在统计学和社会科学等领域中,抽样方法是进行科学研究的基础工具之一、本文将对抽样方法进行全面介绍。
一、简单随机抽样简单随机抽样是指在样本容量确定的情况下,每一个样本都有相同的机会被选中。
简单随机抽样的步骤包括:确定样本容量,将研究对象编号,使用随机数表或随机数发生器随机选择样本。
二、系统抽样系统抽样是在研究对象有序排列的情况下,按照一定的间隔选取样本。
例如,有1000个员工,研究者想要选取100个样本,那么就可以每隔10个员工选取一个样本。
三、分层抽样分层抽样是将研究对象根据一些特征划分成不同的层次,在每个层次中再进行简单随机抽样。
该方法可以确保每个层次的特征都得到了充分代表。
四、整群抽样整群抽样是将研究对象按照一定的特征划分成若干个群体,然后从这些群体中随机选择一部分进行研究。
通常,整群抽样用于群体间差异较大的情况,以确保样本具有代表性。
五、分级抽样分级抽样是在已知的层次结构中,按照一定的比例从每个层次中抽取样本。
例如,研究者想要研究全国各省市居民的收入情况,可以先从每个省抽取若干个市,然后从每个市抽取若干个区,最后从每个区抽取若干个家庭。
六、多阶段抽样多阶段抽样是将样本的选择分为多个阶段,每个阶段按照不同的方式选择样本。
例如,研究人员想要研究全国中小学生的学习情况,可以先从各个省市抽取若干个学校,然后从每个学校抽取若干个班级,最后从每个班级抽取若干个学生。
七、整比例抽样整比例抽样是按照研究对象的比例在不同的群体中选择样本。
例如,研究人员想要研究全国男女比例,可以按照男女比例在各个省市选择样本,以保证样本具有代表性。
八、方便抽样方便抽样是指研究人员根据方便性选择样本,这种抽样方法常用于预测性研究或初步调查,但样本的代表性不能得到保证。
九、判断抽样判断抽样是根据研究人员的主观判断选择样本。
抽样方法有些抽样方法大全

抽样方法有些抽样方法大全抽样方法是指从总体中选取一部分样本进行调查或研究的方法。
抽样方法的选择对于研究结果的可靠性和推广性有着重要的影响。
下面是一些常用的抽样方法:1. 简单随机抽样(Simple Random Sampling):在总体中的每个个体具有相同的被选中的机会,通过随机抽取样本来代表总体。
2. 分层抽样(Stratified Sampling):将总体分成若干层次,每一层次中的个体具有相似的特征,然后从每个层次中随机抽取样本。
3. 整群抽样(Cluster Sampling):将总体划分为若干个群组,然后通过随机抽取部分群组来代表总体,然后在所选的群组中进行全面调查。
4. 系统抽样(Systematic Sampling):根据固定的抽样间隔,从总体中随机选择一个起始点,然后按照固定的间隔依次选取样本。
5. 多阶段抽样(Multistage Sampling):将总体分层和分群组,然后通过多个抽样阶段来实现抽样,通常用于大规模调查。
6. 比率抽样(Ratio Sampling):根据总体中的其中一特征的比例,确定样本的大小。
例如,如果总体中男性比例是60%,则样本中男性比例也应该是60%。
7. 效应抽样(Convenience Sampling):根据研究者的方便或可获得性,选择样本。
这种方法容易产生偏差,结果可能无法推广到整个总体。
8. 整齐抽样(Quota Sampling):根据总体中一些特征的比例,确定样本的大小。
例如,如果总体中男性比例是60%,则样本中男性数量也应该是60%。
9. 小组抽样(Snowball Sampling):从已经选择的样本中获取参与者的指引,逐渐扩大样本规模,并在招募新样本时依靠参与者的推荐。
10. 专家抽样(Expert Sampling):指选择一些具有特定知识、经验或技能的专家作为样本,以获取专业领域的意见或建议。
以上是一些常用的抽样方法,每种方法都有其适用的场景和限制,研究者需要根据研究目的、总体特征、样本大小和可行性等因素综合考虑选择最合适的抽样方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽样方法全面介绍产品质量检验通常可分成全数检验和抽样检验两种方法。
全数检验是对一批产品中的每一件产品逐一进行检验,挑出不合格品后,认为其余全都是合格品。
这种质量检验方法虽然适用于生产批量很少的大型机电设备产品,但大多数生产批量较大的产品,如电子元器件产品就很不适用。
产品产量大,检验项目多或检验较复杂时,进行全数检验势必要花费大量的人力和物力,同时,仍难免出现错检和漏检现象。
而当质量捡验具有破坏性时,例如电视机的寿命试验、材料产品的强度试验等,全数检验更是不可能的。
抽样检验是从一批交验的产品(总体)中,随机抽取适量的产品样本进行质量检验,然后把检验结果与判定标准进行比较,从而确定该产品是否合格或需再进行抽检后裁决的一种质量检验方法。
过去,一般采用百分比抽样检验方法。
我国也一直沿用原苏联40年代采用的百分比抽样检验方法。
这种检验方法认为样本与总体一直是成比例的,因此,把抽查样本数与检查批总体数保持一个固定的比值如5%,0.5%等。
可是,实际上却存在着大批严、小批宽的不合理性,也就是说,即使质量相同的产品,因检查批数量多少不同却受到不同的处理,而且随着检查批总体数量的增多,即使按一定的百分比抽样,样本数也是相当大的,不能体现抽样检验在经济性方面的优点。
因此,这种抽样检验方法已被逐步淘汰。
人们经过对百分比抽样检验方法的研究,获知百分比抽样检验方法不合理的根本原因是没有按数理统计科学方法去设计抽样方案。
因此,逐步研究和设计了一系列建立在概率论和数理统计科学基础上的各种统计抽样检验或统计抽样检查方案,并制订成标准抽样检查方案。
1949年,美国科学家道奇和罗米格首先发表了《一次抽样与二次抽样检查表》;1950年美国军用标准MIL-STD—105D是世界上有代表性的计数抽样检查方法标准;日本先后制定了JIS Z9002,JIS Z9015等一系列抽样检查方法标准;英国、加拿大等国也相继制订了抽检方法标准;ISO和IEC又分别制订了抽样检查方法国际标准,如ISO2859、IEC410等。
实践证明,上述抽样检查方法标准应用于产品质量检验时,虽然也存在着误判的可能,即通常所说的存在着生产方风险和使用方风险,但可以通过选用合适的抽样检查方案,把这种误判的风险控制在人们要求的范围之内,符合社会生产使用的客观实际需要,因此,很快地在世界各国得到广泛推行,取代了原先的不合理的百分比抽样检验方法。
我国至今已制定的抽样方法标准有:GB10111 利用随机数骰子进行随机抽样的方法GB13393 抽样检查导则GB6378 不合格品率的计量抽样检查程序及图表(对应于ISO3951)GB8051 计数型序贯抽样检验方案(适用于检验费用昂贵的生产上连续批产品抽样检查)GB8052 单水平和多水平计数连续抽样程序及抽样表(适用于输送带上移动产品的检查)GB8053 不合格品率的计量标准型一次抽样检查程序及表GB8054 平均值的计量标准型一次抽样检查程序及表GB13262 不合格品率的计数标准型一次抽样极查程序及抽样表GB13263 跳批计数抽样检查及程序GB13264 不合格品率的小批计数抽样检查程序及抽样表GB13546 挑选型计数抽样检查程序及抽样表GB14162 产品质量监督计数抽样程序及抽样表GB14437 产品质量计数一次监督抽样检验程序GB14900 产品质量平均值的计量一次监督抽样检验程序及抽样表等标准。
这些抽样方法标准分别对企业的抽样检验与国家行业与地方的质量监督抽样检验方法作出明确的规定。
本节将以计数和计量抽样检查方法国家标准为主,介绍在质量检验中常用的几种抽样检查方法标准。
一、抽样检查方法的分类目前,已经形成了很多具有不同特性的抽样检查方案和体系,大致可按下列几个方面进行分类。
1.按产品质量指标特性分类衡量产品质量的特征量称为产品的质量指标。
质量指标可以按其测量特性分为计量指标和计数指标两类。
计量指标是指如材料的纯度、加工件的尺寸、钢的化学成分、产品的寿命等定量数据指标。
计数指标又可分为计件指标和计点指标两种,前者以不合格品的件数来衡量,后者则指产品中的缺陷数,如一平方米布料上的外观疵点个数,一个铸件上的气泡和砂眼个数等等。
按质量指标分类,产品质量检验的抽样检查方法也分成计数抽检和计量抽检方法两类。
(1)计数抽检方法是从批量产品中抽取一定数量的样品(样本),检验该样本中每个样品的质量,确定其合格或不合格,然后统计合格品数,与规定的“合格判定数”比较,决定该批产品是否合格的方法。
(2)计量抽检方法是从批量产品中抽取一定数量的样品数(样本),检验该样本中每个样品的质量,然后与规定的标准值或技术要求进行比较,以决定该批产品是否合格的方法。
有时,也可混合运用计数抽样检查方法和计量抽样检查方法。
如选择产品某一个质量参数或较少的质量参数进行计量抽检,其余多数质量参数则实施计数抽检方法,以减少计算工作量,又能获取所需质量信息。
2.按抽样检查的次数分类按抽样检查次数可分为一次、二次、多次和序贯抽样检查方法。
(1)一次抽检方法该方法最简单,它只需要抽检一个样本就可以作出一批产品是否合格的判断。
(2)二次抽检方法先抽第一个样本进行检验,若能据此作出该批产品合格与否的判断、检验则终止。
如不能作出判断,就再抽取第二个样本,然后再次检验后作出是否合格的判断。
(3)多次抽检方法其原理与二次抽检方法一样,每次抽样的样本大小相同,即n1=n2=n3…=n7,但抽检次数多,合格判定数和不合格判定数亦多。
ISO2859标准提供了7次抽检方案。
而我国GB2828、GB2829都实施5次抽检方案。
(4)序贯抽检方法相当于多次抽检方法的极限,每次仅随机抽取一个单位产品进行检验,检验后即按判定规则作出合格、不合格或再抽下个单位产品的判断,一旦能作出该批合格或不合格的判定时,就终止检验。
3.按抽检方法型式分类抽检方法首先可以分为调整型与非调整型两大类。
调整型是由几个不同的抽检方案与转移规则联系在一起,组成一个完整的抽检体系,然后根据各批产品质量变化情况,按转移规则更换抽检方案即正常、加严或放宽抽检方案的转换,ISO2859、ISO3951和GB2828标准都属于这种类型,调整型抽检方法适用于各批质量有联系的连续批产品的质量检验。
非调整型的单个抽样检查方案不考虑产品批的质量历史,使用中也没有转移规则,因此它比较容易为质检人员所掌握,但只对孤立批的质量检验较为适宜。
无论哪种抽样方法,它们都具有以下三个共同的特点:(1)产品必须以“检查批”(简称“批”)形式出现,检查批分连续批和孤立批,连续批是指批与批之间产品质量关系密切或连续生产并连续提交验收的批。
如:①产品设计、结构、工艺、材料无变化;②制造场所无变化;③中间停产时间不超过一个月。
单个提交检查批或待捡批不能利用最近已检批提供的质量信息的连续提交检查批,称为孤立批。
(2)批合格不等于批中每个产品都合格,批不合格也不等于批中每个产品都不合格。
抽样检查只是保证产品整体的质量,而不是保证每个产品的质量。
也就是说在抽样检查中,可能出现两种“错误”或“风险。
一种是把合格批误判为不合格批的错误,又称为“生产方风险”,常记作α,一般α值控制在1%、5%或10%。
另一种是把不合格批误判为合格批的错误,又称为“使用方风险”,常记作β,一般β控制在5%、10%。
(3)样本的不合格品率不等于提交批的不合格率。
样本是从提交检查批中随机抽取的。
所谓随机抽取是指每次抽取时,批中所有单位产品被抽取可能性都均等,不受任何人的意志支配。
样本抽取时间可以在批的形成过程中,也可以在批形成之后,随机抽样数可以按随机数表查取,也可以按GB10lll等标准确定。
二、抽样检查中的基本术语1.单位产品为实施抽样检查的需要而划分的基本单位称为单位产品。
例如一个齿轮,一台电视机,一双鞋,一个发电机组等。
它与采购、销售、生产和装运所规定的单位产品可以一致,也可以不一致。
2.样本和样本单位从检查批中抽取用于检查的单位产品称为样本单位。
而样本单位的全体则称为样本。
而样本大小则是指样本中所包含的样本单位数量。
3.合格质量水平(AQL)和不合格质量水平(RQL)在抽样检查中,认为可以接受的连续提交检查批的过程平均上限值,称为合格质量水平。
而过程平均是指一系列初次提交检查批的平均质量,它用每百单位产品不合格品数或每百单位产品不合格数表示。
具体数值由产需双方协商确定,一般由AQL符号表示。
在抽样检查中,认为不可接受的批质量下限值,称为不合格质量水平,用RQL符号表示。
4.检查和检查水平(IL)用测量、试验或其它方法,把单位产品与技术要求对比的过程称为检查。
检查有正常检查、加严检查和放宽检查等。
当过程平均接近合格质量水平时所进行的检查,称为正常检查。
当过程平均显著劣于合格质量水平时所进行的检查,称为加严检查。
当过程平均显著优于合格质量水平时所进行的检查,称为放宽检查。
由放宽检查判为不合格的批,重新进行判断时所进行的检查称为特宽检查。
5.抽样检查方案样本大小或样本大小系列和判定数组结合在一起,称为抽样方案。
而判定数组是指由合格判定数系列和不合格判定数或合格判定数系列和不合格判定数系列结合在一起。
抽样方案有一次、二次和五次抽样方案。
人次抽样方案是指由样本大小n和判定数组(Ac、Re)结合在一起组成的抽样方案。
Ac为合格判定数。
判定批合格时,样本中所含不合格品(d)的最大数称为合格判定数,又称接收数(d≤Ac)。
Re为不合格判定数,是判定批不合格时,样本中所含不合格品的最小数,又称拒收数(d≥Re)。
二次抽样方案是指由第一样本大小n1,第二样本大小n2,…和判定数组(Ac1;Ac2,Re1;Re2)结合在一起组成的抽样方案。
五次抽样方案则是指由第一样本大小n1,第二样本大小n2,…第五样本大小n5和判定数组(A1,A2,A3,A4,A5,R1,R2,R3,R4,R5)结合在一起组成的抽样方案。
.。