八皇后问题
组合数学中的棋盘问题

组合数学中的棋盘问题棋盘问题是组合数学中一个经典而又有趣的问题,它涉及到在一个n × n 的棋盘上放置一定数量的棋子并满足特定的条件。
在本文中,我们将探讨棋盘问题的一些常见形式以及解决方法。
一、八皇后问题八皇后问题是指在一个 8 × 8 的棋盘上放置 8 个皇后,并且每个皇后都不能相互攻击,即任意两个皇后不得处于同一行、同一列或同一对角线上。
这个问题可以通过回溯法来解决。
我们可以逐行放置皇后,并在每一行中使用循环判断每个格子是否满足条件。
如果满足条件,则继续递归下一行;如果不满足条件,则回溯到上一行继续判断。
当所有皇后都放置完毕时,即找到了一种解法。
二、骑士周游问题骑士周游问题是指在一个 n × n 的棋盘上,骑士按照国际象棋中骑士的移动规则进行移动,需要从起始格子出发,经过棋盘的每个格子,最终回到起始格子,且每个格子只能经过一次。
这个问题可以通过深度优先搜索或者广度优先搜索来解决。
我们可以从起始格子开始,按照骑士的移动规则依次遍历所有相邻的格子,并标记已访问的格子。
当所有格子都被访问过,并且最后的格子可以与起始格子连通,则找到了一种解法。
三、数独问题数独问题是指在一个 9 × 9 的棋盘上填入数字,使得每一行、每一列和每一个 3 × 3 的小方格中的数字都是 1 到 9 的不重复数字。
这个问题可以通过回溯法来解决。
我们可以逐格填入数字,并在每个格子中使用循环判断每个数字是否满足条件。
如果满足条件,则继续递归下一个格子;如果不满足条件,则尝试下一个数字。
当所有格子都填满时,即找到了一种解法。
四、六角形拼图问题六角形拼图问题是指在一个六角形的棋盘上,使用特定形状的六角形块填满整个棋盘。
这个问题可以通过搜索算法来解决。
我们可以从一个起始位置开始,依次尝试放置不同形状的六角形块。
每次放置块后,判断是否满足放置要求。
如果满足要求,则继续递归下一个位置;如果不满足要求,则尝试下一个形状的块。
八皇后问题(经典算法-回溯法)

⼋皇后问题(经典算法-回溯法)问题描述:⼋皇后问题(eight queens problem)是⼗九世纪著名的数学家⾼斯于1850年提出的。
问题是:在8×8的棋盘上摆放⼋个皇后,使其不能互相攻击。
即任意两个皇后都不能处于同⼀⾏、同⼀列或同⼀斜线上。
可以把⼋皇后问题扩展到n皇后问题,即在n×n的棋盘上摆放n个皇后,使任意两个皇后都不能互相攻击。
思路:使⽤回溯法依次假设皇后的位置,当第⼀个皇后确定后,寻找下⼀⾏的皇后位置,当满⾜左上、右上和正上⽅向⽆皇后,即矩阵中对应位置都为0,则可以确定皇后位置,依次判断下⼀⾏的皇后位置。
当到达第8⾏时,说明⼋个皇后安置完毕。
代码如下:#include<iostream>using namespace std;#define N 8int a[N][N];int count=0;//判断是否可放bool search(int r,int c){int i,j;//左上+正上for(i=r,j=c; i>=0 && j>=0; i--,j--){if(a[i][j] || a[i][c]){return false;}}//右上for(i=r,j=c; i>=0 && j<N; i--,j++){if(a[i][j]){return false;}}return true;}//输出void print(){for(int i=0;i<N;i++){for(int j=0;j<N;j++){cout<<a[i][j]<<" ";}cout<<endl;}}//回溯法查找适合的放法void queen(int r){if(r == 8){count++;cout<<"第"<<count<<"种放法\n";print();cout<<endl;return;}int i;for(i=0; i<N; i++){if(search(r,i)){a[r][i] = 1;queen(r+1);a[r][i] = 0;}}}//⼊⼝int main(){queen(0);cout<<"⼀共有"<<count<<"放法\n"; return 0;}。
八皇后问题详细的解法

若无法放下皇后则回到上一行, 即回溯
当n行的皇后都已确定后,我们 就找到了一种方案
check2 (int a[ ],int n)
queen21(例) 1 b加约束的枚举算法{//i多nt次i; 被调用,只是一重循环
{int a[9]; for (a[1]=1;a[1]<=8;a[1]++) for (a[2]=1;a[2]<=8;a[2]++)
八皇后问题
1
1八皇后问题背景 2盲目的枚举算法 3加约束的枚举算法 4回溯法及基本思想 5 回溯法应用 6八皇后问题的递归回溯算法 7八皇后问题的非递归回溯算法
2
【背景】 八皇后问题是一个以国际象棋为背
景的问题: 如何能够在 8×8 的国际象棋棋盘上
放置八个皇后,使得任何一个皇后都 无法直接吃掉其他的皇后?为了达到 此目的,任两个皇后都不能处于同一 条横行、纵行或斜线上。
for(a[8]=1;a[8]<=8;a[8]++) 此算法可读性很好,
{if (check(a,8)==0)continue; 体现了“回溯”。但
else for(i=1;i<=8;i+nt(a[i]); }
题,而不能解决任意
}}}}}}}
的n皇后问题。
18
2 回溯法应用-算法说明
按什么顺序去搜? 目标是没有漏网之鱼,尽量速度快。
5
2 【问题设计】盲目的枚举算法
a 盲目的枚举算法
通过8重循环模拟搜索空间中的88个状态;
按枚举思想,以DFS的方式,从第1个皇后在第1列开 始搜索,枚举出所有的“解状态”:
从中找出满足约束条件的“答案状态”。
八皇后实验报告

八皇后实验报告八皇后实验报告引言:八皇后问题是一个经典的数学问题,它要求在一个8x8的国际象棋棋盘上放置8个皇后,使得任意两个皇后都不会互相攻击。
这个问题看似简单,但实际上却充满了挑战。
在本次实验中,我们将探索八皇后问题的解法,并通过编写算法来解决这个问题。
一、问题背景:八皇后问题最早由数学家马克斯·贝瑟尔于1848年提出,它是一道经典的递归问题。
在国际象棋中,皇后可以在同一行、同一列或同一对角线上进行攻击,因此我们需要找到一种方法,使得8个皇后彼此之间不会相互攻击。
二、解决方法:为了解决八皇后问题,我们可以使用回溯法。
回溯法是一种穷举搜索的方法,它通过逐步尝试所有可能的解决方案,直到找到符合要求的解。
具体步骤如下:1. 初始化一个8x8的棋盘,并将所有格子标记为无皇后。
2. 从第一行开始,依次尝试在每一列放置一个皇后。
3. 在每一列中,检查当前位置是否符合要求,即与已放置的皇后不在同一行、同一列或同一对角线上。
4. 如果当前位置符合要求,将皇后放置在该位置,并进入下一行。
5. 如果当前位置不符合要求,尝试在下一列放置皇后。
6. 重复步骤3-5,直到找到一个解或者所有可能的位置都已尝试过。
7. 如果找到一个解,将其输出;否则,回溯到上一行,继续尝试下一列的位置。
三、编写算法:基于上述步骤,我们可以编写一个递归函数来解决八皇后问题。
伪代码如下所示:```function solveQueens(board, row):if row == 8:print(board) # 打印解returnfor col in range(8):if isSafe(board, row, col):board[row][col] = 1solveQueens(board, row + 1)board[row][col] = 0function isSafe(board, row, col):for i in range(row):if board[i][col] == 1:return Falseif col - (row - i) >= 0 and board[i][col - (row - i)] == 1:return Falseif col + (row - i) < 8 and board[i][col + (row - i)] == 1:return Falsereturn Trueboard = [[0]*8 for _ in range(8)]solveQueens(board, 0)```四、实验结果:通过运行上述算法,我们得到了八皇后问题的所有解。
八皇后问题

二.问题分析
• 显然,每一行可以而且必须放一个皇后,所以n皇后问题
的解可以用一个n元向量X=(x1,x2,.....xn)表示,其中, 1≤ i≤ n且1≤ xi≤ n,即第n个皇后放在第i行第xi列上。 由于两个皇后不能放在同一列上,所以,解向量X必须满 足的约束条件为:xi≠ xj; • 若两个皇后的摆放位置分别是(i,xi)和(j,xj),在棋盘 上斜率为-1的斜线上,满足条件i-j=xi-xj;在棋盘上斜率为1 的斜线上,满足条件i+j=xi+xj;
else {
x[k]=0;//重置x[k],回溯 k=k-1;
}
} }
void main() { int n; printf("输入皇后个数n:\n"); scanf("%d",&n); queue(n); }
ห้องสมุดไป่ตู้
• for(i=1;i<=n;i++)
x[i]=0; k=1; while(k>=1) { x[k]=x[k]+1; //在下一列放置第k个皇后 while(x[k]<=n&&!place(k)) x[k]=x[k]+1;//搜索下一列 if(x[k]<=n&&k==n)//得到一个输出 { for(i=1;i<=n;i++) printf("%d ",x[i]); printf("\n"); //return;//若return则只求出其中一种解,若不return则可以继 续回溯,求出全部的可能的解 } else if(x[k]<=n&&k<n) k=k+1;//放置下一个皇后
八皇后问题

八皇后问题编辑八皇后问题,是一个古老而著名的问题,是回溯算法的典型例题。
该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
高斯认为有76种方案。
1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
计算机发明后,有多种方法可以解决此问题。
八皇后问题最早是由国际西洋棋棋手马克斯·贝瑟尔于1848年提出。
之后陆续有数学家对其进行研究,其中包括高斯和康托,并且将其推广为更一般的n皇后摆放问题。
八皇后问题的第一个解是在1850年由弗朗兹·诺克给出的。
诺克也是首先将问题推广到更一般的n皇后摆放问题的人之一。
1874年,S.冈德尔提出了一个通过行列式来求解的方法,这个方法后来又被J.W.L.格莱舍加以改进。
艾兹格·迪杰斯特拉在1972年用这个问题为例来说明他所谓结构性编程的能力。
八皇后问题在1990年代初期的著名电子游戏第七访客和NDS平台的著名电子游戏雷顿教授与不可思议的小镇中都有出现。
2名词解释算法介绍八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。
八皇后问题可以推广为更一般的n 皇后摆放问题:这时棋盘的大小变为n ×n ,而皇后个数也变成n 。
当且仅当 n = 1 或 n ≥ 4时问题有解。
C 语言1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 intn=8;intx[9];intnum = 0;//解的个数//判断第k 个皇后能否放在第x[k]列boolPlace(intk){inti = 1;while ( i < k){if ( x[i]==x[k] || (abs (x[i]-x[k]) ==abs (i-k)) )returnfalse ;i++;}returntrue ;}void nQueens(intn){x[0] = x[1] =0;intk=1;while (k > 0){x[k]+=1;//转到下一行while (x[k]<=n && Place(k)==false ){//如果无解,最后一个皇后就会安排到格子外面去 x[k]+=1;}if (x[k]<=n){//第k 个皇后仍被放置在格子内,有解if (k==n){num++;cout << num <<":\t";for (inti=1; i<=n; i++){28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 cout << x[i] <<"\t";}cout << endl;}else {k++;x[k]=0;//转到下一行}}else //第k 个皇后已经被放置到格子外了,没解,回溯k--;//回溯}}int_tmain(intargc, _TCHAR* argv[]){nQueens(n);getchar ();return 0;}Java 算法1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 publicclass Queen {// 同栏是否有皇后,1表示有privateint [] column;// 右上至左下是否有皇后privateint [] rup;// 左上至右下是否有皇后privateint [] lup;// 解答privateint [] queen;// 解答编号privateint num;public Queen() {column =newint [8+1];rup =newint [2*8+1];lup =newint [2*8+1];for (int i =1; i <=8; i++)column[i] =1;2223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 for(int i =1; i <=2*8; i++)rup[i] = lup[i] =1;queen =newint[8+1];}publicvoid backtrack(int i) {if(i >8) {showAnswer();}else{for(int j =1; j <=8; j++) {if(column[j] ==1&&rup[i+j] ==1&&lup[i-j+8] ==1) {queen[i] = j;// 设定为占用column[j] = rup[i+j] = lup[i-j+8] =0; backtrack(i+1);column[j] = rup[i+j] = lup[i-j+8] =1; }}}}protectedvoid showAnswer() {num++;System.out.println("\n解答 "+ num);for(int y =1; y <=8; y++) {for(int x =1; x <=8; x++) {if(queen[y] == x) {System.out.print(" Q");}else{System.out.print(" .");}}System.out.println();}}publicstaticvoid main(String[] args) {Queen queen =new Queen();queen.backtrack(1);66 67 }}Erlang 算法-module(queen).-export([printf/0,attack_range/2]).-define(MaxQueen, 4).%寻找字符串所有可能的排列%perms([]) ->%[[]];%perms(L) ->% [[H | T] || H <- L, T <-perms(L -- [H])].perms([]) ->[[]];perms(L)->[[H | T] || H <- L, T <- perms(L -- [H]),attack_range(H,T) == []].printf() ->L =lists:seq(1, ?MaxQueen),io:format("~p~n",[?MaxQueen]),perms(L).%检测出第一行的数字攻击到之后各行哪些数字%left 向下行的左侧检测%right 向下行的右侧检测attack_range(Queen,List) ->attack_range(Queen,left, List) ++ attack_range(Queen,right, List).attack_range(_, _, [])->[];attack_range(Queen, left, [H | _]) whenQueen - 1 =:= H ->[H];attack_range(Queen,right, [H | _]) when Queen + 1 =:= H->[H];attack_range(Queen, left, [_ | T])->attack_range(Queen - 1, left,T);attack_range(Queen, right, [_ | T])->attack_range(Queen + 1, right, T).C 语言算法C 代码头文件1 2 3 4 5 6 7 8 9 10 11 //eigqueprob.h#include#define N 8 /* N 表示皇后的个数 *//* 用来定义答案的结构体*/typedefstruct {intline;/* 答案的行号 */introw;/* 答案的列号 */}ANSWER_TYPE;/* 用来定义某个位置是否被占用 */12 13 14 15 16 17 18 19 20 typedefenum {notoccued = 0,/* 没被占用 */occued = 1/* 被占用 */}IFOCCUED; /* 该列是否已经有其他皇后占用 */IFOCCUED rowoccu[N];/* 左上-右下对角位置已经有其他皇后占用 */IFOCCUED LeftTop_RightDown[2*N-1];/* 右上-左下对角位置已经有其他皇后占用*/IFOCCUED RightTop_LefttDown[2*N-1];/* 最后的答案记录 */ANSWER_TYPE answer[N];主程序1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 #include "eigqueprob.h"/* 寻找下一行占用的位置 */void nextline(intLineIndex){static asnnum = 0;/* 统计答案的个数 */intRowIndex = 0;/* 列索引 */intPrintIndex = 0;/* 按列开始遍历 */for (RowIndex=0;RowIndex{/* 如果列和两个对角线上都没有被占用的话,则占用该位置 */if ((notoccued == rowoccu[RowIndex])\&&(notoccued == LeftTop_RightDown[LineIndex-RowIndex+N-1])\&&(notoccued == RightTop_LefttDown[LineIndex+RowIndex])){/* 标记已占用 */rowoccu[RowIndex] = occued;LeftTop_RightDown[LineIndex-RowIndex+N-1] = occued;RightTop_LefttDown[LineIndex+RowIndex] = occued;/* 标记被占用的行、列号 */answer[LineIndex].line = LineIndex;answer[LineIndex].row = RowIndex;/* 如果不是最后一行,继续找下一行可以占用的位置 */if ((N-1) > LineIndex ){nextline(LineIndex+1);}/* 如果已经到了最后一行,输出结果 */else{asnnum++;printf ("\nThe %dth answer is :",asnnum);for (PrintIndex=0;PrintIndex{343536373839404142434445464748495051525354 printf("(%d,%d) ",answer[PrintIndex].line+1,answer[PrintIndex].row+1}/* 每10个答案一组,与其他组隔两行 */if((asnnum % 10) == 0)printf("\n\n");}/* 清空占用标志,寻找下一组解 */rowoccu[RowIndex] = notoccued;LeftTop_RightDown[LineIndex-RowIndex+N-1] = notoccued;RightTop_LefttDown[LineIndex+RowIndex] = notoccued;}}}main(){inti = 0;/* 调用求解函数*/nextline(i);/* 保持屏幕结果*/getchar();}C语言实现图形实现对于八皇后问题的实现,如果结合动态的图形演示,则可以使算法的描述更形象、更生动,使教学能产生良好的效果。
八皇后问题有多少解

八皇后问题有多少解八皇后问题有92解。
皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。
如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,‘即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。
已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。
串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
//输入数据//第1行是测试数据的组数n,后面跟着n行输入。
每组测试数据占1行,包括一个正整数b(1 <= b <= 92)//输出要求//n行,每行输出对应一个输入。
输出应是一个正整数,是对应于b 的皇后串//输入样例//2//1//92//输出样例//15863724//84136275解题思路一因为要求出92种不同摆放方法中的任意一种,所以我们不妨把92种不同的摆放方法一次性求出来,存放在一个数组里。
为求解这道题我们需要有一个矩阵仿真棋盘,每次试放一个棋子时只能放在尚未被控制的格子上,一旦放置了一个新棋子,就在它所能控制的所有位置上设置标记,如此下去把八个棋子放好。
当完成一种摆放时,就要尝试下一种。
若要按照字典序将可行的摆放方法记录下来,就要按照一定的顺序进行尝试。
也就是将第一个棋子按照从小到大的顺序尝试;对于第一个棋子的每一个位置,将第二个棋子从可行的位置从小到大的顺序尝试;在第一第二个棋子固定的情况下,将第三个棋子从可行的位置从小到大的顺序尝试;依次类推。
首先,我们有一个8*8的矩阵仿真棋盘标识当前已经摆放好的棋子所控制的区域。
用一个有92行每行8个元素的二维数组记录可行的摆放方法。
用一个递归程序来实现尝试摆放的过程。
基本思想是假设我们将第一个棋子摆好,并设置了它所控制的区域,则这个问题变成了一个7皇后问题,用与8皇后同样的方法可以获得问题的解。
八皇后算法分析

八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。
该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
高斯认为有76种方案。
1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
现代教学中,把八皇后问题当成一个经典递归算法例题。
——引用自百度百科首先,可归纳问题的条件为,8皇后之间需满足:1.不在同一行上2.不在同一列上3.不在同一斜线上4.不在同一反斜线上这为我们提供一种遍历的思路,我们可以逐行或者逐列来进行可行摆放方案的遍历,每一行(或列)遍历出一个符合条件的位置,接着就到下一行或列遍历下一个棋子的合适位置,这种遍历思路可以保证我们遍历过程中有一个条件是绝对符合的——就是下一个棋子的摆放位置与前面的棋子不在同一行(或列)。
接下来,我们只要判断当前位置是否还符合其他条件,如果符合,就遍历下一行(或列)所有位置,看看是否继续有符合条件的位置,以此类推,如果某一个行(或列)的所有位置都不合适,就返回上一行(或列)继续该行(或列)的其他位置遍历,当我们顺利遍历到最后一行(或列),且有符合条件的位置时,就是一个可行的8皇后摆放方案,累加一次八皇后可行方案的个数,然后继续遍历该行其他位置是否有合适的,如果没有,则返回上一行,遍历该行其他位置,依此下去。
这样一个过程下来,我们就可以得出所有符合条件的8皇后摆放方案了。
这是一个深度优先遍历的过程,同时也是经典的递归思路。
接下来,我们以逐列遍历,具体到代码,进一步说明。
首先,从第一列开始找第一颗棋子的合适位置,我们知道,此时第一列的任何一个位置都是合适的,当棋子找到第一个合适的位置后,就开始到下一列考虑下一个合适的位置,此时,第二列的第一行及第二行显然就不能放第二颗棋子了,因为其与第一个棋子一个同在一行,一个同在一条斜线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八皇后问题八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。
该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
高斯认为有76种方案。
1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
对于八皇后问题的实现,如果结合动态的图形演示,则可以使算法的描述更形象、更生动,使教学能产生良好的效果。
下面是用Turbo C实现的八皇后问题的图形程序,能够演示全部的92组解。
八皇后问题动态图形的实现,主要应解决以下两个问题。
(1)回溯算法的实现(a)为解决这个问题,我们把棋盘的横坐标定为i,纵坐标定为j,i和j的取值范围是从1到8。
当某个皇后占了位置(i,j)时,在这个位置的垂直方向、水平方向和斜线方向都不能再放其它皇后了。
用语句实现,可定义如下三个整型数组:a[8],b[15],c[24]。
其中:a[j-1]=1 第j列上无皇后a[j-1]=0 第j列上有皇后b[i+j-2]=1 (i,j)的对角线(左上至右下)无皇后b[i+j-2]=0 (i,j)的对角线(左上至右下)有皇后c[i-j+7]=1 (i,j)的对角线(右上至左下)无皇后c[i-j+7]=0 (i,j)的对角线(右上至左下)有皇后(b)为第i个皇后选择位置的算法如下:for(j=1;j<=8;j++) /*第i个皇后在第j行*/if ((i,j)位置为空))/*即相应的三个数组的对应元素值为1*/{占用位置(i,j)/*置相应的三个数组对应的元素值为0*/if i<8为i+1个皇后选择合适的位置;else 输出一个解}(2)图形存取在Turbo C语言中,图形的存取可用如下标准函数实现:size=imagesize(x1,y1,x2,y2) ;返回存储区域所需字节数。
arrow=malloc(size);建立指定大小的动态区域位图,并设定一指针arrow。
getimage(x1,y1,x2,y2,arrow);将指定区域位图存于一缓冲区。
putimage(x,y,arrow,copy)将位图置于屏幕上以(x,y)左上角的区域。
(3)程序清单如下#include <graphics.h>#include <stdlib.h>#include <stdio.h>#include <dos.h>char n[3]={'0','0'};/*用于记录第几组解*/int a[8],b[15],c[24],i;int h[8]={127,177,227,277,327,377,427,477};/*每个皇后的行坐标*/int l[8]={252,217,182,147,112,77,42,7}; /*每个皇后的列坐标*/void *arrow;void try(int i){int j;for (j=1;j<=8;j++)if (a[j-1]+b[i+j-2]+c[i-j+7]==3) /*如果第i列第j行为空*/{a[j-1]=0;b[i+j-2]=0;c[i-j+7]=0;/*占用第i列第j行*/putimage(h[i-1],l[j-1],arrow,COPY_PUT);/*显示皇后图形*/delay(500);/*延时*/if(i<8) try(i+1);else /*输出一组解*/{n[1]++;if (n[1]>'9') {n[0]++;n[1]='0';}bar(260,300,390,340);/*显示第n组解*/outtextxy(275,300,n);delay(3000);}a[j-1]=1;b[i+j-2]=1;c[i-j+7]=1;putimage(h[i-1],l[j-1],arrow,XOR_PUT);/*消去皇后,继续寻找下一组解*/ delay(500);}}int main(void){int gdrive=DETECT,gmode,errorcode;unsigned int size;initgraph(&gdrive,&gmode,"");errorcode=graphresult();if (errorcode!=grOk){printf("Graphics error\n");exit(1);}rectangle(50,5,100,40);rectangle(60,25,90,33);/* 画皇冠*/line(60,28,90,28);line(60,25,55,15);line(55,15,68,25);line(68,25,68,10);line(68,10,75,25);line(75,25,82,10);line(82,10,82,25);line(82,25,95,15);line(95,15,90,25);size=imagesize(52,7,98,38); arrow=malloc(size);getimage(52,7,98,38,arrow); /* 把皇冠保存到缓冲区*/clearviewport();settextstyle(TRIPLEX_FONT, HORIZ_DIR, 4);setusercharsize(3, 1, 1, 1);setfillstyle(1,4);for (i=0;i<=7;i++) a=1;for (i=0;i<=14;i++) b=1;for (i=0;i<=23;i++) c=1;for (i=0;i<=8;i++) line(125,i*35+5,525,i*35+5); /* 画棋盘*/for (i=0;i<=8;i++) line(125+i*50,5,125+i*50,285);try(1); /* 调用递归函数*/delay(3000);closegraph();free(arrow);}二、循环实现Java/** 8皇后问题:** 问题描述:* 在一个8×8的棋盘里放置8个皇后,要求每个皇后两两之间不相冲突*(在每一横列,竖列,斜列只有一个皇后)。
** 数据表示:* 用一个8 位的8 进制数表示棋盘上皇后的位置:* 比如:45615353 表示:* 第0列皇后在第4个位置* 第1列皇后在第5个位置* 第2列皇后在第6个位置* 。
* 第7列皇后在第3个位置** 循环变量从00000000 加到77777777 (8进制数)的过程,就遍历了皇后所有的情况* 程序中用八进制数用一个一维数组data[] 表示** 检测冲突:* 横列冲突:data == data[j]* 斜列冲突:(data+i) == (data[j]+j) 或者(data-i) == (data[j]-j)** 好处:* 采用循环,而不是递规,系统资源占有少* 可计算n 皇后问题* 把问题线性化处理,可以把问题分块,在分布式环境下用多台计算机一起算。
** ToDo:* 枚举部分还可以进行优化,多加些判断条件速度可以更快。
* 输出部分可以修改成棋盘形式的输出** @author cinc 2002-09-11**/public class Queen {int size;int resultCount;public void compute ( int size ) {this.size = size;resultCount = 0;int data[] = new int[size];int count; // 所有可能的情况个数int i,j;// 计算所有可能的情况的个数count = 1;for ( i=0 ; i<size ; i++ ) {count = count * size;}// 对每一个可能的情况for ( i=0 ; i<count ; i++ ) {// 计算这种情况下的棋盘上皇后的摆放位置,用8 进制数表示// 此处可优化int temp = i;for ( j=0 ; j<size ; j++ ) {data [j] = temp % size;temp = temp / size;}// 测试这种情况是否可行,如果可以,输出if ( test(data) )output( data );}}/** 测试这种情况皇后的排列是否可行**/public boolean test( int[] data ) {int i,j;for ( i=0 ; i<size ; i++ ) {for ( j=i+1 ; j<size ; j++ ) {// 测试是否在同一排if ( data == data[j] )return false;// 测试是否在一斜线if ( (data+i) == (data[j]+j) )return false;// 测试是否在一反斜线if ( (data-i) == (data[j]-j) )return false;}}return true;}/** 输出某种情况下皇后的坐标**/public void output ( int[] data ) {int i;System.out.print ( ++resultCount + ": " );for ( i=0 ; i<size ; i++ ) {System.out.print ( "(" + i + "," + data + ") " ); }System.out.println ();}public static void main(String args[]) { (new Queen()).compute( 8 );}}三、八皇后问题的Qbasic版的解决方案10 I = 120 A(I) = 130 G = 140 FOR K = I - 1 TO 1 STEP -150 IF A(I) = A(K) THEN 7060 IF ABS(A(I) - A(K)) <> I - K THEN 9070 G = 080 GOTO 10090 NEXT K100 IF I <> 8 THEN 180110 IF G = 0 THEN 180120 FOR L = 1 TO 8130 PRINT USING “##”; A(L);140 NEXT L150 PRINT “*”;160 M = M + 1170 IF M MOD 3 = 0 THEN PRINT180 IF G = 0 THEN 230190 IF I = 8 THEN 230200 I = I + 1210 A(I) = 1220 GOTO 30230 IF A(I) < 8 THEN 270240 I = I - 1250 IF I = 0 THEN 290260 GOTO 230270 A(I) = A(I) + 1280 GOTO 30290 PRINT300 PRINT “SUM=”; USING “##”; M;310 PRINT320 END四、八皇后问题的高效解法-递归版//8 Queen 递归算法//如果有一个Q 为chess=j;//则不安全的地方是k行j位置,j+k-i位置,j-k+i位置class Queen8{static final int QueenMax = 8;static int oktimes = 0;static int chess[] = new int[QueenMax];//每一个Queen的放置位置public static void main(String args[]){for (int i=0;i<QueenMax;i++)chess=-1;placequeen(0);System.out.println("\n\n\n八皇后共有"+oktimes+"个解法made by yifi 2003"); }public static void placequeen(int num){ //num 为现在要放置的行数int i=0;boolean qsave[] = new boolean[QueenMax];for(;i<QueenMax;i++) qsave=true;//下面先把安全位数组完成i=0;//i 是现在要检查的数组值while (i<num){qsave[chess]=false;int k=num-i;if ( (chess+k >= 0) && (chess+k < QueenMax) ) qsave[chess+k]=false;if ( (chess-k >= 0) && (chess-k < QueenMax) ) qsave[chess-k]=false;i++;}//下面历遍安全位for(i=0;i<QueenMax;i++){if (qsave==false)continue;if (num<QueenMax-1){chess[num]=i;placequeen(num+1);}else{ //num is last onechess[num]=i;oktimes++;System.out.println("这是第"+oktimes+"个解法如下:");System.out.println("第n行: 1 2 3 4 5 6 7 8");for (i=0;i<QueenMax;i++){String row="第"+(i+1)+"行: ";if (chess==0);elsefor(int j=0;j<chess;j++) row+="--";row+="++";int j = chess;while(j<QueenMax-1){row+="--";j++;}System.out.println(row);}}}//历遍完成就停止}}[编辑本段]五、java实现//8 Queen 递归算法//如果有一个Q 为chess=j;//则不安全的地方是k行j位置,j+k-i位置,j-k+i位置class Queen8{static final int QueenMax = 8;static int oktimes = 0;static int chess[] = new int[QueenMax];//每一个Queen的放置位置public static void main(String args[]){for (int i=0;i<QueenMax;i++)chess=-1;placequeen(0);System.out.println("\n\n\n八皇后共有"+oktimes+"个解法made by yifi 2003");}public static void placequeen(int num){ //num 为现在要放置的行数int i=0;boolean qsave[] = new boolean[QueenMax];for(;i<QueenMax;i++) qsave=true;//下面先把安全位数组完成i=0;//i 是现在要检查的数组值while (i<num){qsave[chess]=false;int k=num-i;if ( (chess+k >= 0) && (chess+k < QueenMax) ) qsave[chess+k]=false;if ( (chess-k >= 0) && (chess-k < QueenMax) ) qsave[chess-k]=false;i++;}//下面历遍安全位for(i=0;i<QueenMax;i++){if (qsave==false)continue;if (num<QueenMax-1){chess[num]=i;placequeen(num+1);}else{ //num is last onechess[num]=i;oktimes++;System.out.println("这是第"+oktimes+"个解法如下:");System.out.println("第n行: 1 2 3 4 5 6 7 8");for (i=0;i<QueenMax;i++){String row="第"+(i+1)+"行: ";if (chess==0);elsefor(int j=0;j<chess;j++) row+="--";row+="++";int j = chess;while(j<QueenMax-1){row+="--";j++;}System.out.println(row);}}}//历遍完成就停止}}[编辑本段]六、c#实现采用的思路大致是这样:将一个皇后向下移动一个位置;如果没有成功移动(超出边界),失败;如果成功移动,则判断当前位置是否可用?如果不可用,则重做1;继续给下一个皇后安排位置。