八皇后问题讲解
算法——八皇后问题(eightqueenpuzzle)之回溯法求解

算法——⼋皇后问题(eightqueenpuzzle)之回溯法求解⼋皇后谜题是经典的⼀个问题,其解法⼀共有92种!其定义:1. ⾸先定义⼀个8*8的棋盘2. 我们有⼋个皇后在⼿⾥,⽬的是把⼋个都放在棋盘中3. 位于皇后的⽔平和垂直⽅向的棋格不能有其他皇后4. 位于皇后的斜对⾓线上的棋格不能有其他皇后5. 解出能将⼋个皇后都放在棋盘中的摆法这个问题通常使⽤两种⽅法来求解:1. 穷举法2. 回溯法(递归)本⽂章通过回溯法来求解,回溯法对⽐穷举法⾼效许多,让我们学习如何实现吧!实现思想:1. 我们先在棋盘的第0⾏第1个棋格放下第⼀个皇后2. 下⼀⾏寻找⼀个不冲突的棋格放下下⼀个皇后3. 循环第2步4. 如果到某⼀⾏全部8个格⼦都⽆法放下皇后,回溯到前⼀⾏,继续寻找下⼀个不冲突的棋格5. 把8个皇后都放在棋盘之后,输出或存储摆法,结束实现(Java)算法:定义棋盘我们通过⼀个⼆维整型数组表⽰⼀个棋盘数组内为1是放下了的皇后,0则是空⽩的棋格我们下下⾯定义⼀个⽅法:通过检查棋格是否为1来知道是不是有皇后1// 定义⼀个棋盘2static int chessboard[][] = new int[8][8];检查冲突这个⽅法⽤来检查冲突:在⽔平垂直⽅向、斜⾓上的棋格有⽆其他皇后,传⼊的(x,y)是需要检查的棋格,如检查棋格(1,0)即棋盘的第2⾏第1个,是否能放下皇后。
1// 检查是否符合规则2private static boolean checked(int x,int y){3for(int i = 0;i<y;i++){4// 检查⽔平垂直⽅向5if(chessboard[x][i]==1)return false;6// 检测左斜⾓7if((x-y+i>=0)&&chessboard[x-y+i][i]==1)return false;8// 检查右斜⾓9if((x+y-i<=7)&&chessboard[x+y-i][i]==1)return false;10 }11return true;12 }放下皇后我们在每⼀⾏都执⾏以下步骤,通过从第1个棋格到第8个遍历寻找可以放下皇后的棋格如果放下了皇后,我们就可以继续放下下⼀个了,将⾏数+1,我们递归调⽤这个⽅法1public static boolean solve(int y){2// 将⼀⾏的8种情况都扫描⼀次3for(int i = 0;i<8;i++){4// 每次检测前都将当前⾏清空,避免脏数据5for(int k = 0;k<8;k++)chessboard[k][y]=0;6if(checked(i, y)){7 chessboard[i][y] = 1;8// 当前⼀⾏已经获得解法,进⼊下⼀⾏9 solve(y+1);10 }11 }12return false;13 }算法边界当我们放下了所有8个皇后后,需要⼀个终⽌条件,我们在⾏数y=8时,结束算法同时你可以输出⼀个棋盘摆法了!恭喜你已经把这个经典问题解决了!1// 当y=8时,已经找到⼀种解决⽅法2if(y == 8){3return true;4 }以下是完整的算法1public class EightQueen{2// 定义⼀个棋盘3static int chessboard[][] = new int[8][8];4// 计数器5static int count = 0;67// 解题⽅法8public static boolean solve(int y){9// 当y=8时,已经找到⼀种解决⽅法,计数器加⼀并输⼊摆法10if(y == 8){11 System.out.println("solved!");12 show();13 count++;14return true;15 }16// 将⼀⾏的8种情况都扫描⼀次17for(int i = 0;i<8;i++){18// 每次检测前都将当前⾏清空,避免脏数据19for(int k = 0;k<8;k++)chessboard[k][y]=0;20if(checked(i, y)){21 chessboard[i][y] = 1;22// 当前⼀⾏已经获得解法,进⼊下⼀⾏23 solve(y+1);24 }25 }26return false;27 }28// 检查是否符合规则29private static boolean checked(int x,int y){30for(int i = 0;i<y;i++){31// 检查垂直⽅向32if(chessboard[x][i]==1)return false;33// 检测左斜⾓34if((x-y+i>=0)&&chessboard[x-y+i][i]==1)return false;35// 检查右斜⾓36if((x+y-i<=7)&&chessboard[x+y-i][i]==1)return false;37 }38return true;39 }40// 输出棋盘摆法41public static void show(){42for(int i = 0;i<8;i++){43for(int j = 0;j<8;j++){44 System.out.print(chessboard[j][i]+" ");45 }46 System.out.println("");47 }48 }49 }在执⾏这个算法后:have 92 ways to sovle it!我们获得了92种棋盘摆法!。
八皇后问题(经典算法-回溯法)

⼋皇后问题(经典算法-回溯法)问题描述:⼋皇后问题(eight queens problem)是⼗九世纪著名的数学家⾼斯于1850年提出的。
问题是:在8×8的棋盘上摆放⼋个皇后,使其不能互相攻击。
即任意两个皇后都不能处于同⼀⾏、同⼀列或同⼀斜线上。
可以把⼋皇后问题扩展到n皇后问题,即在n×n的棋盘上摆放n个皇后,使任意两个皇后都不能互相攻击。
思路:使⽤回溯法依次假设皇后的位置,当第⼀个皇后确定后,寻找下⼀⾏的皇后位置,当满⾜左上、右上和正上⽅向⽆皇后,即矩阵中对应位置都为0,则可以确定皇后位置,依次判断下⼀⾏的皇后位置。
当到达第8⾏时,说明⼋个皇后安置完毕。
代码如下:#include<iostream>using namespace std;#define N 8int a[N][N];int count=0;//判断是否可放bool search(int r,int c){int i,j;//左上+正上for(i=r,j=c; i>=0 && j>=0; i--,j--){if(a[i][j] || a[i][c]){return false;}}//右上for(i=r,j=c; i>=0 && j<N; i--,j++){if(a[i][j]){return false;}}return true;}//输出void print(){for(int i=0;i<N;i++){for(int j=0;j<N;j++){cout<<a[i][j]<<" ";}cout<<endl;}}//回溯法查找适合的放法void queen(int r){if(r == 8){count++;cout<<"第"<<count<<"种放法\n";print();cout<<endl;return;}int i;for(i=0; i<N; i++){if(search(r,i)){a[r][i] = 1;queen(r+1);a[r][i] = 0;}}}//⼊⼝int main(){queen(0);cout<<"⼀共有"<<count<<"放法\n"; return 0;}。
八皇后问题详细的解法

若无法放下皇后则回到上一行, 即回溯
当n行的皇后都已确定后,我们 就找到了一种方案
check2 (int a[ ],int n)
queen21(例) 1 b加约束的枚举算法{//i多nt次i; 被调用,只是一重循环
{int a[9]; for (a[1]=1;a[1]<=8;a[1]++) for (a[2]=1;a[2]<=8;a[2]++)
八皇后问题
1
1八皇后问题背景 2盲目的枚举算法 3加约束的枚举算法 4回溯法及基本思想 5 回溯法应用 6八皇后问题的递归回溯算法 7八皇后问题的非递归回溯算法
2
【背景】 八皇后问题是一个以国际象棋为背
景的问题: 如何能够在 8×8 的国际象棋棋盘上
放置八个皇后,使得任何一个皇后都 无法直接吃掉其他的皇后?为了达到 此目的,任两个皇后都不能处于同一 条横行、纵行或斜线上。
for(a[8]=1;a[8]<=8;a[8]++) 此算法可读性很好,
{if (check(a,8)==0)continue; 体现了“回溯”。但
else for(i=1;i<=8;i+nt(a[i]); }
题,而不能解决任意
}}}}}}}
的n皇后问题。
18
2 回溯法应用-算法说明
按什么顺序去搜? 目标是没有漏网之鱼,尽量速度快。
5
2 【问题设计】盲目的枚举算法
a 盲目的枚举算法
通过8重循环模拟搜索空间中的88个状态;
按枚举思想,以DFS的方式,从第1个皇后在第1列开 始搜索,枚举出所有的“解状态”:
从中找出满足约束条件的“答案状态”。
八皇后问题

二.问题分析
• 显然,每一行可以而且必须放一个皇后,所以n皇后问题
的解可以用一个n元向量X=(x1,x2,.....xn)表示,其中, 1≤ i≤ n且1≤ xi≤ n,即第n个皇后放在第i行第xi列上。 由于两个皇后不能放在同一列上,所以,解向量X必须满 足的约束条件为:xi≠ xj; • 若两个皇后的摆放位置分别是(i,xi)和(j,xj),在棋盘 上斜率为-1的斜线上,满足条件i-j=xi-xj;在棋盘上斜率为1 的斜线上,满足条件i+j=xi+xj;
else {
x[k]=0;//重置x[k],回溯 k=k-1;
}
} }
void main() { int n; printf("输入皇后个数n:\n"); scanf("%d",&n); queue(n); }
ห้องสมุดไป่ตู้
• for(i=1;i<=n;i++)
x[i]=0; k=1; while(k>=1) { x[k]=x[k]+1; //在下一列放置第k个皇后 while(x[k]<=n&&!place(k)) x[k]=x[k]+1;//搜索下一列 if(x[k]<=n&&k==n)//得到一个输出 { for(i=1;i<=n;i++) printf("%d ",x[i]); printf("\n"); //return;//若return则只求出其中一种解,若不return则可以继 续回溯,求出全部的可能的解 } else if(x[k]<=n&&k<n) k=k+1;//放置下一个皇后
八皇后问题有多少解

八皇后问题有多少解八皇后问题有92解。
皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。
如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,‘即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。
已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。
串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
//输入数据//第1行是测试数据的组数n,后面跟着n行输入。
每组测试数据占1行,包括一个正整数b(1 <= b <= 92)//输出要求//n行,每行输出对应一个输入。
输出应是一个正整数,是对应于b 的皇后串//输入样例//2//1//92//输出样例//15863724//84136275解题思路一因为要求出92种不同摆放方法中的任意一种,所以我们不妨把92种不同的摆放方法一次性求出来,存放在一个数组里。
为求解这道题我们需要有一个矩阵仿真棋盘,每次试放一个棋子时只能放在尚未被控制的格子上,一旦放置了一个新棋子,就在它所能控制的所有位置上设置标记,如此下去把八个棋子放好。
当完成一种摆放时,就要尝试下一种。
若要按照字典序将可行的摆放方法记录下来,就要按照一定的顺序进行尝试。
也就是将第一个棋子按照从小到大的顺序尝试;对于第一个棋子的每一个位置,将第二个棋子从可行的位置从小到大的顺序尝试;在第一第二个棋子固定的情况下,将第三个棋子从可行的位置从小到大的顺序尝试;依次类推。
首先,我们有一个8*8的矩阵仿真棋盘标识当前已经摆放好的棋子所控制的区域。
用一个有92行每行8个元素的二维数组记录可行的摆放方法。
用一个递归程序来实现尝试摆放的过程。
基本思想是假设我们将第一个棋子摆好,并设置了它所控制的区域,则这个问题变成了一个7皇后问题,用与8皇后同样的方法可以获得问题的解。
八皇后算法分析

八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。
该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
高斯认为有76种方案。
1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
现代教学中,把八皇后问题当成一个经典递归算法例题。
——引用自百度百科首先,可归纳问题的条件为,8皇后之间需满足:1.不在同一行上2.不在同一列上3.不在同一斜线上4.不在同一反斜线上这为我们提供一种遍历的思路,我们可以逐行或者逐列来进行可行摆放方案的遍历,每一行(或列)遍历出一个符合条件的位置,接着就到下一行或列遍历下一个棋子的合适位置,这种遍历思路可以保证我们遍历过程中有一个条件是绝对符合的——就是下一个棋子的摆放位置与前面的棋子不在同一行(或列)。
接下来,我们只要判断当前位置是否还符合其他条件,如果符合,就遍历下一行(或列)所有位置,看看是否继续有符合条件的位置,以此类推,如果某一个行(或列)的所有位置都不合适,就返回上一行(或列)继续该行(或列)的其他位置遍历,当我们顺利遍历到最后一行(或列),且有符合条件的位置时,就是一个可行的8皇后摆放方案,累加一次八皇后可行方案的个数,然后继续遍历该行其他位置是否有合适的,如果没有,则返回上一行,遍历该行其他位置,依此下去。
这样一个过程下来,我们就可以得出所有符合条件的8皇后摆放方案了。
这是一个深度优先遍历的过程,同时也是经典的递归思路。
接下来,我们以逐列遍历,具体到代码,进一步说明。
首先,从第一列开始找第一颗棋子的合适位置,我们知道,此时第一列的任何一个位置都是合适的,当棋子找到第一个合适的位置后,就开始到下一列考虑下一个合适的位置,此时,第二列的第一行及第二行显然就不能放第二颗棋子了,因为其与第一个棋子一个同在一行,一个同在一条斜线上。
回溯算法-八皇后

回溯算法一般描述
• 可用回溯法求解的问题P,通常要能表达为:对于已知的 由n元组(x1, x2,…,xn)组成的一个状态空间 E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给 定关于n元组中的一个分量的一个约束集D,要求E中满足 D的全部约束条件的所有n元组。其中Si是分量xi的定义域, 且 |Si| 有限,i=1,2,…,n。我们称E中满足D的全部约 束条件的任一n元组为问题P的一个解。 • 解问题P的最朴素的方法就是枚举法,即对E中的所有n元 组逐一地检测其是否满足D的全部约束,若满足,则为问 题P的一个解。但显然,其计算量是相当大的。
• • •
回溯的一般流程
• 在用回溯法求解有关问题的过程中,一般是一边建树,一 边遍历该树。在回溯法中我们一般采用非递归方法。下面, 我们给出回溯法的非递归算法的一般流程:
– 一般要用到栈的数据结构。这时,不仅可以用栈来表示正在遍历 的树的结点,而且可以很方便地表示建立孩子结点和回溯过程。 – 例如在组合问题中,用一个一维数组Stack[ ]表示栈。开始栈空, 则表示了树的根结点。如果元素1进栈,则表示建立并遍历(1) 结点;这时如果元素2进栈,则表示建立并遍历(1,2)结点;元 素3再进栈,则表示建立并遍历(1,2,3)结点。这时可以判断 它满足所有约束条件,是问题的一个解,输出(或保存)。这时 只要栈顶元素(3)出栈,即表示从结点(1,2,3)回溯到结点 (1,2)。
N皇后问题算法思想
• 为使程序在检查皇后配置的合理性方面简易方便,引入以下三个工作数 组: (1) 数组a[ ],a[k]表示第k行上还没有皇后; (2) 数组b[ ],b[k]表示第k列右高左低斜线上没有皇后;(次对角线) (3) 数组 c[ ],c[k]表示第k列左高右低斜线上没有皇后;(主对角线) • 棋盘中同一右高左低斜线上的方格,他们的行号与列号之和相同;同一 左高右低斜线上的方格,他们的行号与列号之差均相同。 • 初始时,所有行和斜线上均没有皇后,从第1列的第1行配置第一个皇后 开始,在第m列col[m]行放置了一个合理的皇后后,准备考察第m+1列时, 在数组a [ ]、b[ ]和c[ ]中为第m列,col[m]行的位置设定有皇后标志;当 从第m列回溯到第m-1列,并准备调整第m-1列的皇后配置时,清除在数 组a[ ]、b[ ]和c[ ]中设置的关于第m-1列,col[m-1]行有皇后的标志。一个 皇后在m列,col[m]行方格内配置是合理的,由数组a[ ]、b[ ]和c[ ]对应位 置的值都为1来确定。
八皇后问题-Read

一.八皇后问题八皇后背景知识国际象棋中皇后威力很大,它可以象“车”一样沿直线上下或左右移动;也可以如同“象”那样沿着斜线移动。
双方的皇后是不能在同一行或同一列或同一斜线上对持的。
那么,在一张空白的国际象棋盘上最多可以放上几个皇后并且不让它们互相攻击呢?这个问题是伟大数学家高斯在十九世纪中期提出来的,并作了部分解答。
高斯在棋盘上放下了八个互不攻击的皇后,他还认为可能有76种不同的放法,这就是有名的“八皇后”问题。
现在我们已经知道八皇后问题有92个解答。
那么你能试着找出几种方法吗?如果你动手试试,就一定会发现开头几颗皇后很容易放置,越到后来就越困难。
由于我们的记忆有限,很可能在某个位置放过子后来证明不行取消了,但是以后又重新放上子去试探,这样就会不断地走弯路,花费大量的精力。
因此,必须找到一个简易有效、有条不紊的法则才行。
1.1分析1.1.1问题描述:八皇后问题是想把八个皇后放在一个棋盘上,并且她们之间不会相互攻击。
按照国家象棋的规则,皇后可以吃掉任何一个和她处在同一行、同一列、或同一斜线(包括两条对角线)上的其他棋子。
如图下所示,皇后所在的行、列及对角线(如图中斜线所示)对其他棋子都是不安全的,而其他地方的棋子则不会受到皇后的威胁。
因此,一个皇后放好以后,它所在的列、行、两条对角线上的地方都不能放其他棋子。
根据这个规则,我们可以利用一个函数来判断某个位置是否安全,安全的位置说明它所在的同一行、同一列或两条线上都没有放置过皇后,因此不会出现皇后互相攻击的情况;否则该位置不安全。
其具体实现过程是找出所有放置的皇后,将他们的位置与该位置进行比较判断。
又注意到同一行只能放一个皇后,因此,只需要对前面的各行逐行扫描皇后,就可以找出所有皇后的位置。
下图是其中一种摆放皇后的方法:1.1.2基本要求:编写实现八皇后问题的非递归解法,输出八皇后问题的中所有摆放皇后的方法,使它可以满足条件。
1.2课程设计目的:深入理解数据结构的基本理论,掌握数据存储结构的设计方法,掌握基于数据结构的各种操作的实现方法,训练对基础知识和基本方法的综合运用能力,增强对算法的理解能力,提高软件设计能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机科学与技术专业数据结构课程设计报告设计题目:八皇后问题目录1需求分析 (3)1.1功能分析 (3)1.2设计平台 (4)2概要设计 (4)2.1算法描述 (5)2.2算法思想 (6)2.3数据类型的定义 (6)3详细设计和实现 (7)3.1算法流程图 (7)3.2 主程序 (7)3.3 回溯算法程序 (8)4调试与操作说明 (10)4.1调试情况 (10)4.2操作说明 (10)5设计总结 (12)参考文献 (13)附录 (13)1需求分析1.1功能分析八皇后问题是一个古老而著名的问题,该问题是十九世纪著名的数学家高斯1850年提出的,并作了部分解答。
高斯在棋盘上放下了八个互不攻击的皇后,他还认为可能有76种不同的放法,这就是有名的“八皇后”问题。
在国际象棋中,皇后是最有权利的一个棋子;只要别的棋子在它的同一行或同一列或同一斜线(正斜线或反斜线)上时,它就能把对方棋子吃掉。
所以高斯提出了一个问题:在8*8的格的国际象棋上摆放八个皇后,使其不能相互攻击,即任意两个皇后都不能处于同一列、同一行、或同一条斜线上面,问共有多少种解法。
现在我们已经知道八皇后问题有92个解答。
1、本演示程序中,利用选择进行。
程序运行后,首先要求用户选择模式,然后进入模式。
皇后个数设0<n<11。
选择皇后个数后,进入子菜单,菜单中有两个模式可以选择。
2、演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的运算命令:相应的输入数据和运算结果显示在其后。
3、程序执行的命令包括:1)进入主菜单。
2)选择皇后问题,输入是几皇后。
3)进入子菜单。
4)选择皇后显示模式。
5)选择结束4、测试数据1)N的输入为4;2)共有2个解答。
3)分别是○●○○○○●○○○○●●○○○●○○○○○○●○○●○○●○○1.2设计平台Windows2000以上操作系统;Microsoft Visual C++ 6.02概要设计问题:N后问题问题描述:国际象棋中皇后可以攻击所在行,列,斜线上的每一个位置,按照此规则要在一个n*n的棋盘上放n个皇后使每一个皇后都不互相攻击问题分析:引入1个数组模拟棋盘上皇后的位置引入3个工作数组行数组[k]=1,表示第k行没有皇后右高左低数组[k]=1,表示第k条右高左低的斜线上没有皇后左高右低数组[k]=1,表示第k条左高右低的斜线上没有皇后观察棋盘找到规律同一右高左低的斜线上的方格,它们的行号和列号之和相等;同一左高右低的斜线上的方格,它们的行号和列号只差相等;开始时,所有行和斜线上都没有皇后,从第一列的第一行配置第一个皇后开始,在第m列的皇后位置数组[m]行放置了一个合理的皇后之后,准备考察第m+1列时,在数组行数组[],右高左低数组[],左高右低数组[]中为第m列,皇后位置数组[m]的位置设定有皇后标志如果按此放置位置得不到结果,则把当前列中的有皇后标记改为无皇后标记。
依次类推当在棋盘最后一列上也找到合适的位置后得到结果。
通过上面规律可以推导出结果。
2.1算法描述回溯法——在约束条件下先序遍历,并在遍历过程中剪去那些不满足条件的分支。
使用回溯算法求解的问题特征,求解问题要分为若干步,且每一步都有几种可能的选择,而且往往在某个选择不成功时需要回头再试另外一种选择,如果到达求解目标则每一步的选择构成了问题的解,如果回头到第一步且没有新的选择则问题求解失败。
在回溯策略中,也可以通过引入一些与问题相关的信息来加快搜索解的速度。
对于皇后问题来说,由于每一行、每一列和每一个对角线,都只能放一个皇后,当一个皇后放到棋盘上后,不管它放在棋盘的什么位置,它所影响的行和列方向上的棋盘位置是固定的,因此在行、列方面没有什么信息可以利用。
但在不同的位置,在对角线方向所影响的棋盘位置数则是不同的。
可以想象,如果把一个皇后放在棋盘的某个位置后,它所影响的棋盘位置数少,那么给以后放皇后留下的余地就太大,找到解的可能性也大;反之留有余地就小,找到解的可能性也小。
2.2算法思想算法集中在如何解决棋子之间的冲突问题。
I.判断每个棋子是否满足规则的方法可以说是如出一辙。
因此算法的整体思想是递规调用判断函数graph( )。
从i行开始安置各行元素,当i>=N时输出结果.II.具体的graph( )函数的思想是:先在第1行放上一个皇后,然后在第2行合适的位置放上一个皇后,依次类推,如果8行都放满了,说明找到了一个解,如果第好第i行的皇后后,第i+1行找不到合适的位置,这时就回到第i 行,把第i行的皇后放到下一个位置,继续尝试下一行。
如此反复,知道找到所有的解。
注意,这种算法找的解可能有等价的,某些解可由别的解经过旋转棋盘得到。
2.3数据类型的定义1)Queen表示皇后个数,.这里定义为int类型指针,是为了满足N皇后条件。
2)column表示同栏是否有皇后,定义为int类型指针。
3)rup表示右上至左下是否有皇后占用,lup表示左上至右下是否有皇后占用。
都定义为int类型指针。
4)Num表示解答的个数。
5)N表示为是皇后的个数。
6)以上几个变量都全局变量。
而且,都定义为int类型指针,是为了满足N皇后条件,可以动态生成数组。
3详细设计和实现3.1算法流程图图为八皇后3.2 主程序int main(void){int i=1;int choice;printf("\n\n\t ** 欢迎进入皇后问题 **\n\n");while(i){printf("\n\t 查询菜单\n");printf("\n\t******************************************************");printf("\n\t * No.1------------皇后问题---------------- *");printf("\n\t * No.2------------退出---------------- *");printf("\n\t******************************************************");printf("\n\t 请选择菜单号(No.0--No.1):");scanf("%d",&choice);switch(choice){case 2:/*退出*/i=0;break;case 1:/*皇后问题*/choice_1();break;default:printf("\n\t\t\t 菜单选择错误,请重新输入!\n");}}return 0;}3.3 回溯算法程序void graph_1(int i) //i为行数。
即第i行皇后的位置{/* 列索引 */int j;if(i > N){show_1();}else{/* 按列开始遍历 */for(j = 1; j <= N; j++){/* 如果列和两个对角线上都没有被占用的话,则占用该位置 */ if(column[j] == 1 &&rup[i+j] == 1 && lup[i-j+N] == 1){queen[i] = j;/* 标记被占用的行、列号 */column[j] = rup[i+j] = lup[i-j+N] = 0;/* 继续找下一行可以占用的位置 */graph_1(i+1);/* 清空占用标志,寻找下一组解 */column[j] = rup[i+j] = lup[i-j+N] = 1;}}}}4调试与操作说明4.1调试情况这次的课程设计的代码不多,所以等有了解题思路后,把代码都写上后难免会有很多错误。
当第一次把整个程序写好后运行,出现了很多错误。
不过经过一点点的改正,错误也慢慢地变少。
这也说明做事要认真,尤其做计算机这方面工作的时候,因为计算机不容许不一点点的错误,有了一点小错误和有一个大错误在计算机看来都是一样的,都不会得不到结果。
有些小错误,比如说少了个分号,变量忘了定义,数据溢出等都是些小错误,但也不能松懈。
因为要注意的地方很多,经过多次尝试,问题也就自然而然的解决了,而且以后遇到这方面的问题都会觉得比较得心应手。
4.2操作说明生成界面如图图4.1 生成界面图4.2生成界面图4.3视图输出界面图4.4皇后列数界面当程序运行的时候会出现如上图所示的提示,要求使用者选择输入菜单1或2。
输入1后,再输入是几皇后问题。
输入后进入子菜单,选择哪一种输出。
输入1后。
输出是解答。
5设计总结就编写的程序而言,虽然能达到预期的结果,但在运行时所需的时间比较长,而且总体结构还不够简洁,不太容易去理解。
许多问题还需要继续研究,许多技术还需要更多的改进。
去网上看了些资料,只是对大概的知识有了点了解,但还是很难着手于写代码,后来就按照老师说的,先搞清楚原理,再考虑如何去实现!后来又去上网查看相关资料,总算有头绪了。
但在调试过程中,还是遇到了很多困难,后来通过了很多同的帮助才把问题解决了。
通过这次的课程设计,让我了解了八皇后这一经典的问题。
同时让我更好地掌握了回溯法以及一维数组等等知识,以及一些书本上没有的东西,这对我以后的学习生涯以及将来步入社会起到很大的帮助。
这次课程设计虽然花了我不多时间和精力,这次课程设计也提醒我以前知识的匮乏,它给我敲响了警钟,让我意识到自己基础的不扎实.当然这次实验还是有很多问题的。
在编写代码时,我希望能随机选择一数 X(1~92)后,能输出该种情况所对应的八个皇后的摆放方式和每个皇后所在的位置,但想了好久,就是无法实现。
而且,当92种情况都输出时,前面的几十种情况无法看到,要想让摆放皇后的图形和所在具体的位置一起输出,就得修改程序让使她们一个一个地输出,这样显然比较麻烦。
针对八皇后这个课题,也许表层只局限于对八个皇后的摆放,但还可以对更多的情况进行探讨分析,比如九皇后,十皇后等等。
在报告正文中已经多次提到关于N皇后的设计方法,但只是一带而过,有些问题很难通过一个报告设计就轻而易举的得到解决,还需要花费更多的时间。
也许随着皇后个数的增多,程序运行的时间将变得很长,我们能否将运行的时间缩短呢?参考文献1 周云静.数据结构习题解析与上机指导.北京:冶金工业出版社,20042 严蔚敏,吴伟民.数据结构.北京:清华大学出版社,1997附录源程序附下:Main.c#include "queen.h"int main(void){int i=1;int choice;printf("\n\n\t ** 欢迎进入皇后问题**\n\n");while(i){printf("\n\t 查询菜单\n");printf("\n\t ******************************************************");printf("\n\t * No.1------------皇后问题---------------- *");printf("\n\t * No.2------------退出---------------- *");printf("\n\t ******************************************************");printf("\n\t 请选择菜单号(No.0--No.1):");scanf("%d",&choice);switch(choice){case 2:/*退出*/i=0;break;case 1:/*皇后问题*/choice_1();break;default:printf("\n\t\t\t 菜单选择错误,请重新输入!\n");}}return 0;}queen.h#include <stdio.h>#include <stdlib.h>int *column=0; // 同栏是否有皇后int *rup=0; // 右上至左下是否有皇后占用int *lup=0; // 左上至右下是否有皇后占用int *queen=0;int num; // // 最后的答案记录int N; //皇后个数void insert(){column=(int *)malloc(sizeof(int)*(N+1));rup=(int *)malloc(sizeof(int)*(N*2+1));lup=(int *)malloc(sizeof(int)*(N*2+1));queen=(int *)malloc(sizeof(int)*(N+1));printf("\n\n\t ▁▂▃▄欢迎进入%d皇后问题▄▃▂▁\n\n",N);}/*释放空间*/void delet(){free(column);free(rup);free(lup);free(queen);}void init(){int i;for(i = 1; i <= N; i++)column[i] = 1;//1为未用,0为已用for(i = 1; i <= 2*N; i++)rup[i] = lup[i] = 1;//1为未用,0为已用//for(i=0;i<=N;i++)queen[i]=0;num=0;}void answer(){printf("\n\t ==%d皇后问题==",N);if(num==0)printf("\n\t ==无解答==\n\n");elseprintf("\n\t ==共有%d解答==\n\n",num); }/*图形显示*/void show_1(){int i;int x, y;printf("\n解答%d▄▃▂▁\n", ++num);for(y = 1; y <= N; y++){for(x = 1; x <= N; x++){if(queen[y] == x){printf("●");}else{printf("○");}}printf("\n");}}/*行号显示*/void show_2(){int i;printf("\n解答%d▄▃▂▁\n", ++num);for(i=1;i<=N;i++)printf(" %d",queen[i]);printf("\n");}/*八皇后算法实现函数*/void graph_1(int i) //i为行数。