回溯法解八皇后问题

合集下载

八皇后问题

八皇后问题

八皇后问题:在国际象棋里面皇后可以横走,竖走,斜走。

我们现在有一个8*8的棋盘,怎样摆放8个皇后,而使彼此不冲突,也就是怎样使在同一行,同一列,斜对角线上只存在一个皇后。

解决办法:回溯法回溯法:回溯法有“通用的解题法”之称。

应用回溯法解问题时,首先应该明确问题的解空间。

一个复杂问题的解决往往由多部分构成,即,一个大的解决方案可以看作是由若干个小的决策组成。

很多时候它们构成一个决策序列。

解决一个问题的所有可能的决策序列构成该问题的解空间。

解空间中满足约束条件的决策序列称为可行解。

一般说来,解任何问题都有一个目标,在约束条件下使目标值达到最大(或最小)的可行解称为该问题的最优解。

在解空间中,前k 项决策已经取定的所有决策序列之集称为k 定子解空间。

0 定子解空间即是该问题的解空间。

C语言代码:#include<stdio.h>int count=0;/*计数*/int fit(int (*Q)[8],int i,int j)/*判断是否适合摆放皇后*/{int t,e;for(t=i,e=0;e<8;e++)if(Q[t][e]==1&&e!=j) return 0;/*pan duan hang*/for(e=j,t=0;t<8;t++)if(Q[t][e]==1&&t!=i) return 0 ;/*pan duan lie*/for(e=j,t=i;e>0&&t>0;e--,t--)/*pan duan left up */if(Q[t][e]==1) return 0;for(e=j,t=i;e<8&&t<8;e++,t++)if(Q[t][e]==1) return 0; /*pan duan right down*/for(e=j,t=i;e<8&&t>0;e++,t--)if(Q[t][e]==1) return 0;/*pan duan right up*/for(e=j,t=i;e>0&&t<8;e--,t++)if(Q[t][e]==1) return 0;/*pan duan left down*/return 1;/*if all the conditions are the wrong ,then we will get 1 ,so the queenfunction will be told to make the Q[i][j]=1.we will put a queen on Q[i][j].*/}void queen(int (*Q)[8],int j)/*求8皇后问题的解*/{ int i,k;if(j==8)/*递归判断,当j=8,说明Q【】【7】中摆放了皇后,所以得到一个解*/{for(i=0;i<8;i++){for(k=0;k<8;k++)printf(" %d",Q[i][k]);/*统计摆放的种类,以及输出结果;*/printf("\n");}printf("\n");count++;return;}for(i=0;i<8;i++){if(fit(Q,i,j)>0)/*在生成解空间树的同时进行深度搜索,从而实现减枝*/{Q[i][j]=1;queen(Q,j+1);Q[i][j]=0;/*进行回溯,因为每次会形成不同的基点,然后沿着各基点进行深度搜索,所以每次搜索完要回到例外基点,所以前面搜索的基点必然要归为零*/}}}main(){int Q[8][8],i,j;for(i=0;i<8;i++)for(j=0;j<8;j++)Q[i][j]=0;queen(Q,0);printf("%d",count);}运行的部分结果:。

八皇后问题(经典算法-回溯法)

八皇后问题(经典算法-回溯法)

⼋皇后问题(经典算法-回溯法)问题描述:⼋皇后问题(eight queens problem)是⼗九世纪著名的数学家⾼斯于1850年提出的。

问题是:在8×8的棋盘上摆放⼋个皇后,使其不能互相攻击。

即任意两个皇后都不能处于同⼀⾏、同⼀列或同⼀斜线上。

可以把⼋皇后问题扩展到n皇后问题,即在n×n的棋盘上摆放n个皇后,使任意两个皇后都不能互相攻击。

思路:使⽤回溯法依次假设皇后的位置,当第⼀个皇后确定后,寻找下⼀⾏的皇后位置,当满⾜左上、右上和正上⽅向⽆皇后,即矩阵中对应位置都为0,则可以确定皇后位置,依次判断下⼀⾏的皇后位置。

当到达第8⾏时,说明⼋个皇后安置完毕。

代码如下:#include<iostream>using namespace std;#define N 8int a[N][N];int count=0;//判断是否可放bool search(int r,int c){int i,j;//左上+正上for(i=r,j=c; i>=0 && j>=0; i--,j--){if(a[i][j] || a[i][c]){return false;}}//右上for(i=r,j=c; i>=0 && j<N; i--,j++){if(a[i][j]){return false;}}return true;}//输出void print(){for(int i=0;i<N;i++){for(int j=0;j<N;j++){cout<<a[i][j]<<" ";}cout<<endl;}}//回溯法查找适合的放法void queen(int r){if(r == 8){count++;cout<<"第"<<count<<"种放法\n";print();cout<<endl;return;}int i;for(i=0; i<N; i++){if(search(r,i)){a[r][i] = 1;queen(r+1);a[r][i] = 0;}}}//⼊⼝int main(){queen(0);cout<<"⼀共有"<<count<<"放法\n"; return 0;}。

回溯算法与八皇后问题N皇后问题Word版

回溯算法与八皇后问题N皇后问题Word版

回溯算法与八皇后问题(N皇后问题)1 问题描述八皇后问题是数据结构与算法这一门课中经典的一个问题。

下面再来看一下这个问题的描述。

八皇后问题说的是在8*8国际象棋棋盘上,要求在每一行放置一个皇后,且能做到在竖方向,斜方向都没有冲突。

更通用的描述就是有没有可能在一张N*N的棋盘上安全地放N个皇后?2 回溯算法回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。

回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。

在现实中,有很多问题往往需要我们把其所有可能穷举出来,然后从中找出满足某种要求的可能或最优的情况,从而得到整个问题的解。

回溯算法就是解决这种问题的“通用算法”,有“万能算法”之称。

N皇后问题在N增大时就是这样一个解空间很大的问题,所以比较适合用这种方法求解。

这也是N皇后问题的传统解法,很经典。

下面是算法的高级伪码描述,这里用一个N*N的矩阵来存储棋盘:1) 算法开始, 清空棋盘,当前行设为第一行,当前列设为第一列2) 在当前行,当前列的位置上判断是否满足条件(即保证经过这一点的行,列与斜线上都没有两个皇后),若不满足,跳到第4步3) 在当前位置上满足条件的情形:在当前位置放一个皇后,若当前行是最后一行,记录一个解;若当前行不是最后一行,当前行设为下一行, 当前列设为当前行的第一个待测位置;若当前行是最后一行,当前列不是最后一列,当前列设为下一列;若当前行是最后一行,当前列是最后一列,回溯,即清空当前行及以下各行的棋盘,然后,当前行设为上一行,当前列设为当前行的下一个待测位置;以上返回到第2步4) 在当前位置上不满足条件的情形:若当前列不是最后一列,当前列设为下一列,返回到第2步;若当前列是最后一列了,回溯,即,若当前行已经是第一行了,算法退出,否则,清空当前行及以下各行的棋盘,然后,当前行设为上一行,当前列设为当前行的下一个待测位置,返回到第2步;算法的基本原理是上面这个样子,但不同的是用的数据结构不同,检查某个位置是否满足条件的方法也不同。

数据结构与算法中的“递归”——用回溯法求解8皇后问题

数据结构与算法中的“递归”——用回溯法求解8皇后问题

八皇后问题是一个古老而著名的问题,它是回溯算法的典型例题。

该问题是十九世纪德国著名数学家高斯于1850年提出的:在8行8列的国际象棋棋盘上摆放着八个皇后。

若两个皇后位于同一行、同一列或同一对角线上,则称为它们为互相攻击。

在国际象棋中皇后是最强大的棋子,因为它的攻击范围最大,图6-15显示了一个皇后的攻击范围。

图6-15 皇后的攻击范围现在要求使这八个皇后不能相互攻击,即任意两个皇后都不能处于同一行、同一列或同一对角线上,问有多少种摆法。

高斯认为有76种方案。

1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。

现代教学中,把八皇后问题当成一个经典递归算法例题。

图6-16显示了两种八个皇后不相互攻击的情况。

图6-16八个皇后不相互攻击的情况现在来看如何使用回溯法解决八皇后问题。

这个算法将在棋盘上一列一列地摆放皇后直到八个皇后在不相互攻击的情况下都被摆放在棋盘上,算法便终止。

当一个新加入的皇后因为与已经存在的皇后之间相互攻击而不能被摆在棋盘上时,算法便发生回溯。

一旦发生这种情况,就试图把最后放在棋盘上的皇后移动到其他地方。

这样做是为了让新加入的皇后能够在不与其它皇后相互攻击的情况下被摆放在棋盘的适当位置上。

例如图6-17所示的情况,尽管第7个皇后不会与已经放在棋盘上的任何一皇后放生攻击,但仍然需要将它移除并发生回溯,因为无法为第8个皇后在棋盘上找到合适的位置。

图6-17 需要发生回溯的情况算法的回溯部分将尝试移动第7个皇后到第7列的另外一点来为第8个皇后在第8列寻找一个合适的位置。

如果第7个皇后由于在第7列找不到合适的位置而无法被移动,那么算法就必须去掉它然后回溯到第6列的皇后。

最终算法不断重复着摆放皇后和回溯的过程直到找到问题的解为止。

下面给出了求解八皇后问题的示例程序。

#include <conio.h>#include <iostream>using namespace std;// 首先要求皇后不冲突,那么每行只应该有一个皇后// 用queens[]数组在存储每个皇后的位置// 例如: queens[m] = n 表示第m行的皇后放在第n列上#define MAX 8int sum = 0;class QueenPuzzle{int queens[MAX]; // 存储每行皇后的列标public:void printOut(); // 打印结果int IsValid(int n); //判断第n个皇后放上去之后,是否合法 void placeQueen(int i); // 递归算法放置皇后};void QueenPuzzle::printOut(){for(int i=0; i<MAX; i++){for(int j=0; j<MAX; j++){if(j == queens[i])cout << "Q ";elsecout << "0 ";}cout << endl;}cout << endl << "按q键盘退出,按其他键继续" << endl << endl;if(getch() == 'q')exit(0);}// 在第i行放置皇后void QueenPuzzle::placeQueen(int i){for(int j=0; j<MAX; j++){// 如果全部放完了输出结果if(i == MAX){sum ++;cout << "第" << sum << "组解:" << endl;printOut();return;}// 放置皇后queens[i] = j;// 此位置不能放皇后继续试验下一位置if(IsValid(i))placeQueen(i+1);}}//判断第n个皇后放上去之后,是否合法,即是否无冲突int QueenPuzzle::IsValid(int n){//将第n个皇后的位置依次于前面n-1个皇后的位置比较。

八皇后问题--回溯解析

八皇后问题--回溯解析

八皇后问题--回溯解析/************************************************************** **********//* 回溯算法回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。

二. 用回溯算法解决问题的一般步骤:1 针对所给问题,定义问题的解空间,它至少包含问题的一个(最优)解。

2 确定易于搜索的解空间结构,使得能用回溯法方便地搜索整个解空间。

3 以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。

问题的解空间通常是在搜索问题解的过程中动态产生的,这是回溯算法的一个重要特性。

确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始结点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的活结点,并成为当前扩展结点。

如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。

此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。

回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。

回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。

八皇后问题就是回溯算法的典型,第一步按照顺序放一个皇后,然后第二步符合要求放第2个皇后,如果没有符合位置符合要求,那么就要改变第一个皇后的位置,重新放第2个皇后的位置,直到找到符合条件的位置就可以了.回溯在迷宫搜索中使用很常见,就是这条路走不通,然后返回前一个路口,继续下一条路。

回溯算法说白了就是穷举法。

不过回溯算法使用剪枝函数,剪去一些不可能到达最终状态(即答案状态)的节点,从而减少状态空间树节点的生成。

回溯法是一个既带有系统性又带有跳跃性的的搜索算法。

它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。

八皇后以及N皇后问题分析

八皇后以及N皇后问题分析

⼋皇后以及N皇后问题分析⼋皇后是⼀个经典问题,在8*8的棋盘上放置8个皇后,每⼀⾏不能互相攻击。

因此拓展出 N皇后问题。

下⾯慢慢了解解决这些问题的⽅法:回溯法:回溯算法也叫试探法,它是⼀种系统地搜索问题的解的⽅法。

回溯算法的基本思想是:从⼀条路往前⾛,能进则进,不能进则退回来,换⼀条路再试。

在现实中,有很多问题往往需要我们把其所有可能穷举出来,然后从中找出满⾜某种要求的可能或最优的情况,从⽽得到整个问题的解。

回溯算法就是解决这种问题的“通⽤算法”,有“万能算法”之称。

N皇后问题在N增⼤时就是这样⼀个解空间很⼤的问题,所以⽐较适合⽤这种⽅法求解。

这也是N皇后问题的传统解法,很经典。

算法描述:1. 算法开始,清空棋盘。

当前⾏设为第⼀⾏,当前列设为第⼀列。

2. 在当前⾏,当前列的判断放置皇后是否安全,若不安全,则跳到第四步。

3. 在当前位置上满⾜条件的情况: 在当前位置放⼀个皇后,若当前⾏是最后⼀⾏,记录⼀个解; 若当前⾏不是最后⼀⾏,当前⾏设为下⼀⾏,当前列设为当前⾏的第⼀个待测位置; 若当前⾏是最后⼀⾏,当前列不是最后⼀列,当前列设为下⼀列; 若当前⾏是最后⼀⾏,当前列是最后⼀列,回溯,即清空当前⾏以及以下各⾏的棋盘,然后当前⾏设为上⼀⾏,当前列设为当前⾏的下⼀个待测位置; 以上返回第⼆步。

4.在当前位置上不满⾜条件: 若当前列不是最后⼀列,当前列设为下⼀列,返回到第⼆步; 若当前列是最后⼀列,回溯,即,若当前⾏已经是第⼀⾏了,算法退出,否则,清空当前⾏以及以下各⾏的棋盘,然后,当前⾏设为上⼀⾏,当前列设为当前⾏的下⼀个待测位置,返回第⼆步。

如何判断是否安全:把棋盘存储为⼀个N维数组a[N],数组中第i个元素的值代表第i⾏的皇后位置,这样便可以把问题的空间规模压缩为⼀维O(N),在判断是否冲突时也很简单, ⾸先每⾏只有⼀个皇后,且在数组中只占据⼀个元素的位置,⾏冲突就不存在了, 其次是列冲突,判断⼀下是否有a[i]与当前要放置皇后的列j相等即可。

回溯法解决N皇后问题C语言

回溯法解决N皇后问题C语言

回溯法解决N皇后问题C语⾔问题描述:⼋皇后问题是⼀个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置⼋个皇后,使得任何⼀个皇后都⽆法直接吃掉其他的皇后?为了达到此⽬的,任两个皇后都不能处于同⼀条横⾏、纵⾏或斜线上。

回溯法:回溯法⼜称试探法。

回溯法的基本做法是深度优先搜索。

即从⼀条路往前⾛,能进则进,不能进则退回来,换⼀条路再试。

源代码:#include<stdio.h>#include<math.h>int x[9]={0};bool PLACE(int k)//检测第k个皇后能否放进棋盘{int i=1;while(i<k){if(x[i]==x[k]||fabs(x[i]-x[k])==fabs(i-k))return false;i++;}return true;}void NQUEENS(int n){int i,k=1; //k为当前⾏号x[1]=0;//x[k]为第k⾏皇后所放的列号while(k>0){x[k]++;while(x[k]<=n&&!PLACE(k))//该⾏不符合,则放⼊下⼀⾏x[k]++;if(x[k]<=n){if(k==n)//输出x[]{for(i=1;i<=n;i++)printf("x[%d]:%d ",i,x[i]);printf("\n");}else//判断下⼀⾏{k++; x[k]=0;}}else k--;//没找到,则回溯}return ;}int main(){NQUEENS(8);return0;}。

八皇后问题——回溯法(pythonJAVA)

八皇后问题——回溯法(pythonJAVA)

⼋皇后问题——回溯法(pythonJAVA)⼋皇后问题,是⼀个古⽼⽽著名的问题,问题如下:在8×8格的国际象棋上摆放⼋个皇后,使其不能互相攻击,即任意两个皇后都不能处于同⼀⾏、同⼀列或同⼀斜线上,问有多少种摆法。

上边是⼀个8*8的国际棋盘,可以看到棋盘中的每个格⼦都标有数字。

每个数字都是两位,⼗位数字表⽰该格⼦所在的⾏,⽽个位数字表⽰该格⼦所在的列。

这样不难发现,处在同⼀⾏的两个格⼦其⼗位数都相同,处在同⼀列的两个格⼦其个位数都相同,处在同⼀斜线的两个格⼦有:|两个数字个位数的差|=|两个数字⼗位数的差|。

主要的三个限制条件明⽩了,接下来我们选择⼀种数据结构对“皇后”进⾏存储。

很明显,我们可以选择⼆维数组。

但是还可以选择⼀维数组。

在这⾥我们选择⼀维数组。

为什么选择⼀维数组呢?1.因为⼀⾏只放⼀个皇后,很符合我们⼀维数组的存放特性,即⼀个索引对应⼀个元素。

2.相对于⼆维数组,⼀位数组⽐较简单,更适合初学者。

我们以皇后所在的⾏标作为⼀位数组的索引,皇后所在的列标作为该索引对应的元素,例如arr[3]=5,代表第三⾏的皇后在第五列。

下边我们以python以及JAVA为例来解决这个问题。

num=0def eight_queen(arr,finish_line=0):if finish_line == len(arr): #如果放置皇后成功的⾏数与数组中的元素个数⼀致(即棋盘的⾏数)则认为完成了⼀种摆法global num #将上边定义的num定义为全局变量这样才能在后边对其进⾏⾃加操作num+=1print("第%s种摆法:" % num)for i in range(8):print((i,arr[i]))return# breakfor stand in range(len(arr)): #对整个列进⾏扫描,将列标的标号赋值给数组中对应的元素arr[finish_line] = standflag = Truefor line in range(finish_line):if arr[line] == stand or abs(arr[line]-stand) == finish_line-line: #有皇后与当前放置的皇后处于同⼀列或同⼀斜线上flag = False# stand-=1if flag==True:eight_queen(arr,finish_line+1)if__name__ == '__main__':eight_queen([None]*8)if num != 0:print("⼀共有%s种摆法" % num)else:print("⽆解")对于初学者理解可能不是特别轻松,所以在这⾥我们总结⼀个的定式,再遇到此类问题时直接套⽤以下定式即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{ printf(" ");
fprintf(fp," ");
}
printf("%d\n", i);
fprintf(fp, "%d\n", i);
}
printf
(".......................................................\n");
fprintf(fp,
/*/
#include <stdio.h>
#include <math.h>
#define false 0
#define true 1
#define quesize 8
int gx[quesize+1];
int sum=0;
int place( int k );
void print( int a[] );
fprintf(fp,"the sum of the ways of queens:%d\n", sum);
printf("the sum of the ways of queens:%d\n", sum);
fclose(fp);
return 1;
}
/*/////////////////////////////////////////////////////////////////////
{
int i = 1;
while ( i < k )
{ if ( ( gx[i] == gx[k] ) || ( abs( gx[i] - gx[k] )==abs( i - k ) )
)
return (false);
i = i + 1;
}
return (true);
}
/*/////////////////////////////////////////////////////////////////////
///
Resove the ways of n queens
///////////////////////////////////////////////////////////////////////
/*/
void nqueens( int n )
{ int k = 1;
gx[1] = 0;
while ( k > 0 )
//
If a queen in k row and gx[k] column then return 1 else return 0
///////////////////////////////////////////////////////////////////////
*/
int place( int k )
"........................................................\n");
fprintf
(fp,".....................................................\n");
sum = sum + 1;
}
*/
void print( int a[] )
{ int i,j;
printf("The %dth\n", sum+1);
fprintf(fp, "The %dth\n", sum+1);
for ( i = 1; i <= quesize; i++ )
{
for ( j = 1;j <= a[i]; j++)
///////
/////Completed date: 2007.12 ////////
/////Version number: Turboc 2.0
////////
///////////////////////////////////////////////////////////////////////
void nqueens( int n );
FILE *fp;
int main( )
{
system("cls");
fp = fopen("outfile.txt", "w");
if(!fp){
printf("the file can't be opened!");
return 0;
}
nqueens( quesize );
{ gx[k] = gx[k] + 1;
while ( ( gx[k] <= n ) && ( !place(k) ) )
gx[k] = gx[k] + 1;
if ( gx[k] <= n )
if ( k == n ) print(gx);
else {k = k + 1; gx[k] = 0;}
else k = k - 1;
}
}
/*////////////////////////////////////////
//
Print the results into outfile and screen.
///////////////////////////////////////////////////////////////////////
/*/////////////////////////////////////////////////////////////////////
///
/////The programming is a complex problem about the ways of
queens.///////
/////Programmer: Luo Xiaochun
回溯法解八皇后问题
在N * N格的棋盘上放置彼此不受攻击的N个皇后。N个皇后问题等价于在N * N格的棋盘上放置N个皇后,任何2个皇后不在同一行或同一列或同一斜线上。当N等于8,就是著名的八皇后问题。
此问题是通过C语言程序编写的,在Turboc环境下完成实现的。输出结果见(输出结果。TXT文件)
详细代码为:
相关文档
最新文档